
Supplement 1 for Brain wave classification using long short-term memory
network based OPTICAL predictor

Shiu Kumar4, 5, *, ꝉ, Alok Sharma1, 2, 3, 4 *, ꝉ, Tatsuhiko Tsunoda2, 3, &

*Correspondence: shiu.kumar@fnu.ac.fj; alok.sharma@griffith.edu.au
ꝉ
Equal Contributors

&
Last Author

1
Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, QLD-4111, Australia

2
Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University,

Tokyo, Japan
3
Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama,

Kanagawa, Japan
4
The University of the South Pacific, Suva, Fiji

5
Fiji National University, Suva, Fiji

In this supplementary text, we present the result for the single LSTM layer network in Fig. S1 with
varying number of hidden units and their corresponding accuracies. The LSTM network architecture
used in our work is presented in more detail. We also present details on how Bayesian optimization
works to find the best feasible hyper-parameters (initial learn rate and L2 regularization).

Fig. S1. Accuracies of the LSTM network having one LSTM layer with varying number of hidden units obtained using
subject a of BCI competition IV dataset 1.

LSTM Network Architecture for regression

The LSTM network architecture used in this work is shown in Fig. S2. The input to the network is a
sequence input, followed by 2 LSTM layers, the fully connected layer and regression layer at the output.
The sequence input layer is used to provides the time series or sequence input to the network. Long-
term dependencies between a series of sequence data is learnt by the LSTM layer. The LSTM layer
architecture used in this work is shown in Fig. S3, which shows how the d-dimensional sequence input

matrix F with a length of s flows through the LSTM layer. The
 represents the sequence input where i

denotes the i-th feature obtained from the j-th windowed segment of the respective trial (as per
sequence input matrix shown in Fig. 2 in the manuscript). The h and c denotes the hidden/output states

and cell states, respectively. The initial state of the network and the first sequence input
 becomes

the input for the 1st LSTM block, which computes the 1st output h1 and c1 (updated cell state). The LSTM

blocks in between the 1st and last LSTM block takes
 sequence input and current states of the

network (ct-1, ht-1) for the t-th LSTM block for computing the updated output state ht and the updated
cell state ct. Information that is learned from previous sequence inputs are contained by the cell states.
Information is added or removed (update controlled using gates) from the cell states at each step of the
sequence input.

Fig. S2. The LSTM network architecture of the proposed GA-CSP-LSTM predictor.

Fig. S3. The LSTM layer architecture used for proposed GA-CSP-LSTM predictor.

In general, the LSTM architecture comprises of a memory cell, an input gate, a forget gate and an output
gate. The memory cell of the LSTM layer stores or remembers values (states) for either long or short
times. On the other hand, the degree to which a new information or value flows into the cell of a LSTM
layer is controlled by the input gate, the degree to which an information or value remains in the cell of
the LSTM layer is controlled by the forget gate while the degree to which information or value stored in
the cell of the LSTM layer is utilized for computing the output activation is controlled by the output gate
(This paragraph is included in the manuscript). Fig. S4 shows how the data flows through the LSTM block
for the t-th step of the input sequence. The input weights W, recurrent weights R and bias b are the
weights that are learned by the LSTM layer.

Fig. S4. Diagram showing the flow of data through the LSTM block for t-th step of the input sequence
1
.

The cell state at step t of the input sequence is calculated by while the
hidden/output state is calculated by , where i, f, g and o denotes the input gate, forget
gate, cell candidate and hidden/output gate, respectively. The represents the element-wise
multiplication (Hadamard product operator) and denotes the state activation function. Each of the
components at sequence input t is calculated as follows:

1st LSTM

Layer

2nd LSTM

Layer

Fully

Connected

Layer

Regression

Output Layer

Sequence

Input Layer

LSTM

Block

LSTM

Block

LSTM

Block

LSTM

Block

co

ho

LSTM Layer
Final

Updated

State

Initial

State

h1 h2 ht hs

.

i

wF
1

i

wF
2

i

wt
F

i

ws
F

The tangent hyperbolic function has been used as the state activation function, while
the sigmoid function is used as the gate activation function, .

