## Supplementary Information SI(MS 2019.00908)

## Superconductivity in a unique type of copper oxide

W. M. Li<sup>a,b,c</sup>, J. F. Zhao<sup>a,b</sup>, L. P. Cao<sup>a,b</sup>, Z. Hu<sup>d</sup>, Q. Z. Huang<sup>e</sup>, X. C. Wang<sup>a,b,c</sup>, Y. Liu<sup>a,b</sup>, G. Q. Zhao<sup>a,b</sup>, J. Zhang<sup>a,b</sup>, Q. Q. Liu<sup>a,b</sup>, R. Z. Yu<sup>a,b,c</sup>, Y. W. Long<sup>a,b,c</sup>, H. Wu<sup>e</sup>, H. J. Lin<sup>f</sup>, C. T. Chen<sup>f</sup>, Z. Li<sup>g</sup>, Z. Z. Gong<sup>h</sup>, Z. Guguchia<sup>h</sup>, J. S. Kim<sup>i</sup>, G. R. Stewart<sup>i</sup>, Y. J. Uemura<sup>h</sup>, S. Uchida<sup>a,j</sup>, and C.Q Jin<sup>a,b,c,1</sup>

<sup>a</sup>Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China;

<sup>b</sup>School of Physics, University of Chinese Academy of Sciences, Chinese Academy of

Sciences, 100190 Beijing, China;

<sup>c</sup>Materials Research Lab at Songshan Lake, 523808 Dongguan, China;

<sup>d</sup>Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straβe 40, 01187

Dresden, Germany;

<sup>e</sup>NIST Center for Neutron Research, National Institute of Standard and Technology, Gaithersburg, MD 20899, USA;

<sup>f</sup>National Synchrotron Radiation Research Center, 30076 Hsinchu, Taiwan;

<sup>g</sup>School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094 Nanjing, China;

<sup>h</sup>Department of Physics, Columbia University, New York, NY 10027, USA;

<sup>i</sup>Department of Physics, University of Florida, Gainesville, FL 32611-8440, USA;

<sup>j</sup>Department of Physics, University of Tokyo, 113-0033 Tokyo, Japan

**Table S1.** Summary of the primary structure based on Rietveld refinements of Ba<sub>2</sub>CuO<sub>4-y</sub> from powder X-ray diffraction patterns at room temperature. The abbreviations of  $R_{wp} \& R_p \& \chi^2$  correspond to weight profile reliability factor, profile reliability factor, and match factor, respectively. U<sub>iso</sub> is the isotropic atomic displacement parameter.

Formula: Ba<sub>2</sub>CuO<sub>4-y</sub> (T=300K); Space group: *I4/mmm* (No.139)

a = 4.0030(3) (Å); c = 12.942 (1) (Å);

 $R_{wp}$ : 3.41%;  $R_p$ : 2.47%;  $\chi^2$ : 1.114

Atamic parameters

| Atom | Wyckoff  | Х | У   | Z          | occupancy | U <sub>iso</sub>         |
|------|----------|---|-----|------------|-----------|--------------------------|
|      | position |   |     |            |           | $(*10^{-2} \text{ Å}^2)$ |
| Ba   | 4e       | 0 | 0   | 0.35627(7) | 1         | 1.66(6)                  |
| Cu   | 2a       | 0 | 0   | 0          | 1         | 1.51(9)                  |
| 01   | 4e       | 0 | 0   | 0.1438(6)  | 1         | 1.6(1)                   |
| 02   | 4c       | 0 | 0.5 | 0          | 0.592(15) | 7(1)                     |

## Band structure of Ba<sub>2</sub>CuO<sub>4</sub>

To get some insight, the electronic energy band structure calculation in the local-density-approximation (LDA) is performed for an ideal Ba<sub>2</sub>CuO<sub>4</sub> (nominal valence is  $Cu^{4+}(3d^7)$ ) with the same lattice parameters as those of the present cuprate, a = 4.003 Å and c = 12.94 Å ( $d_A = 1.86$  Å). The calculated band structure is displayed in Fig. S1a and is supportive of the multi-band nature of Ba<sub>2</sub>CuO<sub>4</sub>. There are two bands prevailing near the Fermi level ( $E_{\rm F}$ ), one with  $3dz^2$  orbital character (blue) and the other with  $3dx^2 - y^2$  orbital character (red). Both bands almost completely overlap in energy, since the width of the  $dx^2$ -  $y^2$  derived band is narrow due to the long in-plane Cu-O bond length. Even if  $E_{\rm F}$  shifts up, in a rigid band manner, to the energy corresponding to a realistic hole density, somewhere between  $Cu^{3+}$  (3d<sup>8</sup>) and  $Cu^{2+}$  $(3d^9)$ , both bands contribute nearly equally to the states near the Fermi level. The Fermi surface at the Fermi energy  $E_{\rm F}$  corresponding to the Cu<sup>3+</sup> (3d<sup>8</sup>) filling is shown in Fig. S1b. Two types of Fermi surfaces are identified, one electron surface surrounding the Brillouin zone center ( $\Gamma$ ) with  $3dz^2$  orbital character (in blue) and one hole surface around the corner (M) of the zone with  $3dx^2 - y^2$  orbital character (in red). Basically the same calculation results have been reported in the Preprint at https://arXiv.org/abs/1809.04156 (2018), by Maier, T.A., Berlijn, T. & Scalapino, D.J. *d*-wave and  $s^{\pm}$  Pairing Strengths in Ba<sub>2</sub>CuO<sub>3+ $\delta$ </sub>.

Fig. S1a





