1 Online Methods

2 Cell lines. HUH7 and Hep3B cells were obtained from Japanese Collection of Research 3 Biorescources (JCRB) and ATCC, respectively. RIL175 cells were kindly provided by Prof. 4 Simon Rothenfußer (Center of Integrated Protein Science Munich (CIPS-M) and Division of 5 Clinical Pharmacology, Department of Internal Medicine IV, Klinikum der Universität München). For the cultivation of HUH7 and RIL175 DMEM (PAN Biotech GmbH, Aidenbach, 6 7 Germany) supplemented with 10% FCS (Biochrom AG, Berlin, Germany) was used, while 8 Hep3B cells were cultured in MEM Eagle (PAN Biotech GmbH, Aidenbach, Germany) 9 supplemented with 10% FCS. All cells were cultured at 37 °C with 5% CO2 in constant 10 humidity in an incubator. Before cell seeding, all culture flasks, multiwell-plates and dishes 11 were coated with collagen G (0.001% in PBS, Biochrom AG, Berlin, Germany).

12

Compounds. (R)-Roscovitine was obtained from Sigma-Aldrich. Sorafenib was obtained
 from Enzo Life Sciences. Dinaciclib and Gefitinib was obtained from Selleckchem. LGR1407
 was kindly provided by Libor Havlíček (Institute of Experimental Botany AS CR, Prague,
 Czech Republic) (1).

17

Transfection experiments – Cdk5 shRNA. For the transduction of HUH7 and Hep3B cells 18 19 with Cdk5 shRNA and nt shRNA, Cdk5 MISSION® shRNA Lentiviral Transduction Particles 20 (Vector: pLKO.1-puro; SHCLNV-NM 004935; Clone ID: (1) TRCN0000021465, (2) 21 TRCN0000021466, (3) TRCN0000021467, (4) TRCN0000194974, (5) TRCN0000195513; 22 Sigma-Aldrich, Taufkirchen, Germany) and MISSION® pLKO.1-puro Non-Mammalian 23 shRNA Control Transduction Particles (SHC002V; Sigma-Aldrich, Taufkirchen, Germany) as 24 a non-targeting control were used according to the manufacturer's protocol. Both cell lines 25 were transduced with a multiplicity of infection (MOI) of one. Successfully transduced cells 26 were selected by adding 2 µg/ml puromycin (Thermo Fisher Scientific, Waltham, MA) to the 27 medium. After the initial selection, puromycin concentration was reduced to 1 µg/ml for 30

31 Genome engineering using the CRISPR/Cas9 system. For the knockout of Cdk5 in murine 32 RIL175 cells the CRISPR-Cas9 system was used as described previously (2). In short, we 33 decided to introduce an InDel-mutation in exon 2 of Cdk5. Therefore we sequenced the 34 genomic region of interest (Cdk5 sequencing primer: 5'-GAGTTTATGGCAGATTCTCC-3') 35 and designed single guide RNAs (sgRNAs) as described previously (3). The three topranked sgRNAs were used for further experiments and were inserted into the 36 37 eCas9 Puro2.0 plasmid using the T4 DNA ligase protocol provided by the manufacturer 38 (New England BioLabs, Frankfurt a.M., Germany). After transformation into competent 39 DH5α-E.coli, plasmids were isolated using the QIAGEN Plasmid Maxiprep Kit (Qiagen, 40 Hilden, Germany) according to the manufacturer's protocol and sequenced starting from the U6 promotor to validate the correct insertion. RIL175 wild-type cells were then transfected 41 42 with the respective plasmids using Lipofectamine[™] 3000 reagent (Invitrogen, Hilden, 43 Germany) as described by the manufacturer. After selection with puromycin, genome targeting efficiency was checked using T7 DNA endonuclease I as described by the 44 45 manufacturer (New England BioLabs, Frankfurt a.M., Germany). Cells transfected with the 46 most efficient sgRNA (Cdk5 sgRNA top: 5'-CACCGGCTCTGAAGCGTGTCAGGC-3'; bottom: 47 5'-AAACGCCTGACACGCTTCAGAGCC-3') were diluted for clonal selection. Gene knockout 48 in identified clones was confirmed with sequencing and Western blot. Sequencing services, 49 sequencing primers, cloning oligomers and PCR primers were provided by Eurofins 50 Genomics GmbH (Ebersberg, Germany).

51

Proliferation assay. The proliferation of HCC cells was evaluated using the xCELLigence system (Roche Diagnostics, Mannheim, Germany). The respective cell lines were seeded at the given density in 100 μ l growth medium in equilibrated 16-well E-plates (HUH7: 2 x 10³ cells per well; Hep3B: 4 x 10³ cells per well). After an initial incubation of 24 h without any 56 compounds, cells were either treated with different substances for 72 h or left untreated as a 57 control (4 wells per experimental condition). Through impedance measurement, the 58 xCELLigence system evaluates the cell index, a dimensionless parameter, which is 59 proportional to the cell number and recorded every hour. In each figure, the cell index is 60 displayed as one respresentative experiment. After normalizing the cell index to the start 61 point of treatment, the doubling time was evaluated by the xCELLigence software and served 62 for statistical evaluation. Doubling time was calculated from at least three independent 63 experiments.

For the evaluation of synergism, two separate methods were used. First, the Combination Subthresholding approach was used where synergy is assumed, if both single treatments alone show no significant benefit over the untreated control, while the combination of both treatments shows a significant effect (4). Secondly, synergism was calculated using the Bliss Independence model (5). Therefore, the Bliss Value (BV) was evaluated by comparing the effects of drug A (E_A) and drug B (E_B) with the effect of the combination of both drugs (E_{AB}) according to the following formula:

71
$$BV = \frac{E_{AB}}{(E_A + E_B) - (E_A \times E_B)}$$

72

73 Synergistic effects were assumed with BV>1, antagonistic effects with BV<1 and additive
74 effects with BV=1.

75

Clonogenic assay. For the evaluation of long term cell survival, cells were seeded into 6well plates and treated with the respective compounds for 24 h. After the incubation, cells were trypsinized and reseeded at a density of 1 x 10⁴ cells per well into a 6-well plate. After incubation for 7 d, viable cells were stained with crystal violet solution for 10 min (RT). Bound dye was solubilized by adding 1 ml dissolving buffer and the absorbance at 550 nm was measured using a SpectraFluor Plus[™] plate reader (Tecan, Crailsheim, Germany).

