
Supplementary Material

1. DESCRIPTION OF THE INNATE IMMUNE RESPONSE AGENT-BASED MODEL

The innate immune response agent-based model (IIRABM) simulates the hospitalization of a patient

diagnosed with sepsis. The virtual environment consists of a 101 · 101 grid representing a two-dimensional

abstraction of the human endothelial–blood interface. Each grid point contains an endothelial cell agent and

may contain additional immune cell agents. Each grid point also contains 14 scalar state variables: 12

cytokine concentrations, a measure of infection, and a measure of tissue damage. Agents (cells) contain

additional state information, including age, activation status, and cytokine receptor concentrations.

The mechanisms of the IIRABM capture many cell–cell and cell–environment interactions related to the

innate immune response and sepsis. The IIRABM includes mechanisms for infection spreading, tissue

damage, chemotactic cell movement, leukocyte activation, leukocyte extravasation, respiratory burst, ap-

optosis, antibiotic administration, cytokine receptor trafficking, and T cell differentiation. Details of these

mechanisms are provided in An (2004).

Most relevant to the control problem is the mechanism by which cytokines interact with each other.

Cytokine signaling ultimately governs the immune response; indeed, cytokine dysregulation is a root issue

underlying sepsis. Furthermore, the simulated cytokine interventions we explore directly modulate these

interactions. Thus, we describe this mechanism in detail. Under certain conditions, a cell agent updates the

values of one or more cytokines at its grid point. In the absence of cytokine intervention, the general

formula for updating the ith cytokine is linear: ci)k � c, where ci is the cytokine being updated, k is a

vector of regulatory constants, and c is the vector of cytokine values at that grid point. The elements in k
represent the degree to which each cytokine up- or downregulates cytokine i through the cell’s mediation.

In addition, direct cytokine secretion/elimination (the constant portion of the linear updates) is afforded by

appending c with a dummy value of unity and appending k with a value that represents the degree to which

the cell directly secretes/eliminates cytokine i.

Cytokines are also altered through passive diffusion, spontaneous degradation, and external interven-

tions. External interventions—or actions—map to putative cytokine-specific mediation therapies that ei-

ther inhibit or augment cytokine signaling. Programmatically, an action a 2 R, specific to the ith cytokine,

alters that cytokine’s update rule by wrapping it in a function parameterized by a. Specifically, the update

becomes ci)f k � c; að Þ, where f is defined as

f (x; a) = 10ax a � 0 (inhibition)

x + (10a - 1) a � 0 (augmentation)

�
:

Thus, an action taken by the reinforcement learning (RL) agent for a given cytokine i corresponds to

choosing parameter ai that determines the amount of inhibition or augmentation by the update function

f (k � c; ai). Note that the wrapper function is multiplicative for negative (inhibitory) actions and additive for

positive (augmentative) actions. Exponentiation is introduced so that the action space is symmetric and centered

around a = 0. Note that when a = 0, the wrapper function becomes the identity function, that is, it recovers

the former update in which no cytokine mediation is applied. The control problem deals with dynamically

choosing values of a for each cytokine in a way that drives the simulated patient toward a healthy state.

A simulation begins with an applied bacterial infection. As it begins to spread, it quickly triggers

cytokine signaling and an immune response. After 12 hours of simulated time, actions may be applied. This

time delay reflects an approximation of the minimal time from onset of infection to presentation to a health

care facility, identification of infection, and initiation of treatment. The simulation ultimately ends with one

of two outcomes: complete healing or death. The health condition occurs when the system’s total damage

plus the total infection level (each expressed as a percentage of its maximum possible value) drops below a

threshold of 0.02%. Once cytokine mediation stops, to ensure that it provided a nontransient lasting effect,

a patient must proceed without further cytokine mediation for at least 12 hours before a less stringent health

threshold of 0.8% is checked. The less stringent threshold is due to small transient infection and damage

caused by recurrent injuries to the host due to environmental conditions. The death condition occurs

when total damage exceeds 80% (regardless of infection level) (An et al., 2017; Cockrell and An, 2018).

Clinically, this threshold represents the ability of current medical technologies to keep patients alive

(i.e., through organ support machines) in conditions that previously would have been lethal.

