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Supplementary Figure 1
OOPS unbiasedly recovers all PBR species.

(a) Absolute quantification of the total recovered RNA (PBR + Free RNA). Data shown as mean +/- SD of 3 independent experiments

(b) Representative Bioanalyzer representation of the RNAs size-profile obtained from the aqueous and interfaces. Red: CL
(400mJ/cm2). Grey: NC

(c) Graphical representation of the RNA-origin analysed by RNA-seq
(d) Relative proportions of reads assigned to Ensembl gene biotypes for all analysed samples

(e) Correlation between two CL replicates (upper left panel) and a NC and 400 mJ/cm2 CL replicate (upper left panel), blue dashed line
represents a 10-fold difference. Pearson correlation of all analysed samples with NC (right)

(f) Correlation between the ratio of CL/INC RNA in the interface and the length of the transcript

(g) Percentage of windows deemed to be a site of protein binding. Windows split according to the mRNA feature type they overlap.
Windows overlapping two none-intronic features classified as ambiguous. Random: random selection of the same number of windows,
with the same distribution of read depths to obtain a null expectation based on read depth alone.

(h) Relationship between uridine content in a window and the probability of the window being deemed to contain a protein binding site

(i) Read coverage across SNHG16 for CL (400 mJ/cm2) and NC replicates. Red boxes denote regions with consistently reduced
coverage in CL.
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Supplementary Figure 2

OOPS specifically recovers RBPs.

(a) The proportion of proteins missing in at least one CL replicate, at least one NC replicate, always missing in NC replicates or never
missing in any sample

(b) Representative image of an acrylamide gel showing the interface protein content of a NC and CL samples. Left: coomassie-blue
staining. Right: silver staining

(c) Crosslinking efficacy in HEK-293. Left panel: Relative proportions of free RNA (aqueous phase) and protein-bound RNA (RBR;
interface) with increasing UV dosage. Right panel: Absolute quantification of the total recovered RNA (PBR + Free RNA). Data shown
as mean +/- SD of 3 independent experiments

(d) Relationship between the number of peptides observed for a protein across all replicates and the p-value for CL-enrichment. Many
proteins have insufficiently small p-value to pass 1% FDR threshold (dashed line) because of a lack of statistical power with few
observations

(e) Classification of proteins as enriched or depleted in CL vs NC experiment

() Representative western blots for canonical RBPs (NCL (Nucleolin), PTB and HuR) and negative control proteins (H3 (Histone-H3)
and B-tubulin)

(9) The proportion of proteins which were missing in at least one RNAse replicate, at least one control replicate, always missing in the
RNAse or control replicates or never missing. Int: Interface. Org: Organic

(h) Protein CL vs NC ratio and RNAse vs control ratio in the 3rd interface and 4th organic phases
(i) RNAse vs control ratio in the 3rd interface for GO annotated RBPs, other OOPS RBPs and glycoproteins

(j) GO terms over-represented in the proteins that migrate to the organic phase upon RNAse treatment
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Supplementary Figure 3
OOPS recovers known and new RBPs, even from under-represented cell compartments.

(a) Agreement between OOPS (n=5) and Oligo(dT) RBP-Capture in HEK 293 cells

(b) Crosslinking efficacy in MCF10A. Upper panel: Relative proportions of free RNA (aqueous phase) and protein-bound RNA (RBR;
interface) with increasing UV dosage. Lower panel: Absolute quantification of the total recovered RNA (PBR + Free RNA). Data shown
as mean +/- SD of 3 independent experiments

(c) Biological process GO terms over-represented in tumoral-cell specific RBPs
(d) Detailed agreement between OOPS and published human RBPomes

(e) Overlap between the union of OOPS proteins identified in the 3 cell lines, the union of RICK and CARIC studies, and GO annotated
RBPs. Proteins were restricted to those expressed in at least one of the three OOPS cell lines

(f-g) Top 10 Biological processes and Cellular compartment GO terms over-represented in the proteins identified in U20S, HEK293 or
MCF10A OOPS

(h) Top 10 Cellular Compartments GO terms over-represented in OOPS-exclusive RBPome.

(i) Representative western blot of the cellular subfractionation. Analysed markers are: nuclear fibrillarin (FBL), endoplasmic reticulum
calreticulin (CALR), and cytosolic beta actin (ACTB), in heavy membranes (HM), light membranes (LM) and cytoskeleton and others
(Clo) fractions.