82

84 Immunohistochemistry. 5 µm sections of paraffin embedded tumors from the xenograft 85 mouse model were used for IHC. Therefore the slides were first deparaffinized and 86 rehydrated. Thereafter the sections were boiled in sodium citrate buffer (10 mM sodium 87 citrate, 0.05% Tween 20, pH 6.0) for antigen retrieval, before endogenous peroxidase was 88 blocked by incubation in 7.5% hydrogen peroxide for 10 min. As an indicator for proliferating 89 cells a primary antibody against Ki67 (1:100, Abcam, ab15580) was applied for 1 h at room temperature. The Vectastain[®] Universal Elite ABC Kit (Vector Laboratories, Burlingame, CA) 90 91 was used for antibody detection according to the manufacturer's protocol and AEC (Thermo 92 Fisher Scientific, Waltham, MA) was used as a chromogen. The slides were then 93 counterstained with hematoxylin (Sigma Aldrich, Taufkirchen, Germany) for 1 min before 94 being washed with distilled water. The sections were embedded in FluorSave™ Reagent 95 mounting medium and covered with glass coverslips. Images were collected with an 96 Olympus BX41 microscope and an Olympus DP25 camera (Olympus, Hamburg, Germany).

97

98 **Cell cycle and apoptosis analysis.** Cell cycle analysis and evaluation of apoptosis rates 99 was performed as described by Nicoletti et. al. (6). In detail, cells were seeded at a densitiv 100 of 8 x 10^4 cells per well into 24 well plates and treated with Sorafenib (5 μ M, 24, 48 and 72 101 h). After incubation cells were trypsinized, washed with PBS and centrifuged (600 g, 4°C, 10 min). Further cells were permeabilized and stained by adding fluorochrome solution (FS) 102 103 containing propidium iodide (Sigma Aldrich, Taufkirchen, Germany). After an overnight 104 incubation at 4 °C, cells were analysed by flow cytometry on a FACSCalibur (Becton 105 Dickinson, Heidelberg, Germany). For the determination of cell populations in different cell 106 cycle phases and the percentage of apoptotic cells the FlowJo 7.6 analysis software (Tree 107 Star Inc., Ashland, USA) was used.

108

Migration/invasion assays. To examine the migratory ability of HCC cells under the influence of various compounds, cells were first seeded into 6-well plates and either left untreated or pretreated with the indicated agent for 24 h. After pretreatment, cells were

trypsinized, centrifuged (1000 rpm, 5 min, RT) and resuspended in DMEM or DMEM 112 containing chemotherapeutic agents. 1 x 10^5 cells per condition were seeded into collagen G 113 114 coated Transwell[®] Permeable Supports (8 µm pore polycarbonate inserts, Corning Inc., New 115 York, NY), which were then placed into a 24-well plate containing 700 µl DMEM (negative 116 control) or DMEM containing 10% FCS per well. Cell were allowed to migrate for 16 h (HUH7) or 24 h (Hep3B) before being stained with crystal violet. Migrated cells were counted 117 118 in 5 fields under a 10-fold objective lense of a Zeiss Axiovert 25 microscope (Zeiss, Jena, 119 Germany) and imaged with a Canon 450D camera (Canon, Krefeld, Germany). Cell counting 120 was performed by using the particle counter plugin of the ImageJ software. For the evaluation of invasive capabilities the Transwell® Permeable Supports were coated with 121 122 Matrigel® (Corning Inc., New York, NY) to simulate extracellular matrix.

123

124 Proteomic analysis via LC-MS/MS.

125 *Treatment of cells.* Nt shRNA and Cdk5 shRNA HUH7 cells were seeded at a density of 0.35 126 x 10^6 cells per well into 6-well plates and treated with Sorafenib (0.5 μ M, 5 μ M, 24h). After 127 incubation cells were washed five times with PBS and detached with trypsin/EDTA. To 128 remove excessive trypsin/EDTA cells were centrifuged (1000 rpm, 5 min, 4°C). Cell pellets 129 were resuspended in 100 μ l ice-cold PBS and stored at -80°C until further processing.

130 Sample processing. Per 1 x 10^5 cells 20 µl of 8 M urea / 0.4 M NH₄HCO₃ was added. Cells 131 were lysed using an ultrasonic device (Sonoplus GM3200 with BR30 cup booster, Bandelin, 132 Berlin, Germany) applying 10,000 kJ. For further homogenization, samples were centrifuged 133 through QIA-Shredder devices (Qiagen, Hilden, Germany). Protein concentrations were 134 determined by Bradford assays and adjusted to 0.6 mg/ml with 8 M urea/0.4 M NH₄HCO₃. To 135 cleave bisulfide bonds, 25 µg of total protein was incubated with DTE at a concentration of 136 4.5 mM for 30 min and free sulfhydryl residues were blocked with iodoacetamide (final 137 concentration 10 mM) for 30 min in the dark. After dilution with water to a concentration of 1 138 M urea, 0.5 µg porcine trypsin (Promega, Madison, WI, USA) was added and incubated 139 overnight at 37 °C.

140 Liquid-chromatography mass spectrometry. Chromatography of peptides was performed on 141 an EASY-nLC 1000 chromatography system (Thermo Scientific, Waltham, MA) coupled to an 142 Orbitrap XL instrument (Thermo Scientific). 2.5 µg of peptides diluted in 0.1 % formic acid 143 (FA) were transferred to a trap column (PepMap100 C18, 75 µm x 2 cm, 3 µm particles, 144 Thermo Scientific) and separated at a flow rate of 200 nL/min (Column: PepMap RSLC C18, 145 75 µm x 50 cm, 2 µm particles, Thermo Scientific) using a 260 min linear gradients from 5 % 146 to 25 % solvent B (0.1 % formic acid, 100 % ACN) and a consecutive 60 min linear gradient 147 from 25 % to 50 % solvent B. For data acquisition, a top five data dependent CID method 148 was used.

Proteomic data processing. For the quantitative analysis of the data obtained from the mass
spectrometry screen the MaxQuant and Perseus software packages (provided by Max
Planck Institute of Biochemistry, Munich) were used.

152

153 Quantitative real-time PCR analysis. For the isolation of mRNA from cell culture samples 154 the Qiagen RNeasy Mini Kit (Qiagen, Hilden, Germany) was used according to the 155 manufacturer's protocol. Concentration of mRNA in each sample was determined with the 156 NanoDrop® ND-1000 spectrophotomer (Nanodrop Technologies, Erlangen, Germany). For 157 the creation of cDNA templates from mRNA by reverse transcription the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA) was used as described by 158 159 the manufacturer. The Real-Time-Polymerase chain reaction was performed with the ABI 160 7300 Real Time PCR System (Applied Biosystems, Foster City, CA) using SYBR Green 161 Master Mix (ThermoFisher Scientific, Waltham, MA) and respective primers. Actin was used 162 as a housekeeping gene. In order to evaluate changes in mRNA levels the $\Delta\Delta$ CT method 163 was used as described earlier (7).

