
Supplement 1 for Brain wave classification using long short-term memory 
network based OPTICAL predictor 

Shiu Kumar4, 5, *, ꝉ, Alok Sharma1, 2, 3, 4 *, ꝉ, Tatsuhiko Tsunoda2, 3, & 
 
*Correspondence: shiu.kumar@fnu.ac.fj; alok.sharma@griffith.edu.au 
ꝉ
Equal Contributors  

&
Last Author 

1
Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, QLD-4111, Australia 

2
Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, 

Tokyo, Japan 
3
Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, 

Kanagawa, Japan 
4
The University of the South Pacific, Suva, Fiji 

5
Fiji National University, Suva, Fiji 

 

 
In this supplementary text, we present the result for the single LSTM layer network in Fig. S1 with 
varying number of hidden units and their corresponding accuracies. The LSTM network architecture 
used in our work is presented in more detail. We also present details on how Bayesian optimization 
works to find the best feasible hyper-parameters (initial learn rate and L2 regularization). 

 

 

Fig. S1. Accuracies of the LSTM network having one LSTM layer with varying number of hidden units obtained using 
subject a of BCI competition IV dataset 1.  

LSTM Network Architecture for regression 

The LSTM network architecture used in this work is shown in Fig. S2. The input to the network is a 
sequence input, followed by 2 LSTM layers, the fully connected layer and regression layer at the output. 
The sequence input layer is used to provides the time series or sequence input to the network. Long-
term dependencies between a series of sequence data is learnt by the LSTM layer. The LSTM layer 
architecture used in this work is shown in Fig. S3, which shows how the d-dimensional sequence input 

matrix F with a length of s flows through the LSTM layer. The    
  represents the sequence input where i 

denotes the i-th feature obtained from the j-th windowed segment of the respective trial (as per 
sequence input matrix shown in Fig. 2 in the manuscript). The h and c denotes the hidden/output states 

and cell states, respectively. The initial state of the network and the first sequence input     
  becomes 



the input for the 1st LSTM block, which computes the 1st output h1 and c1 (updated cell state). The LSTM 

blocks in between the 1st and last LSTM block takes    
  sequence input and current states of the 

network (ct-1, ht-1) for the t-th LSTM block for computing the updated output state ht and the updated 
cell state ct. Information that is learned from previous sequence inputs are contained by the cell states. 
Information is added or removed (update controlled using gates) from the cell states at each step of the 
sequence input. 

 

 

Fig. S2. The LSTM network architecture of the proposed GA-CSP-LSTM predictor.   

 

Fig. S3. The LSTM layer architecture used for proposed GA-CSP-LSTM predictor. 

In general, the LSTM architecture comprises of a memory cell, an input gate, a forget gate and an output 
gate. The memory cell of the LSTM layer stores or remembers values (states) for either long or short 
times. On the other hand, the degree to which a new information or value flows into the cell of a LSTM 
layer is controlled by the input gate, the degree to which an information or value remains in the cell of 
the LSTM layer is controlled by the forget gate while the degree to which information or value stored in 
the cell of the LSTM layer is utilized for computing the output activation is controlled by the output gate 
(This paragraph is included in the manuscript). Fig. S4 shows how the data flows through the LSTM block 
for the t-th step of the input sequence. The input weights W, recurrent weights R and bias b are the 
weights that are learned by the LSTM layer.  

 

Fig. S4. Diagram showing the flow of data through the LSTM block for t-th step of the input sequence
1
.  

The cell state at step t of the input sequence is calculated by                  while the 
hidden/output state is calculated by             , where i, f, g and o denotes the input gate, forget 
gate, cell candidate and hidden/output gate, respectively. The     represents the element-wise 
multiplication (Hadamard product operator) and    denotes the state activation function. Each of the 
components at sequence input t is calculated as follows: 

1st LSTM

Layer

2nd LSTM 

Layer

Fully 

Connected 

Layer

Regression

Output Layer

Sequence

Input Layer

LSTM 

Block

LSTM 

Block

LSTM 

Block

LSTM 

Block

co

ho

LSTM Layer
Final 

Updated 

State

Initial

State

h1 h2 ht hs

. . . . . .

i

wF
1

i

wF
2

i

wt
F

i

ws
F



                      

                      

                      

                     

The tangent hyperbolic function has been used as the state activation function,                while 
the sigmoid function is used as the gate activation function,                 .  