(i) Normalised RBP abundance in the indicated fractions. Blue: transmembrane-containing RBPs. Grey: Non transmembrane-containing
RBP.
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Supplementary Figure 4
Direct assessment of cross-link sites validates most OOPS RBPs.

(a) Top: Schematic representation of the sequential digestion method used to identify the RNA-binding site. RNA-protein adducts are
extracted from the interface and digested with Lys-C to yield RNA-peptides which are subsequently enriched by silica affinity column or
ethanol precipitation. Enriched RNA-peptides are treated with RNAses followed by trypsin digestion. Peptides containing the UV-
crosslinked nucleotide/RNA are retained by a TiO2 affinity column and the unbound fraction containing the peptide sequences adjacent
to RNA crosslinking site is analysed by LC-MS/MS. Red=peptides containing site of crosslinking. Green=peptides adjacent to the RNA-
binding site peptide.

Bottom: Schematic representation of the process followed to determine crosslinking peptide. Blue squares represent a consistent



binding site. Turquoise squares represent a promiscuous binding site.
(b) Resolution and accuracy of RNA binding site detected is dependent on peptides detected.

(c) Cryo-EM structure of the ribosome quality control complex (PDB ID 3J92). Proteins are shown as grey transparent surface, while
RNA is depicted as transparent lime ribbon. Proteins previously detected as RBPs are highlighted in yellow, while the newly detected
protein is shown in cyan. Zoomed in structures show this new protein as transparent cyan cartoon with the interacting residue detected
by direct evidence shown as cyan sticks and RNA residues at 4 A or less from it shown as lime sticks.

(d-e) Crystal structures of (d) IMPDH2 in complex with ribavirin (PDB ID 1NF7) and (e) PARP1 in complex with rucaparib (PDB ID
1NF7). Proteins are shown as a cyan transparent cartoon and the protein region detected as RNA binding is shown in an opaque
representation. Residues at 4 A or less from inhibitor compounds (yellow sticks and surface representation) are shown as cyan sticks
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Supplementary Figure 5
Characterization of the nocodazole arrest experiments.

a) Top: Schematic representation of the nocodazole arrest/release experiment. Bottom-left: representative image of flow cytometry
analysis of the cell-cycle stage by DNA content assessment. Bottom-right: Relative proportions of cells in G1, S and M phase for cells
synchronised at each time-point is shown as the mean +/- SD of 3 independent experiments

(b) Top 10 Biological Processes and Cellular Compartment GO terms over-represented in the total proteome of synchronised cells
versus 6h post released cells

(c) Top 20 Biological Processes and Cellular Compartment GO terms over-represented in the RBPs with a significant increase in RNA-
binding post-release in the nocodazole experiment

(d) Protein abundance for tRNA aminoacylation proteins with a significant increase in RNA-binding. Individual proteins with a significant
increase are highlighted in green.

(e) KEGG pathways over-represented in the RBPs with a significant decrease in RNA-binding post-release
(f) Protein abundance for splicing proteins with a significant increase in RNA-binding at Oh

(g) Crosslink vs control and RNAse vs control protein abundance ratio in interface and organic phase for glycolytic and TCA cycle
proteins (yellow)
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Supplementary Figure 6
Characterization of the RBPome dynamics in the thymidine-nocodazole arrest experiments.

(a) Top-left: Schematic representation of the thymidine-nocodazole arrest/release experiment. Top-right: Relative proportions of cells in
G1, S and G2/M phase for each time-point is shown as the mean +/- SD of 4 independent experiments Bottom: representative image of
flow cytometry analysis of the cell-cycle stage by DNA content assessment.

(b) Protein abundance from total proteome and OOPS extractions in thymidine-nocodazole arrested and released cells. Abundance z
score normalised within each extraction type. Proteins hierarchically clustered across all samples as shown on left

(c) Top 10 Biological process and Cellular Compartment GO terms over-represented in the total proteome of thymidine-nocodazole
arrested cells versus non treated cells.

(d) Top 20 Biological process and Cellular Compartment GO terms over-represented in the RBPs with a significant increase in RNA-
binding post-release in the thymidine-nocodazole experiment

(e) Correlation between p-values for KEGG pathway over-representation in the two nocodazole experiments.