164

Western blot analysis and antibodies. Proteins were separated on a SDS-PAGE gel, transferred to a nitrocellulose membrane (Hybond-ECL™, Amersham Bioscience) and incubated with a primary antibody overnight at 4 °C. The following antibodies were used: 168 pAkt (Ser473) (1:500, Cell Signaling Technologies, 9271), Akt (1:1000, Cell Signaling 169 Technologies, 9272), pErk (Thr202/Tyr204) (1:1000, Cell Signaling Technologies, 9106), Erk (1:1000, Cell Signaling Technologies, 9102), pEGFR (Tyr1068) (1:1000, Cell Signaling 170 171 Technologies, 2234), EGFR (1:1000, Cell Signaling Technologies, 2239), pH2A.X (1:1000, 172 Cell Signaling Technologies, 2577), actin (1:1000, Merck Millipore, MAB1501), p62/Sequestosome1 (1:1000, Cell Signaling Technologies, 8025), LC3 (1:1000, Cell 173 174 Signaling Technologies, 4108), FTH1 (1:1000, Sigma Aldrich, F5012), LIN28B (1:1000, Cell 175 Signaling Technologies, 4196), CA2 (1:1000, ThermoFisher Scientific, PA5-28267), Vimentin (1:1000, Cell Signaling Technologies, 5741). As loading control, the stain-free technology 176 177 (Bio Rad) was used. This technique enables a quantification of the whole lane protein, and 178 therefore can be used for the normalization of protein bands (8). Proteins were visualized 179 using horseradish peroxidase coupled secondary antibodies and ECL solution containing 2.5 mM luminol. Chemiluminescence was detected with the Chemidoc™ Touch Imaging system 180 181 (Bio-Rad, Munich, Germany).

182

183 Glycolysis Stress Test. nt and Cdk5 shRNA HUH7 cells were seeded at a density of 1.5 x 184 10^4 into a XF^e96 microplate and grown for 24 h prior to Sorafenib treatment (0.5 μ M, 5 μ M, 24 h). The Seahorse Glycolysis Stress Test Kit was used in combination with the Seahorse 185 186 XFe96 Analyzer (Agilent Technologies, Santa Clara, CA) as described by the manufacturer. 187 Results were normalized to DNA content measured with CyQuant® GR dye solution 188 (ThermoFisher Scientific, Waltham, MA) according to the manufactures protocol. Data 189 analysis was performed with Wave 2.3.0 software and Seahorse XF Glycolysis Stress Test Report Generator (Agilent Technologies, Santa Clara, CA). For statistical analysis the 190 191 following parameters were calculated from the respective graphs:

ECAR: Non-gylcolytic acidification (NGA), glycolysis (G), glycolytic capacity (GC) and glycolytic reserve (GR) (Table 2); OCR: Non-glycolytic OCR (NG-OCR) and glycolytic OCR (G-OCR) (Table 3).

Figure 1 – Seahorse glycolysis stress test parameters for ECAR (left panel) and OCR
 (right panel).

198

195

Human HCC microarrays. Tissue microarrays (TMA), containing human HCC samples and 199 200 matched surrounding non-tumor tissue were produced. The TMAs included 115 patients 201 which had been treated with liver transplantation or partial hepatectomy at the University 202 Clinic Munich Großhadern between 2008 and 2013. The formalin-fixed, paraffin-embedded 203 blocks were cut into 2 mm thick slices and mounted on SuperFrost Plus microscope slides 204 (Menzel Gläser, Braunschweig, Germany). After deparaffinization and rehydration all slides 205 were Hematoxilien-Eosin stained in a standard manner (Vector Laboratories, Burlingame, 206 CA, USA). Several blank-slides were set aside for immunohistochemical stainings. 207 Staining for EGFR was performed by using a Ventana Benchmark XT autostainer using the

208 XT UltraView diaminobenzidine kit (Ventana Medical Systems). The Ventana EGFR-antibody 209 clone 3C6 (ready to use) was used.

EGFR-staining of the TMA section was assessed using the immunoreactive score as
described previously (9): 0 – absent; 1-4 –weak; 5-8 – moderate; 9-12 – strong expression.
Images were obtained with a digital network microscope Leica DMD108 (Leica Biosystems
Nussloch, Germany).

214

Statistical analysis. All listed experiments were conducted at least three times unless otherwise indicated in the figure legends. The given data is presented as mean ± SEM and statistical significance was considered if $P \le 0.05$. The statistical analysis was performed with

218 GraphPad Prism software version 7.0 (GraphPad Software, San Diego, USA).

219

Weitensteiner SB, Liebl J, Krystof V, Havlicek L, Gucky T, Strnad M, Furst R, et al.
 Trisubstituted pyrazolopyrimidines as novel angiogenesis inhibitors. PLoS One
 2013;8:e54607.

Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering
 using the CRISPR-Cas9 system. Nat Protoc 2013;8:2281-2308.

Haeussler M, Schonig K, Eckert H, Eschstruth A, Mianne J, Renaud JB, Schneider Maunoury S, et al. Evaluation of off-target and on-target scoring algorithms and integration
 into the guide RNA selection tool CRISPOR. Genome Biol 2016;17:148.

Foucquier J, Guedj M. Analysis of drug combinations: current methodological
 landscape. Pharmacol Res Perspect 2015;3:e00149.

230 5. Berenbaum MC. What is synergy? Pharmacol Rev 1989;41:93-141.

Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple
 method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry.
 J Immunol Methods 1991;139:271-279.

7. Fleige S, Walf V, Huch S, Prgomet C, Sehm J, Pfaffl MW. Comparison of relative
mRNA quantification models and the impact of RNA integrity in quantitative real-time RTPCR. Biotechnol Lett 2006;28:1601-1613.

Colella AD, Chegenii N, Tea MN, Gibbins IL, Williams KA, Chataway TK. Comparison
 of Stain-Free gels with traditional immunoblot loading control methodology. Anal Biochem
 2012;430:108-110.

9. Remmele W, Stegner HE. [Recommendation for uniform definition of an
immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA)
in breast cancer tissue]. Pathologe 1987;8:138-140.