Selection of hyper-parameters of the LSTM network using Bayesian Optimization

The LSTM network used in this work has been optimized using Bayesian optimization that is utilized for
selecting the best feasible hyper-parameters of the selected LSTM network. The objective function ,
which in this case is the 10-fold cross validation error, is minimized using Bayesian optimization for the
hyper-parameters within the specified bounded domain. The Bayesian optimization algorithm
computes the objective function values for a number of randomly selected points within the
bounds of the specified hyper-parameters. The log-scaled probability distribution of each component
has been used. The Gaussian model of is updated and the posterior distribution over functions
 is obtained. Based on the Gaussian process model of the acquisition
function is maximized in order to determine the next evaluation point2. Depending on the
posterior distribution function , the acquisition function evaluates how good a point is for the given
network. The above procedure is repeated until the stopping criterion is reached. The stopping criterion
used in this work was that either maximum number of iterations reached 25 or the time taken for the
Bayesian optimization reached 5 minutes, whichever occurred first. The best feasible points determined
were then used train the LSTM network using training data. In this work, we have used MATLAB for all
processing and the Bayesian optimization algorithm package available in MATLAB has been utilized.

Results of real-time implementation using multi-class approach

Table S1 shows the results obtained for real-time implementation using multi-class approach (for
GigaDB dataset), where multi-class CSP is utilized. The average misclassification rate is 22.88% ± 4.94.

Table S1: Misclassification rate (%) for real-time implementation of OPTICAL using the multi-class
approach (GigaDB dataset). No. represents the subject number.

No. Misclassification
rate

No. Misclassification
rate

No. Misclassification
rate

No. Misclassification
rate

1 21.00 ± 5.16 14 3.50 ± 4.28 27 30.50 ± 4.05 40 26.75 ± 5.01

2 31.25 ± 3.39 15 26.25 ± 5.92 28 28.50 ± 7.19 41 24.00 ± 6.03

3 7.25 ± 5.95 16 27.00 ± 4.68 29 28.25 ± 3.92 42 33.75 ± 6.15

4 24.50 ± 7.53 17 26.50 ± 4.89 30 27.75 ± 4.63 43 6.00 ± 2.42

5 0.50 ± 1.05 18 26.00 ± 4.12 31 25.50 ± 3.69 44 8.75 ± 3.95

6 11.50 ± 3.94 19 29.50 ± 5.24 32 25.00 ± 7.17 45 31.75 ± 5.14

7 31.88 ± 7.55 20 24.75 ± 1.42 33 25.50 ± 6.85 46 25.00 ± 5.01

8 27.75 ± 4.92 21 27.25 ± 4.16 34 33.00 ± 7.62 47 25.25 ± 4.63

9 37.29 ± 6.32 22 23.00 ± 5.37 35 11.50 ± 5.03 48 23.25 ± 4.57

10 23.25 ± 6.13 23 29.50 ± 6.21 36 22.75 ± 9.16 49 5.25 ± 2.99

11 28.25 ± 4.57 24 24.50 ± 5.75 37 26.25 ± 2.95 50 0.00 ± 0.00

12 24.25 ± 5.41 25 27.00 ± 5.37 38 30.50 ± 7.71 51 29.00 ± 3.57

13 22.50 ± 3.54 26 1.50 ± 2.11 39 19.50 ± 5.87 52 29.25 ± 6.57

Reference

1 Long Short-Term Memory Networks, <https://au.mathworks.com/help/deeplearning/ug/long-short-term-
memory-networks.html> (2018).

2 Bayesian Optimization Algorithm, <https://au.mathworks.com/help/stats/bayesian-optimization-
algorithm.html> (2018).