(f) Protein abundance for groups of overlapping KEGG pathways over-represented in proteins with a significant increase in RNA-
binding. Individual proteins with a significant increase are highlighted in green.

(g) Protein abundance for groups of overlapping KEGG pathways over-represented in proteins with a significant increase in RNA-
binding. Individual proteins with a significant increase in RNA binding in 6 h vs 0 h are highlighted in green.
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Supplementary Note

Deduplication of SENSE total RNA-Seq

The SENSE total RNA-Seq Library Prep kit (Lexogen) adds a non-template 2-Qbp to
the 5’ end of the read sequence. The first 9bp of the read was therefore treated as a
pseudo-unique molecular identifier (pUMI) for the purposes of de-duplication to help
avoid over-deduplication. Error-aware read deduplication using pUMIs was

performed with UMI-tools".

Identification of protein binding sites

In order to identify regions of the transcriptome with decreased read coverage, a
two-step process was performed. Firstly, for each gene in each pair of samples, the
mean absolute difference in read coverage was calculated across all nucleotides. A
Wilcoxon rank-sum test was applied to identify genes with a significant difference
between intra-condition (NC and CL) and inter-condition comparisons (Benjamini-
Hochberg? adjust p-value < 0.01). For these genes, 40 bp sliding windows (20 bp
overlap) were tiled across the complete gene model (including introns) and the
number of reads overlapping each window computed with bedtools coverage®.
Windows with a significantly decreased coverage (putative protein binding site) in the
four 400 mJ/cm? replicates vs four NC samples were identified using DESeq2*
(Benjamini-Hochberg? adjusted p-value < 0.01). DESeq2 performs an initial filtering

step to remove all input features (in this case windows) with insufficient read counts.

Overlap with eCLIP data
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ENCODE eCLIP bed files® were downloaded from https://www.encodeproject.org on

02/01/2018 and filtered according to the ENCODE stringent filter: -log10(p-value) = 5
and log2(fold-enrichment) = 3. For all windows retained for statistical testing by
DESeq2, the number of U20S OOPS RBPs with an eCLIP peak within the window
was computed. A relationship was observed between the number of eCLIP peaks in
a window and P(putative binding site). However, since read coverage was a potential
confounding factor, we grouped windows based on the number of eCLIP peaks and
for each group computed the null expectation for P(putative binding site) by
randomly selecting a set of windows with the same distribution of read coverage,
with 100 iterations (denoted as random shuffle in Figure 1g). To identify the
relationship between uracil content and (putative binding site), we computed the
number of uracils per window and separated windows based on whether they

contained a UU dimer.

Antibodies:

Anti-PTB (1:1000, homemade); anti-nucleolin (1:1000, Clone 4E2, GeneTex); anti-
HuR (1:1000, Clone 3A2, Santa Cruz Biotechnology); anti-histone H3 (1:1000,
Bethyl Laboratories,); anti-B-tubulin (1:1000, Cell Signaling Technology). Anti-
fibrillarin as nuclear marker (1:1000, clone C13C3, Cell Signaling, Leiden,
Netherlands), anti-calreticulin as endoplasmic reticulum marker (1:1000, clone D3EG,
Cell Signaling), and anti-beta actin as cytosolic marker (1:5000, ab8227, Abcam,

Cambridge, UK).

Uncropped western blot scans:
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(a) Uncropped scans of western blots presented in the Supplementary Figure S2f.
(b) Uncropped scans of western blots presented in the Supplementary Figure S3i.

SILAC labelling rationale

U-2 OS osteosarcoma cells were cultured in commercially available DMEM media
for SILAC labeling (Thermo Fisher Scientific). We cultured the cells for two weeks
(four passages) and optimal labelling confirmed from test samples obtained in
parallel to the samples used in this study. Four biological replicates were performed
in all our SILAC experiments, with the labels switched such that the treatment
condition was the heavy isotope in replicates 1 & 2 and the light isotopes in
replicates 3 & 4. For MS analysis of SILAC labelled samples, the CHOPIN
acquisition method was used in order to allow the use of both detectors in the
Orbitrap Lumos on predefined precursor types that optimizes parallel ion processing,
thus ensuring higher yield. Despite having the possibility to trigger the MS?
fragmentation in only peptides present in SILAC pairs, we reasoned that many
peptides are likely to be observed with no signal in the control condition, which was

indeed confirmed.
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LC-MS/MS technical details
Supplementary table 6 summarises the main MS parameters in each experiment set

and the TMT tags for each sample in the nocodazole experiments.