244Table 1 – PCR Primer

Gene	forward primer	reverse primer
ABCB1	5'-TCGTAGGAGTGTCCGTGGAT-3'	5'-ATGTGCCACCAAGTAGGCTC-3'
AKR7A2	5'-TTCTACCTACACGCACCTGAC-3'	5'-ATAGTTGGAGAGGCCAAGCTC-3'
ANPEP	5'-ATCCCTGTCATCAATCGGGC-3'	5'-GTTGGGGTGGATCGGGTTAT-3'
АРОВ	5'-AATGGCCCCGTTTACCATGA-3'	5'-GGTCTTGAGTTTCCAGGTGC-3'
ARF5	5'-TGAGCGAGCTGACTGACAAG-3'	5'-GAAACCCAGATCCCTGCTCC-3'
CA2	5'-GTACGGCAAACACAACGGAC-3'	5'-CTGTAAGTGCCATCCAGGGG-3'
CARHSP1	5'-AGAACGGATTGCAGGGTCA-3'	5'-TCCCACAAGCACAGGACAAG-3'
CLDN1	5'-GCTGGGCTTCCCTAGATGTC-3'	5'-GAGGTGGGCAGTCCTTTGTT-3'
DDT	5'-GCCCTGACCCAGAAACGACT-3'	5'-CAGCTCCTCAGATGTCCGTG-3'
EGFR	5'-GGCCTAAGATCCCGTCCATC-3'	5'-TGGCTTTCGGAGATGTTGCT-3'
ENTPD5	5'-AAATTGCCTCTGCAGGTGTG-3'	5'-GCTGTCCTGGCATTTTCTGC-3'
FABP5	5'-AGGAGTGGGAATAGCTTTGCG-3'	5'-GCTGAACCAATGCACCATCT-3'
FAM115A	5'-GCGGGGCAAACAAAACCAATA-3'	5'-GGGAACGTGAACAGAACCCT-3'
FTH1	5'-TCAACAGTGCTTGGACGGAA-3'	5'-GTCCTGGTGGTAGTTCTGGC-3'
FTL	5'-GCTCCTTCTTGCCAACCAAC-3'	5'-GCCCAGAGAGAGGTAGGTGT-3'
G6PD	5'-TCCTGCATGAGCCAGATAGG-3'	5'-TGCGGTAGATCTGGTCCTCA-3'
GLDC	5'-AGAAACATCTCGCCCCGTTT-3'	5'-TCCGTCTTCCAACCATCAGC-3'
H2AFY	5'-GGCCCGGAAATCCAAGAAGA-3'	5'-ACACTTGTCTGCACCCCAAA-3'
HGD	5'-AGAGAGGAATGCGGTTCAGC-3'	5'-TTGCCTCATAGTGACCTCGG-3'
HPRT1	5'-AGGCGAACCTCTCGGCTTTC-3'	5'-AATCCGCCCAAAGGGAACTG-3'
HSD17B11	5'-TGCAAAGAAGGTGAAGGCAGAA-3'	5'-TGAAGACTGCCAAAGCCTCA-3'
HTATIP2	5'-CAGGGAAGGTGGGATGCTC-3'	5'-CCATTCACCTGGGCGAGATT-3'
IDI1	5'-CTTTCGGATTGGGAGGGCTT-3'	5'-GCCAATCACGCTTTCGATCC-3'
KPNA2	5'-TCGAGGTGGACCCTTTGAAC-3'	5'-TGGGGCACAACTCCTGTTTT-3'
LGAL3	5'-GCCAACGAGCGGAAAATGG-3'	5'-CAGGCCATCCTTGAGGGTTT-3'

LIN28B	5'-GGAAAGCACATTAGACCATGCG-3'	5'-TATCCAAGGGGCTTCCCTCT-3'
NCEH1	5'-CGAAGAGCCACTGAAACGCA-3'	5'-GACCAGGACGCACTTGCACT-3'
P4HA1	5'-CAGTACATGACCCTGAGACTGG-3'	5'-CGTGCAAAGTCAAAATGGGGT-3'
PSMD12	5'-GCTAGCCAAGGAAGGAAGACT-3'	5'-CATCCGTTGCAGGACTCTCA-3'
PYCR1	5'-CCCTCTCCCCGTACTTTTCC-3'	5'-CCCATCTTCACACCCCCATC-3'
RAB10	5'-ATTTTGTCCCGACCGACTCC-3'	5'-ACGAAAAAGGACGCAGGTCT-3'
RBX1	5'-GTACTGTCGCATGGGGAGTC-3'	5'-ACTCTGCCTTGAGCTGTTGG-3'
RCN1	5'-ATGTTTGTCGGAAGCCAAGC-3'	5'-TCACTGGACTGGATGGGACA-3'
S100P	5'-AGTTCATCGTGTTCGTGGCT-3'	5'-CACTTTTGGGAAGCCTGGGA-3'
SCARB1	5'-GTCCATCTACCCACCCAACG-3'	5'-CCCTACAGTTTTGCTTCCTGC-3'
SCFD1	5'-GAAAGGCAGACAGTGGCTTTG-3'	5'-TAAGGGCCTCTGGAAGCTGA-3'
SDCBP	5'-AACCCTGCCAATCCAGCAAT-3'	5'-GGTCTTGCTACCAACTGCCC-3'
SFN	5'-ACTACGAGATCGCCAACAGC-3'	5'-CAGTGTCAGGTTGTCTCGCA-3'
SQSTM1	5'-CTCCGCGTTCGCTACAAAAG-3'	5'-TCCTCGTCACTGGAAAAGGC-3'
SULT2A1	5'-AGTGAAACGGAGAGTCCACG-3'	5'-GGCATCCAGCCATGAATGTG-3'
TF	5'-GAGTATGCGAACTGCCACCT-3'	5'-GCTGTAGGGAAAGACCAGACG-3'
TOP2A	5'-GCGGGCTAAAGGAAGGTTCAA-3'	5'-ACTAAACAGGCAGGACCCCA-3'
TPD52L2	5'-AGTGACCCAGTCAGACCTCTA-3'	5'-AGCTGCTGAGGGTCAGTTTC-3'
VIM	5'-CGGCGGGACAGCAGG-3'	5'-TCGTTGGTTAGCTGGTCCAC-3'

Table 2 – ECAR Parameters

ECAR Parameter	Rate Measurement Equation	Abbreviation
Non-Glycolytic		NGA
Acidification	Last rate measurement before glucose injection	
Glycolysis	(Maximum rate measurement before Oligomycin injection) - (Last rate measurement before Glucose injection)	G
Glycolytic Capacity	(Maximum rate measurement after Oligomycin injection) - (Last rate measurement before Glucose injection)	GC
Glycolytic Reserve	(Glycolytic Capacity) - (Glycolysis)	GR

Table 3 – OCR Parameters

OCR Parameter	Rate Measurement Equation	Abbreviation
Non-Glycolytic OCR	Last rate measurement before glucose injection	NG-OCR
Glycolytic OCR	Minimum rate measurement before Oligomycin injection	G-OCR