2. REINFORCEMENT LEARNING WITH AGENT-BASED MODELS

An RL problem is formulated as a Markov decision process, in which an environment (defined by a state

space S, action space A, state transition function P, and reward function r) interacts with an RL agent.

(Note that the environment is distinct from the virtual environment in which IIRABM agents interact, and

the RL agent is distinct from agents of the IIRABM.)

� A state s 2 S is a complete specification of all quantities of the agent-based model (ABM) at each time

step. Although the ABM maintains its own internal state, the RL agent’s observation o = O(s) may be

limited by a function O(�) that reduces the amount of accessible information. This is analogous to a

clinician’s limited observation of a patient’s complete physiological state. To maintain a degree of

clinical relevance, our RL agent will treat observations o as the complete state of the system, using

s 2 S to denote the RL agent’s observation hereafter.
� An action a 2 A is an external operation applied to the ABM at each time step, chosen by the RL

agent rather than generated by the internal mechanisms of the ABM.
� The state transition function P : S ·A ! S represents the simulation mechanisms, which transition

the ABM from one state to the next, given the chosen action.
� The reward function r : S ·A·S1R is a mapping from current state, the action taken, and the

resulting state to a scalar signal at each time step. The return is the discounted cumulative future

reward from time t until the end of the episode, Rt =
PT

t0 = t c
t0 - trt0 , where T is the terminal time step and

c 2 (0‚ 1] is a discount factor that determines the degree to which immediate rewards are favored over

delayed rewards.
� The RL agent interacts with the environment by following a policy p : S1P(A), which, in the general

case, maps a state to a distribution over actions. In this work, we consider deterministic policies

l : S1A, which can be learned with many fewer samples than stochastic policies (Silver et al., 2014).

The RL agent interacts with its environment in the following way: given a current observation st, the RL

agent selects an action at*p(st) and applies it to the environment, which produces a new observation st + 1

and an associated reward rt. The objective of an RL algorithm is to find the optimal policy p? that

maximizes the expected return from the distribution over starting states. It does so by interacting with the

environment across many episodes, using the reward as a learning signal.

3. DEEP DETERMINISTIC POLICY GRADIENT

RL algorithms can be broadly classified as value-function methods or policy search methods (Sutton and

Barto, 1998). Among value-function methods, Q-learning is a widely used algorithm for estimating an

optimal action–value function Q? : S ·A1R, defined as Q?(s‚ a) : = maxl E Rtjst = s‚ at = a½ �. It gives the

maximum expected return for executing action a at state s and following an optimal policy thereafter, and it

induces a deterministic optimal policy l? : S1A defined by l?(s) : = arg maxa2AQ?(s‚ a).

In many systems, including the IIRABM, the state space S and/or action space A are both continuous

and high dimensional, rendering traditional tabular Q-learning approaches infeasible. Mnih et al. (2013)

developed the deep Q-networks (DQN) algorithm that adapted Q-learning to continuous and high-

dimensional state spaces by utilizing an artificial neural network called the Q-network, Q(s‚ a; h), to

parameterize the action–value function with neural network weights h. Training is executed using transi-

tions (st‚ at‚ rt‚ st + 1) and stochastic gradient descent on a loss function L(h) : = yt - Q(st‚ at; h)ð Þ2, where

yt : = rt + c max a0 Q(st + 1‚ a0; h). RL algorithms utilizing such networks are known as deep RL (DRL)

algorithms. Two main contributions led to the success of DQN: (1) the use of a target network Q0(s‚ a; h0),
which is a copy of the Q-network used to evaluate yt, but whose distinct weights h0 slowly update toward

the learned weights h; and (2) the use of a replay buffer containing a history of transitions, from which

minibatches are sampled for network training. DQN had great success in learning to play Atari video

games, often achieving superhuman performance.