Samples from RBP-capture and subcellular fractionation were analysed in an
Orbitrap nano-ESI Q-Exactive mass spectrometer (Thermo Fisher Scientific),
coupled to a nanoLC (Dionex Ultimate 3000 UHPLC). Samples were trapped on a
100 ym x 2 cm, C18, 5 um, 100 trapping column (Acclaim PepMap 100) in pL-pickup
injection mode at 15 pL/min flow rate for 10 minutes. Samples were then loaded on a
Rapid Separation Liquid Chromatography, 75 ym x 50 cm nanoViper C18 3 um 100
column (Acclaim, PepMap) at 50 °C retrofitted to an EASY-Spray source with a flow
rate of 300 nL/min (buffer A, HPLC H20, 0.1% formic acid; buffer B, 100% ACN,
0.1% formic acid; 0—15 min: at 4% buffer B, 15—90 min: linear gradient 4% to 40%
buffer B, 90-90.3 min: 40% to 90% buffer B, 90.3-95 min: at 90% buffer B, 95-95.3
min: 90% to 4% buffer B, 95.3-120 min: at 4% buffer B). Mass spectra were acquired
in positive ion mode applying data-dependent automatic survey MS scan and
tandem mass spectra (MS/MS) acquisition modes. Each MS scan in the Orbitrap
analyser (mass range = m/z 380 —1500, resolution = 35,000) was followed by
MS/MS of the 20 most intense peptides. Fragmentation was performed by high-
energy collision-activated dissociation (NCE = 25; resolution = 17,500), and selected

fragmented ions were dynamically excluded for 20 s.

SILAC and unlabeled samples generated from OOPS experiments in E. coli and

MCF10A were analysed in the Orbitrap Fusion Lumos (Thermo Fisher Scientific)
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coupled to a nanoLC Dionex Ultimate 3000 UHPLC (Thermo Fisher Scientific) with
the same columns, temperature and flow rates as above. Analytical chromatography
was performed over 120 min (buffer A, HPLC H20, 0.1% formic acid; buffer B, 100%
ACN, 0.1% formic acid; 0—15 min: at 2% buffer B, 15—100 min: linear gradient 2% to
40% buffer B, 100-100.3 min: 40% to 90% buffer B, 100.3-110 min: at 90% buffer B,
110-110.3 min: 90% to 2% buffer B, 100.3-120 min: at 2% buffer B). Mass spectra
were acquired using CHarge Ordered Parallel lon aNalysis (CHOPIN) acquisition in
positive ion mode as previously reported®. MS scans were acquired at a resolution of
120,000 between 400 and 1500 m/z and an AGC target of 4 x 10°. MS/MS spectra
were acquired in the linear ion trap (rapid scan mode) after collision-induced
dissociation (CID) fragmentation at a collision energy of 35% and an AGC target of 4
x 10° for up to 250 ms, employing a maximal duty cycle of 3 s, prioritizing the most
intense ions and injecting ions for all available parallelizable time. Selected precursor
masses were excluded for 60 s. For precursor selection, we prioritized the least
abundant signals. Doubly charged ions were scheduled for CID/ion trap analysis with
the same parameters applied as above. Charge states 3—7 with precursor intensity
>500 000, however, were scheduled for analysis by a fast HCD/Orbitrap scan of
maximal 40 ms (17,500 resolution). The remaining charge-state 3—7 ions with

intensity <500 000 were scheduled for analysis by CID/ion trap, as described above.

Samples for assessment of RNA crosslinking site were acquired in the Orbitrap
Fusion Lumos with the same configurations and chromatography setup as above,
but with 60 min of analytical chromatography (buffer A, HPLC H20, 0.1% formic
acid; buffer B, 100% ACN, 0.1% formic acid; 0—3 min: at 2% buffer B, 3—30 min:

linear gradient 2% to 40% buffer B, 30-30.3 min: 40% to 90% buffer B, 30.3-35 min:
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at 90% buffer B, 35-35.3 min: 90% to 2% buffer B, 35.3-60 min: at 2% buffer B). MS
scans were acquired at a resolution of 120,000 between 380 and 1500 m/z and an
AGC target of 4 x 10°. MS/MS spectra were acquired using HCD and Orbitrap
analyser with collision energy of 38%, AGC target of 5 x 10* for up to 86 ms (50,000

resolution), dynamic exclusion of 70 s and employing a maximal duty cycle of 3 s.