1 Supplementary Fig. 1. Combination of Cdk5 inhibition and Sorafenib.

2 (A) Western Blot showing Cdk5 protein levels in non-targeting (nt) and Cdk5 shRNA HUH7 3 cells. (B) Western Blot showing Cdk5 protein levels in non-targeting (nt) and Cdk5 shRNA 4 Hep3B cells (C) Western Blot showing Cdk5 protein levels in RIL175 wild-type cells and 5 RIL175 Cdk5 knockout (Cdk5 KO) cells generated via the CRISPR-Cas9 method. (D) 6 Clonogenic survival of HUH7 cells treated with either Sorafenib (5 μ M), roscovitine (10 μ M) 7 or combination of both is shown. One Way ANOVA, Tukey ***P* < 0.01, *n*=3. (E) Clonogenic 8 survival of HUH7 cells treated with Sorafenib is shown. t-test **P* < 0.05, *n*=3.

9

Supplementary Fig. 2. Combination of Cdk5 inhibition and Sorafenib does not affect DNA damage, cell cycle and apoptosis

(A) Immunoblot of non-targeting (nt) and Cdk5-1/4 shRNA HUH7 cells treated with Sorafenib
and probed for phosphorylated H2A.X is shown. (B) Apoptosis of Sorafenib treated nontargeting (nt) and Cdk5 shRNA HUH7 cells is shown. One Way ANOVA, Tukey *P<0.05,
n=3. (C) Cell cycle analysis of non-targeting (nt) and Cdk5 shRNA HUH7 cells after treatment
with Sorafenib is shown. The bar graph displays respective quantitative evaluations. ns: not
significant; unpaired t-test, n=3

18

Supplementary Fig. 3. Proteomic analysis of Cdk5 knockdown cells treated withSorafenib

(A) Table of proteins showing alterations of protein abundance (P < 0.05; log2-fold change > |0.6|) between non-targeting (nt) and Cdk5 shRNA HUH7 cells treated with Sorafenib together with their respective gene names, x-fold changes (nt 5 µM Sorafenib vs. Cdk5 5 µM Sorafenib) and *P*-values. (B) Volcano Plot visualizing the protein hits given in *A* is shown. (C) Protein interaction map of protein hits given in *A* created with string-db.org. (protein-protein interaction enrichment *P*-value: 1.57*10⁻⁶).

27

28 Supplementary Fig. 4. Analysis of targets from the proteomic screen

Bar graphs display mRNA expression of selected proteins yielded from the proteomic analysis of untreated (A) or Sorafenib treated (B) nt and Cdk5 shRNA HUH7 cells. Paired ttest, *P<0.05, **P<0.01, ***P<0.001, n=3. (C) Representative immuonoblots of nt and Cdk5 shRNA HUH7 cells treated with Sorafenib and probed with antibodies against proteins of interest (Carbonic Anhydrase 2 (CA2), Lin28B, Ferritin Heavy Chain (FTH), Vimentin) from the proteomics screen are shown.

35

36 Supplementary Fig. 5. Sorafenib affects the metabolism of HCC cells

37 Glycolysis Stress Test of non-targeting (nt) and Cdk5 shRNA HUH7 cells that were pre-38 treated with Sorafenib before consecutive exposure to D-glucose, oligomycin and 2-DG is 39 shown. ECAR and OCR were recorded using a Seahorse XFe96 Analyzer and normalized 40 with CyQUANT® GR dye. (A-E) Normalized ECAR (upper left) and OCR (upper right) of 41 untreated and Sorafenib treated non-targeting (nt) and Cdk5 shRNA HUH7 cells are 42 compared. For statistical analysis the following parameters were compared for ECAR (lower 43 left): NGA (non-glycolytic acidification), G (glycolysis), GC (glycolytic capacity), GR (glycolytic reserve) and for OCR (lower right): NG-OCR (non-glycolytic oxygen consumption rate), G-44 45 OCR (glycolytic oxygen consumption rate). Multiple t-tests, ns: not significant n=3.

46

Supplementary Fig. 6. Cdk5 inhibition prevents compensatory EGFR activation in Hep3B cells after Sorafenib treatment.

Immunoblots from non-targeting (nt) and Cdk5 shRNA Hep3B cells treated with Sorafenib
 probed with antibodies for phosphorylated EGFR (p-EGFR), EGFR (A), phosphorylated Akt
 (p-Akt) and Akt (B), phosphorylated Erk (p-Erk), Erk (C), are shown. n=2.

52

53 Supplementary Fig. 7. EGFR protein levels are high in human HCC.

(A) Immunostaining of patient tissue for EGFR (red) in HCC tissue and healthy liver tissue is
shown. (B) Percentage of EGFR positive cells in HCC tissue is shown. (C) Staining intensity
of EGFR in HCC tissue is shown. (D) Immunoreactive score for EGFR in HCC tissue is
shown.

58

59 Supplementary Table 1. Correlation of EGFR staining with clinical parameters

Contingency tables correlating percentage of EGFR positive cells, EGFR staining intensity
and EGFR IRS with r-classification (R0: no residual tumor, R1: residual tumor, X: N/A) (A),
frequency of recurrence (0: no tumor recurrence, 1: tumor recurrence) (B), cause of death
(C), tumor stage (D) and tumor grading (E) are shown.

64

65 Supplementary Video 1.

Live cell imaging of nt shRNA (left) and Cdk5 shRNA (right) HUH7 cells expressing eGFP-EGFR is shown.

68

69 Supplementary Video 2.

Live cell imaging of nt shRNA (left) and Cdk5 shRNA (right) Hep3B cells expressing eGFP-EGFR is shown.

72

73 Supplementary Video 3.

Live cell imaging of nt shRNA (left) and Cdk5 shRNA (right) HUH7 cells expressing eGFP-Integrin α 5 (ITGA5) is shown.

76

77 Supplementary Video 4.

Live cell imaging of nt shRNA (left) and Cdk5 shRNA (right) Hep3B cells expressing eGFP-Integrin α 5 (ITGA5) is shown.

80

81 Supplementary Video 5.

Live cell imaging of nt shRNA (left) and Cdk5 shRNA (right) HUH7 cells expressing eGFP-c-Met is shown.

84

85 Supplementary Video 6.

Live cell imaging of nt shRNA (left) and Cdk5 shRNA (right) Hep3B cells expressing eGFP-c-Met is shown.