However, DQN cannot handle large continuous action spaces. Lillicrap et al. (2015) extended DRL to

continuous action spaces by utilizing an actor-critic framework that optimizes the performance J(hl) of a

policy l(s; hl). Their deep deterministic policy gradient (DDPG) algorithm uses two main networks. An

actor network l(s; hl) outputs an action a 2 A based on the current state s and parameters hl. A critic

network Q(s‚ a; hQ) evaluates the Q value given the state–action pair and parameters hQ. Actor net-

work weights are updated using the deterministic policy gradient =hlJ(hl) = Es*l =hlQ(s‚ l(s; hl); hQ)
� �

(Silver et al., 2014). Critic network weights are updating using gradient descent on the loss

L(hQ) = (yt - Q(st‚ at; h
Q))2, where yt = rt + cQ(st + 1‚ l(st + 1; hl); hQ) is known as the temporal difference

target. As with DQN, DDPG utilizes a replay buffer and target networks for the actor and critic. We employ

DDPG to handle the continuous state and action spaces of the sepsis environment.

4. NETWORK ARCHITECTURE AND HYPERPARAMETER SELECTION

We used the same network architecture and hyperparameters as Lillicrap et al. (2015) with several

exceptions. In brief, both the actor and critic networks included two hidden layers (of 400 and 300 nodes,

respectively) and rectified linear activation functions. For the critic network, a hyperbolic tangent activation

was added to the output layer to bound actions to the environment’s action space, [- 1‚ 1]12. For the critic

network, actions were added at the second hidden layer. Differences from Lillicrap et al. (2015) include that

the inputs to each network were not batch normalized, which we found to result in instability as the data

distribution of the experience replay buffer shifted during training. Furthermore, batch normalization was

not applied to hidden layers. For exploration, we added uncorrelated Gaussian noise with a standard

deviation of 0.1 independently to each dimension of the selected action vector. This standard deviation was

decreased 10-fold every 1000 episodes.

Given a fixed reward value for the health/death outcome of �250, the reward function has two hy-

perparameters: b and k. To ensure that the overall goal of reaching health/death remains the dominant

driver of the reward function, we sought the contributions of potential-based reward shaping and penal-

izing actions to each be roughly two orders of magnitude less than the terminal rewards. We found that

b = 100 and k = 1 typically resulted in O(1) values for the potential-based term and action penalty term,

respectively.

5. SOFTWARE AND COMPUTATION

The IIRABM was implemented in C++ as in Cockrell and An (2018) and An et al. (2017) to maximize

performance. We exposed it to Python using the Boost C++ libraries (Abrahams and Grosse-Kunstleve,

2003) and recast it as an OpenAI Gym environment (Brockman et al., 2016). We implemented DDPG in

Python, leveraging TensorFlow (Abadi et al., 2016) and Gym (Brockman et al., 2016) packages.

6. RELATED WORK

We review studies that are related in some combination of methodology (i.e., DRL), type of environment

(i.e., simulation, ABM), application domain (i.e., biology, sepsis), and use case (i.e., controlling a system to

a desirable state).

Perhaps the most similar study is an application of traditional RL (i.e., not DRL) to control an ABM of

tumor growth using radiotherapy. The authors employ tabular Q-learning (Jalalimanesh et al., 2017) to

learn the optimal policy of radiotherapy, using an environment comprising an underlying ABM of vascular

tumor growth. Both the action space (radiation intensity: choice of weak, normal, or intense) and obser-

vation space (tumor size: one of 200 bins) are one-dimensional and discretized for simplicity. Thus, DRL

was not employed in this study since traditional tabular methods sufficed.

With respect to controlling sepsis, a recent study used DRL to discover retrospective policies for treating

septic patients given a fixed clinical data set comprising observations (e.g., patient vitals) and actions (i.e.,

administered medications) (Raghu et al., 2017). Despite a similar goal to this study, such retrospective

studies using fixed data sets (a setting known as batch mode RL; Ernst et al., 2005) are quite different in

methodology, as there is no underlying simulation and thus no ability to query or explore the environment.

Consequently, in contrast to our approach, only previously attempted therapeutics can be considered. Also

similar in goal but different in methodology is a recent approach using genetic algorithms to search for a

nonadaptive control strategy using the same IIRABM as this study (Cockrell and An, 2018).