TMT-labelled fractions were analysed in an Orbitrap Fusion Lumos with the same
configurations and chromatography setup as above, but with 240 min of analytical
chromatography (buffer A, HPLC H20, 0.1% formic acid; buffer B, 100% ACN, 0.1%
formic acid; 0—15 min: at 2% buffer B, 15-215 min: linear gradient 2% to 40% buffer
B, 215-215.3 min: 40% to 90% buffer B, 215.3-225 min: at 90% buffer B, 225-225.3
min: 90% to 2% buffer B, 225.3-240 min: at 2% buffer B). Mass spectra were
acquired in positive ion mode applying data acquisition using synchronous precursor
selection MS3 (SPS-MS3) acquisition mode’. Each MS scan in the Orbitrap analyzer
(mass range = m/z 400 —1500, resolution = 120,000). The most intense ions over a
threshold of 5 x 10* were selected for collision induced dissociation (CID)-MS2
fragmentation, with an AGC target and maximum accumulation time of 1 x 10* and
60 ms. Mass filtering was performed by the quadrupole with 0.7 m/z transmission
window, followed by CID fragmentation in the linear ion trap with 35% normalized
collision energy. SPS was applied to co-select 10 fragment ions for HCD-MS3
analysis. SPS ions were all selected within the 400—1,200 m/z range and were set to
preclude selection of the precursor ion and TMT ion series. AGC targets and
maximum accumulation times were set to 5 x 10* and 86 ms. Co-selected precursors
for SPS-MS3 underwent HCD fragmentation with 65% normalized collision energy

and were analysed in the Orbitrap with nominal resolution of 50,000. The number of



142  SPS-MS3 spectra acquired between full scans was restricted to a duty cycle of 3 s.

143  Selected fragmented ions were dynamically excluded for 60 s.

144  TMT reporter values were assessed through Proteome Discoverer using Most Confident
145  Centroid method for peak integration and integration tolerance of 20 ppm (0.0024 Da).

146  Reporter ion intensities were adjusted to correct for the isotopic impurities of the different
147  TMT reagents (following manufacturer specifications). Sample labels for each TMT tag are

148  presented in supplementary table 6.
149

150 Peptide to protein assignment

151  Peptide to protein assignment was performed using an approximate minimum

152 parsimonious approach. Swiss-Prot proteins identified (including non Master-

153  proteins) were first ranked by their number of peptides identified. The peptides from
154  the top ranked proteins deemed to be assigned to this protein and removed from all
155 remaining proteins. The remaining proteins were then re-ranked based on the

156  updated peptide assignments. This was repeated until all peptides were accounted,
157  with ties settled by assigning the peptide to multiple proteins. Peptides which did not
158 receive a unique master protein identification were discarded.

159

160 ldentification of RNA binding sites

161  Putative RNA binding sites were identified using the trypsin peptides detected

162  (Figure S4a). To work back from the detected peptides to the sites of RNA

163  crosslinking, a catalog of theoretical peptides was generated by in-silico protein

164  digestion using Lys-C and trypsin. Peptides less than 7 or greater than 36 amino

165  acids were discarded (these thresholds were derived from the 1% and 99" percentile
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for the size of trypsin peptides detected in the other MS experiments). Lys-C
peptides which did not yield at least two trypsin peptides were discarded since
identification of RNA binding sites is dependent on detection of the adjacent peptides
without RNA crosslinking but from the same Lys-C peptide. Detected peptides were
then matched to this in-silico generated catalogue. Peptides observed in all 3 ethanol
replicates, or at least 1 silica replicate were retained. The putative site of RNA
crosslinking was then identified as the portion of the Lys-C peptide which was not
covered by an identified trypsin peptide. Where this region was discontinuous, e.g
only the middle portion of a Lys-C peptides was covered by a detected trypsin
peptides, the binding site was identified as the region from the first amino acid which
was not covered by a trypsin peptide to the last non-covered amino acid, including all
amino acids in between (Figure S4a). Where all Lys-C peptides amino acids were
covered, the entire peptide was considered a putative RNA binding site. Putative

binding sites > 30 amino acids were discarded from downstream analyses.
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