- 88
- 89
- 90

Supp. Fig. 1

Supp. Fig. 3

FAM151A

ARF5 RCN1

S100P

SDCBP

APOBEC3G 0

FN1

HSD17B4

5

Α

4			
Protein names	Gene names	x-fold change	t-test p-value
DNA dC->dU-editing enzyme APOBEC-3G	APOBEC3	0.36	0.00263
Lymphokine-activated killer T-cell-originated protein kinase	PBK	0.51	0.00295
F-box only protein 2	FBXO2	0.55	2.01E-06
Hypoxanthine-guanine phosphoribosyltransferase	HPRT1	0.55	2.26E-05
Epiplakin	EPPK1	0.57	1.91E-06
Core histone macro-H2A.1;Histone H2A	H2AFY	0.58	1.97E-09
Bifunctional ATP-dependent dihydroxyacetone kinase/FAD-AMP lyase (cyclizing)	DAK	0.59	0.00665
Importin subunit alpha	KPNA2	0.59	7.62E-05
Protein lin-28 homolog B	LIN28B	0.59	8.00E-07
DNA topoisomerase 2-alpha	TOP2A	0.60	3.41E-06
Alpha-fetoprotein	AFP	0.61	0.00639
Carbonic anhydrase 2	CA2	0.61	1.24E-05
Aflatoxin B1 aldehyde reductase member 2	AKR7A2	0.62	0.00023
Vacuolar protein sorting-associated protein VTA1 homolog	VTA1	0.63	7.07E-08
Exportin-7	XPO7	0.63	2.11E-05
14-3-3 protein sigma	SFN	0.64	0.02276
Pyrroline-5-carboxylate reductase 1. mitochondrial	PYCR1	0.64	5.71E-05
Glycine dehydrogenase [decarboxylating]. mitochondrial	GLDC	0.64	7.68E-07
Prolyl 4-hydroxylase subunit alpha-1	P4HA1	0.65	0.00070
ADP-ribosylation factor 5	ARF5	0.65	0.00062
Epidermal growth factor receptor	EGFR	1.44	2.95E-05
Protein FAM151A	FAM151A	1.52	0.00627
Fibronectin	FN1	1.52	0.00335
Ectonucleoside triphosphate diphosphohydrolase 5	ENTPD5	1.53	9.08E-05
Serotransferrin	TF	1.54	0.00154
Fatty acid-binding protein. epidermal	FABP5	1.55	7.90E-05
Glucose-6-phosphate 1-dehydrogenase	G6PD	1.56	1.59E-07
Bile salt sulfotransferase	SULT2A1	1.59	0.00454
Syntenin-1	SDCBP	1.60	0.01119
Myc box-dependent-interacting protein 1	BIN1	1.65	2.07E-08
Peroxisomal multifunctional enzyme type 2	HSD17B4	1.66	0.00117
NAD(P)H dehydrogenase [quinone] 1	NQO1	1.68	0.00026
Vimentin	VIM	1.70	0.00085
Scavenger receptor class B member 1	SCARB1	1.70	0.00059
Amyloid beta A4 protein	APP	1.71	0.00840
Multidrug resistance protein 1	ABCB1	1.71	0.00011
Angiotensinogen	AGT	1.73	0.00424
Protein S100-P	S100P	1.75	0.00131
Claudin-6	CLDN6	1.77	0.03187
Reticulocalbin-1	RCN1	1.80	0.00014
Epoxide hydrolase 1	EPHX1	1.97	0.00036
Aminopeptidase N	ANPEP	1.99	2.82E-10
Galectin-3	LGALS3	2.04	1.67E-05
Calcium-regulated heat stable protein 1	CARHSP1	2.33	6.35E-07
Ferritin,Ferritin light chain	FTL	2.35	0.02201
Sequestosome-1	SQSTM1	2.46	4.46E-05
Ferritin;Ferritin heavy chain	FTH1	2.49	0.03318
Aldo-keto reductase family 1 member C2	AKR1C2	2.62	0.00323
Clathrin interactor 1	CLINT1	3.20	0.00018

в

BIN1

TE

LGALS3

CA2

FTL

CLINT1

ANPEP

AGT

DAK

AFP

P

EGFR

AKR1C2

Supp. Fig. 6

Supp. Fig. 7

Δ									Supp.
~				HCC tissue				F	lealthy liver tissue
в									
			EGFR p	ercentage			-		
			frequency	percentage	valid percentage	cumulated percentage			missing
		negative	20	31.7	31.7	31.7			= 0
		1-10%	2	3.2	3.2	34.9			— 1-10
		11-50%	5	7.9	7.9	42.9			11-50
	valid	51-80%	5	7.9	7.9	50.8			51-80
		>80%	28	44.4	44.4	95.2			>80
		missing	3	4.8	4.8	100			
		total	63	100	100				
С									
			EGFR	intensity]		
			frequency	percentage	valid percentage	cumulated percentage			
		0	20	31.7	31.7	31.7			missing
		weak	13	20.6	20.6	52.4			0 unali
	107226-0	interm.	13	20.6	20.6	73			interm
	valid	strong	14	22.2	22.2	95.2			strong
		missing	3	4.8	4.8	100		/	stiong
		total	63	100	100			-	
п							1		
D			EGE	R - IRS			1		
			frequency	percentage	valid percentage	cumulated percentage			
		0	20	31.7	31.7	31.7			
		1	1	1.6	1.6	33.3			0 (absent)
		2	5	7.9	7.9	41.3			= 1.4 (work)
		4	9	14.3	14.3	55.6			5 9 (moderate)
	valid	5	3	4.8	4.8	60.3			0.12 (strong)
	Valid	6	3	4.8	4.8	65.1			- 9-12 (strong)
		8	9	14.3	14.3	79.4			
		9	2	3.2	3.2	82.5			
		12	11	17.5	17.5	100	1		
		total	63	100	100]		

Α

Supp. Table 1

R-classification frequency percentage valid percentage cumulated percentage R0 54 85.7 85.7 85.7 R1 5 7.9 7.9 93.7 X 4 6.3 6.3 100					
		frequency	percentage	valid percentage	cumulated percentage
	R0	54	85.7	85.7	85.7
volid	R1	5	7.9	7.9	93.7
valid	R-classification Requency percentage R0 54 85.7 R1 5 7.9 X 4 6.3 total 63 100	6.3	6.3	100	
valid	total	63	100	100	

R-classification * EGFR percentage of positive cells - contingency table									
number									
			EC	GFR percentag	e of positive ce	ells			
		negative	< 10%	11-50%	51-80%	> 80%	missing	totai	
	R0	17	2	4	5	23	3	54	
R-classification	R1	2	0	0	0	3	0	5	
	Х	1	0	1	0	2	0	4	
total		20	2	5	5	28	3	63	

	chi-sq	uared test						
	value	df	Asymptotic significance (two- sided)					
Chi-squared (Pearson)	4.058 ^a	10	0.945					
Likelihood- Quotient	5.302	10	0.87					
Number of valid cases	63							
a. 16 cells (88	a. 16 cells (88.9%) have an expected frequency of 5 or less. The smallest expected frequency is 0.13.							