There have been many recent advances in state-of-the-art DRL algorithms (Mnih et al., 2013; Lillicrap

et al., 2015) and variations of these algorithms (Schaul et al., 2015; Wang et al., 2015; Mnih et al., 2016;

Van Hasselt et al., 2016). These approaches are typically benchmarked against standard RL environments

(such as those curated by OpenAI Gym; Brockman et al., 2016), including classic control problems, Atari

2600 games using the Arcade Learning Environment (Bellemare et al., 2013), board games (e.g., Go), and

the MuJoCo physics engine (Todorov et al., 2012). These benchmark environments are open sourced and

well curated, facilitating performance comparisons across different algorithms. There are limited examples

of DRL being applied to control a simulation (including an ABM). Notably, Li et al. (2016) and Casas

(2017) use DRL for controlling the timing of traffic lights.

SUPPLEMENTARY REFERENCES

Abadi, M., Agarwal, A., Barham, P., et al. 2016. Tensorflow: Large-scale machine learning on heterogeneous dis-

tributed systems. arXiv arXiv:1603.04467.

Abrahams, D., and Grosse-Kunstleve, R.W. 2003. Building hybrid systems with Boost.Python. C/C++ Users J. 21,

29–36.

An, G. 2004. In silico experiments of existing and hypothetical cytokine-directed clinical trials using agent-based

modeling. Crit. Care Med. 32, 2050–2060.

An, G., Fitzpatrick, B.G., Christley, S., et al. 2017. Optimization and control of agent-based models in biology: A

perspective. Bull. Math. Biol. 79, 63–87.

Bellemare, M.G., Naddaf, Y., Veness, J., et al. 2013. The arcade learning environment: An evaluation platform for

general agents. J. Artif. Intell. Res. 47, 253–279.

Brockman, G., Cheung, V., Pettersson, L., et al. 2016. Openai gym. arXiv arXiv:1606.01540.

Casas, N. 2017. Deep deterministic policy gradient for urban traffic light control. arXiv arXiv:1703.09035.

Cockrell, C., and An, G. 2018. Examining the controllability of sepsis using genetic algorithms on an agent-based

model of systemic inflammation. PLoS Comput. Biol. 14, e1005876.

Ernst, D., Geurts, P., and Wehenkel, L. 2005. Tree-based batch mode reinforcement learning. J. Mach. Learn. Res. 6,

503–556.

Jalalimanesh, A., Haghighi, H.S., Ahmadi, A., et al. 2017. Simulation-based optimization of radiotherapy: Agent-based

modeling and reinforcement learning. Math. Comput. Simul. 133, 235–248.

Li, L., Lv, Y., and Wang, F.-Y. 2016. Traffic signal timing via deep reinforcement learning. IEEE/CAA J. Autom. Sin. 3,

247–254.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., et al. 2015. Continuous control with deep reinforcement learning. arXiv

arXiv:1509.02971.

Mnih, V., Kavukcuoglu, K., Silver, D., et al. 2013. Playing Atari with deep reinforcement learning. arXiv

arXiv:1312.5602.

Mnih, V., Badia, A.P., Mirza, M., et al. 2016. Asynchronous methods for deep reinforcement learning. In International

Conference on Machine Learning, pp. 1928–1937. New York, NY, USA.

Raghu, A., Komorowski, M., Celi, L.A., et al. 2017. Continuous state-space models for optimal sepsis treatment—A

deep reinforcement learning approach. arXiv arXiv:1705.08422.

Schaul, T., Quan, J., Antonoglou, I., et al. 2015. Prioritized experience replay. arXiv arXiv:1511.05952.

Silver, D., Lever, G., Heess, N., et al. 2014. Deterministic policy gradient algorithms. In Proceedings of the 31st

International Conference on Machine Learning (ICML-14). pp. 387–395. Beijing, China.

Sutton, R., S., and Barto, A., G. Reinforcement Learning: An Introduction. MIT Press Cambridge, MA, USA. 1998.

Todorov, E., Erez, T., and Tassa, Y. 2012. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). IEEE, Vilamoura, Portugal, pp. 5026–5033.

Van Hasselt, H., Guez, A., and Silver, D. 2016. Deep reinforcement learning with double Q-learning. In AAAI. Phoenix,

AZ, USA. pp. 2094–2100.

Wang, Z., Schaul, T., Hessel, M., et al. 2015. Dueling network architectures for deep reinforcement learning. arXiv

arXiv:1511.06581.