Selection of hyper-parameters of the LSTM network using Bayesian Optimization 

The LSTM network used in this work has been optimized using Bayesian optimization that is utilized for 
selecting the best feasible hyper-parameters of the selected LSTM network. The objective function     , 
which in this case is the 10-fold cross validation error, is minimized using Bayesian optimization for the 
hyper-parameters within the specified bounded domain.  The Bayesian optimization algorithm 
computes the objective function values          for a number of randomly selected points within the 
bounds of the specified hyper-parameters. The log-scaled probability distribution of each component 
has been used. The Gaussian model of      is updated and the posterior distribution over functions 
                       is obtained. Based on the Gaussian process model of   the acquisition 
function      is maximized in order to determine the next evaluation point2. Depending on the 
posterior distribution function  , the   acquisition function evaluates how good a point   is for the given 
network. The above procedure is repeated until the stopping criterion is reached. The stopping criterion 
used in this work was that either maximum number of iterations reached 25 or the time taken for the 
Bayesian optimization reached 5 minutes, whichever occurred first. The best feasible points determined 
were then used train the LSTM network using training data. In this work, we have used MATLAB for all 
processing and the Bayesian optimization algorithm package available in MATLAB has been utilized.  

Results of real-time implementation using multi-class approach 

Table S1 shows the results obtained for real-time implementation using multi-class approach (for 
GigaDB dataset), where multi-class CSP is utilized. The average misclassification rate is 22.88% ± 4.94. 

Table S1: Misclassification rate (%) for real-time implementation of OPTICAL using the multi-class 
approach (GigaDB dataset). No. represents the subject number. 

No. Misclassification 
rate 

No. Misclassification 
rate 

No. Misclassification 
rate 

No. Misclassification 
rate 

1 21.00 ± 5.16 14 3.50 ± 4.28 27 30.50 ± 4.05 40 26.75 ± 5.01 

2 31.25 ± 3.39 15 26.25 ± 5.92 28 28.50 ± 7.19 41 24.00 ± 6.03 

3 7.25 ± 5.95 16 27.00 ± 4.68 29 28.25 ± 3.92 42 33.75 ± 6.15 

4 24.50 ± 7.53 17 26.50 ± 4.89 30 27.75 ± 4.63 43 6.00 ± 2.42 

5 0.50 ± 1.05 18 26.00 ± 4.12 31 25.50 ± 3.69 44 8.75 ± 3.95 

6 11.50 ± 3.94 19 29.50 ± 5.24 32 25.00 ± 7.17 45 31.75 ± 5.14 

7 31.88 ± 7.55 20 24.75 ± 1.42 33 25.50 ± 6.85 46 25.00 ± 5.01 

8 27.75 ± 4.92 21 27.25 ± 4.16 34 33.00 ± 7.62 47 25.25 ± 4.63 

9 37.29 ± 6.32 22 23.00 ± 5.37 35 11.50 ± 5.03 48 23.25 ± 4.57 

10 23.25 ± 6.13 23 29.50 ± 6.21 36 22.75 ± 9.16 49 5.25 ± 2.99 

11 28.25 ± 4.57 24 24.50 ± 5.75 37 26.25 ± 2.95 50 0.00 ± 0.00 

12 24.25 ± 5.41 25 27.00 ± 5.37 38 30.50 ± 7.71 51 29.00 ± 3.57 



13 22.50 ± 3.54 26 1.50 ± 2.11 39 19.50 ± 5.87 52 29.25 ± 6.57 
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