R-classification * EGFR staining intensity – contingency table									
number									
EGFR staining intensity									
		0	weak intermediate strong missi		missing	totai			
	R0	17	11	13	10	3	54		
R-classification	R1	2	1	0	2	0	5		
	х	1 1		0	2	0	4		
total		20	13	13	14	3	63		

	chi-squared test								
	value	df	Asymptotic significance (two-sided)						
Chi-squared (Pearson)	5.306 ^a	8	0.724						
Likelihood- Quotient	7.081	8	0.528						
Number of valid cases	63								
a. 11 cells (88.9% sm	a. 11 cells (88.9%) have an expected frequency of 5 or less. The smallest expected frequency is 0.19.								

r-classification * EGFR IRS – contingency table											
number											
	EGFR – IRS								total		
	0 1 2 4 5 6 8 9 12						total				
R-	R0	17	1	4	8	3	3	9	2	7	54
calssificati	R1	2	0	0	1	0	0	0	0	2	5
on	Х	1	0	1	0	0	0	0	0	2	4
to	tal	20	1	5	9	3	3	9	2	11	63

chi-squared test								
	value	df	Asymptotic significance (two- sided)					
Chi-squared (Pearson)	10.252 ^a	16	0.853					
Likelihood- Quotient	12.064	16	0.74					
Number of valid cases	Number of valid cases 63							
a. 23 cells (85.2%) have an expected frequency of 5 or less. The smallest expected frequency is 0.06.								

Frequency of recurrence							
frequency percentage valid percentage cumulated percentage							
	0	40	63.5	63.5	63.5		
volid	1	17	27	27	90.5		
valid	n.s.	6	9.5	9.5	100		
	total	63	100	100			

	Frequency of recurrance * EGFR percentage of positive cells - contingency table							
				number				
			EC	GFR percentag	e of positive ce	ells		total
	negative < 10% 11-50% 51-80% > 80% missing						total	
	0	12	2	5	4	16	1	40
frequency of	1	7	0	0	1	8	1	17
n.s. 1 0 0 0 4 1						6		
to	total 20 2 5 5 28 3 63							63

	chi-squared test							
value df significant (two-side								
Chi-squared (Pearson)	Chi-squared (Pearson) 8.881 ^a 10 0.543							
Likelihood- Quotient	11.031	10	0.355					
Number of valid cases	Number of valid cases 63							
 a. 14 cells (77.8%) have an expected frequency of 5 or less. The smallest expected frequency is 0.19. 								

Frequency of recurrence * EGFR staining intensity – contingency table							
			nun	nber			
			EG	FR staining inter	isity		total
	0 weak intermediate strong missing						
	0	12	9	11	7	1	40
frequency of	1	7	4	1	4	1	17
n.s. 1 0 1 3 1							6
to	tal	20	13	13	14	3	63

chi-squared test							
value df significan (two-side							
Chi-squared (Pearson)	9.829 ^a	8	0.277				
Likelihood- Quotient	10.602	8	0.225				
Number of valid 63							
a. 10 cells (66.7%) have an expected frequency of 5 or less. The smallest expected frequency is 0.29.							

	Frequency of recurrence * EGFR IRS – contingency table										
	number										
					E	EGFR – IR	5				total
		0 1 2 4 5 6 8 9 12							iotai		
6	0	12	1	5	5	1	2	8	2	4	40
frequency of	1	7	0	0	4	1	1	0	0	4	17
n.s. 1 0 0 0 1 0 1 0 3 6											
total		20	1	5	9	3	3	9	2	11	63

	chi-squared test							
	value	df	Asymptotic significance (two- sided)					
Chi-squared (Pearson)	18.742 ^a	16	0.282					
Likelihood- Quotient	23.109	16	0.111					
Number of valid cases	Number of valid cases 63							
a. 22 cells (81.5%) have an expected frequency of 5 or less. The smallest expected frequency is 0.10.								

С

Supp. Table 1

cause of death							
frequency percentage valid percentage cu							
	not determined	42	66.7	66.7	66.7		
	tumor unrelated	2	3.2	3.2	69.8		
valid	tumor related	14	22.2	22.2	92.1		
	n.s.	5	7.9	7.9	100		
	total	63	100	100			

cause of death * EGFR percentage of positive cells - contingency table								
	number							
			EC	GFR percentag	e of positive ce	ells		totol
		negative	<10%	11-50%	51-80%	> 80%	missing	totai
	not determined	11	1	4	5	19	2	42
cause of death	tumor unrelated	1	0	0	0	1	0	2
	tumor related	7	1	1	0	4	1	14
	n.s.	1	0	0	0	4	0	5
to	tal	20	2	5	5	28	3	63
	chi-squa	ared test		1				
	value	df	Asymptotic significance (two-sided)					
Chi-squared (Pearson)	9.241 ^a	15	0.865					
Likelihood- Quotient 11.348 15 0.728								
Number of va cases	lid 63							
a. 21 cells (8 less. The	7.5%) have an e smallest expe	expected freq ected frequenc	uency of 5 or y is 0.06.					

cause of death * EGFR staining intensity – contingency table							
			nun	nber			
EGFR staining intensity							
0 weak intermediate strong missing							totai
	not determined	11	11	10	8	2	42
course of dooth	tumor unrelated	1	0	0	1	0	2
cause of death	tumor related	7	2	2	2	1	14
n.s. 1 0 1 3 0 5							
to	tal	20	13	13	14	3	63

	chi-squared test							
	value df							
Chi-squared (Pearson)	Chi-squared 10.536 ^a 12							
Likelihood- Quotient	11.373	12	0.497					
Number of valid cases	Number of valid cases 63							
a. 16 cells (80.0%) have an expected frequency of 5 or less. The smallest expected frequency is 0.1.								

cause of death * EGFR IRS – contingency table											
	number										
EGFR – IRS						4-4-1					
0 1 2 4 5 6 8 9 12				total							
	not determined	11	1	3	8	2	3	7	2	5	42
cause of	tumor unrelated	1	0	0	0	0	0	0	0	1	2
death	tumor related	7	0	2	1	1	0	1	0	2	14
	n.s.	1	0	0	0	0	0	1	0	3	5
t	otal	20	1	5	9	3	3	9	2	11	63

chi-squared test							
	Asymptotic significance (two- sided)						
Chi-squared (Pearson)	17.557 ^a	24	0.824				
Likelihood- Quotient	19.047	24	0.749				
Number of valid cases	63						
a. 32 cells (88.9%) have an expected frequency of 5 or less. The smallest expected frequency is 0.03.							

		tumor	score						
		frequency	percentage	valid percentage	cumulated percentage				
	1	27	42.9	42.9	42.9				
	2	17	27.0	27.0	69.8				
	2a	2	3.2	3.2	73.0				
	2b	2	3.2	3.2	76.2				
valid	3	1	1.6	1.6	77.8				
	3a	6	9.5	9.5	87.3				
	3b	1	1.6	1.6	88.9				
	4	1	1.6	1.6	90.5				
	X 6		9.5	9.5	100.0				
	total	63	100	100.0					

		tumor score	* EGFR perce	ntage of positiv	ve cells - contir	ngency table					
	number										
			EC	GFR percentag	e of positive ce	ells		total			
		negative	< 10%	11-50%	51-80%	> 80%	missing	totai			
	1	10	1	1	2	12	1	27			
	2	5	1	3	1	6	1	17			
	2a	0	0	0	1	1	0	2			
	2b	1	0	0	1	0	0	2			
valid	3	0	0	0	0	0	1	1			
	3a	1	0	0	0	5	0	6			
	3b	1	0	0	0	0	0	1			
	4	0	0	0	0	1	0	1			
	X	2	0	1	0	3	0	6			
	total	20	2	5	5	28	3	63			

	chi-squa	ared test					
	value	df	Asymptotic significance (two-sided)				
Chi-squared (Pearson)	44.017 ^a	40	0.305				
Likelihood- Quotient	29.305	40	0.894				
Number of valid cases 63							
a. 50 cells (92.6 less. The si	a. 50 cells (92.6%) have an expected frequency of 5 or less. The smallest expected frequency is 0.03.						

	tumor score * EGFR staining intensity – contingency table									
	number									
			EG	FR staining inten	isity		totol			
		0	weak	intermediate	strong	missing	totai			
	1	10	5	5	6	1	27			
	2	5	3	6	2	1	17			
	2a	0	0	1	1	0	2			
	2b	1	0	1	0	0	2			
valid	3	0	0	0	0	1	1			
	3a	1	3	0	2	0	6			
	3b	1	0	0	0	0	1			
	4	0	0	0	1	0	1			
	х	2	2	0	2	0	6			
	total	20	13	13	14	3	63			

chi-squared test							
value df signific (two-si							
Chi-squared (Pearson)	40.619 ^a	32	0.141				
Likelihood- Quotient	29.875	32	0.575				
Number of valid cases 63							
a. 40 cells (88.9%) have an expected frequency of 5 or less. The smallest expected frequency is 0.05							

	tumor score * EGFR IRS – contingency table										
number											
EGFR – IRS							total				
0 1 2 4 5 6 8 9 12				12	total						
	1	10	1	1	3	1	0	5	2	4	27
	2	5	0	3	2	1	1	3	0	2	17
	2a	0	0	0	0	0	1	0	0	1	2
	2b	1	0	0	0	0	1	0	0	0	2
valid	3	0	0	0	0	1	0	0	0	0	1
	3a	1	0	0	3	0	0	1	0	1	6
	3b	1	0	0	0	0	0	0	0	0	1
	4	0	0	0	0	0	0	0	0	1	1
	Х	2	0	1	1	0	0	0	0	2	6
	total	20	1	5	9	3	3	9	2	11	63

chi-squared test							
value df significance (tw sided)							
Chi-squared (Pearson)	67.241 ^a	64	0.367				
Likelihood- Quotient	45.01	64	0.966				
Number of valid cases 63							
a. 79 cells (97.5 %) have an expected frequency of 5 or less. The smallest expected frequency is 0.02.							

	tumor grading								
		frequency	percentage	valid percentage	cumulated percentage				
	no grading or missing	6	9.5	9.5	9.5				
	Well-differentiated	11	17.5	17.5	27.0				
valid	moderatly- differentiated	29	46.0	46.0	73.0				
	poorly-differentiated	17	27.0	27.0	100.0				
	total	63	100	100					

		tumor grading	g * EGFR perc	entage of posit	ive cells - cont	ingency table				
	number									
EGFR percentage of positive cells						total.				
		negative	<10%	11-50%	51-80%	> 80%	missing	total		
	no grading or missing	1	1	1	0	3	0	6		
	Well- differentiated	2	0	1	2	6	0	11		
valid	moderatly- differentiated	10	1	3	2	12	1	29		
	poorly- differentiated	7	0	0	1	7	2	17		
	total	20	2	5	5	28	3	63		

	chi-squared test							
	value	df	Asymptotic significance (two-sided)					
Chi-squared (Pearson)	13.227 ^a	15	0.585					
Likelihood- Quotient	14.112	15	0.517					
Number of valid 63								
a. 20 cells (83.3%) have an expected frequency of 5 or less. The smallest expected frequency is 0.19.								

108

Е

tumor grading * EGFR staining intensity – contingency table								
number								
			total					
		0	weak	intermediate	strong	missing	total	
valid	no grading or missing	1	3	0	2	0	6	
	Well- differentiated	2	2	6	1	0	11	
	moderatly- differentiated	10	6	4	8	1	29	
	poorly- differentiated	7	2	3	3	2	17	
	total	20	13	13	14	3	63	

chi-squared test						
	value	df	Asymptotic significance (two-sided)			
Chi-squared (Pearson)	17.287 ^a	12	0.139			
Likelihood- Quotient	16.752	12	0.159			
Number of valid cases	63					
a. 15 cells (75.0%) have an expected frequency of 5 or less. The smallest expected frequency is 0.29.						

tumor grading * EGFR IRS – contingency table											
	number										
EGFR – IRS							tatal				
		0	1	2	4	5	6	8	9	12	total
valid	no grading or missing	1	1	1	1	0	0	0	0	2	6
	Well- differentiated	2	0	1	1	0	2	4	0	1	11
	moderatly- differentiated	10	0	3	5	1	0	2	2	6	29
	poorly- differentiated	7	0	0	2	2	1	3	0	2	17
	total	20	1	5	9	3	3	9	2	11	63

chi-squared test							
	value	df	Asymptotic significance (two- sided)				
Chi-squared (Pearson)	32.283 ^a	24	0.12				
Likelihood- Quotient	29.759	24	0.193				
Number of valid cases	63						
a. 33 cells (91.7%) have an expected frequency of 5 or less. The smallest expected frequency is 0.10.							