Supplementary Information

Integrative Analysis of Genomic and Transcriptomic Characteristics Associated with Progression of Aggressive Thyroid Cancer

Yoo *et al.*

Supplementary Figure 1. The comparison of gene alteration frequency of ATC. Left and right bars represent the mutation frequencies from Pozdeyev et al. (left) and this study (right). a) Genes illustrated in Figure 1. b) Genes illustrated in Supplementary Figure 3.

Supplementary Figure 2. Germline *TP53* mutations in study subjects.

Supplementary Figure 3. The putative genes associated with the progression of TC. Samples were sorted as the same order of Figure 1.

Supplementary Figure 4. *TERT* gene expression level of TCGA samples. Each bar represents *TERT* expression level of one sample. Samples were sorted by the order of *TERT* gene epxression level.

Supplementary Figure 5. The inter-chromosomal translocation at *TERT* **upstream region. Upper and lower panels represent the whole-genome sequencing alignment at** *TERT* **upstream and partner regions, respectively.**

	ehr5 p15.32 p15.2 p15.1 p	14.2 p13.3 p13.2 p13	1 p12 q11.1 q11.2 q	12.1 q13.1 q13.3	q14.2 q14.3	q15 q21.1	q21.3 q22.2 q23.1 q23.3	2 q23.3 q31.1 q31.2	q32 q33.1	q33.3 q34	q35.1 q35.3
	70 Hb	1,280 Mb	1	1,290 Mb	54 kb	1,800 kb		1,810 Mb		1,320 kc	.
	[p-aaa										h n
	[0-20]										Í
			I		1	II					
RefSeq Genes								MIR4457		••••••	

Supplementary Figure 6. Abnormal RNA-seq alignment in intergenic region after translocation breakpoint at *TERT* upstream region. Upper and lower panel represent data of tumor and normal thyroid tissue, respectively.

Supplementary Figure 7. Validation of TERT rearrangements. *PDE8B-TERT* fusion gene (left) and inter-chromosomal translocation of *TERT* upstream region (right).

Supplementary Figre 8. Tumor mutational burden in various types of TC. Whole-exome sequenced FA/miFTC and PTC from Jung *et al.* and Rubinstein *et al.* were used to identify the somatic mutations in TCs. *P*-values from two-tailed Mann-Whitney U-test were represented.

Supplementary Figure 9. The mutational signature analysis. The average-linkage hierarchical clustering was used. S denotes the reference signature from COSMIC.

Supplementary Figure 10. The representative mutational signatures in TC. The average values of 96 motifs from whole-exome sequenced tumors in TCGA and Jung *et al.* were used for PTC and FTC. Signature 2 and 5 were downloaded from COSMIC.

Supplementary Figure 11. Arm-level SCNA in various types of TC. a) Bar chart represents arm-level SCNA burden of TCs regardless of driver mutation. b) Arm-level SCNA in *BRAF*-positive TCs. c) Arm-level SCNA in *RAS*-positive TCs. Each bar represents individual tumor.

Supplementary Figure 12. The effect of diverse types of mutation and disease-specific survival in ATC. a) TSG. b) *TP53*. c) *AKT1/PIK3CA* co-mutation. d) *EIF1AX* co-mutation.

Supplementary Figure 13. The effect of diverse types of mutation and disease-specific survival in advanced TCs. a) TSG. b) *TP53*. c) *AKT1/PIK3CA* co-mutation. d) *EIF1AX* co-mutation.

Supplementary Figure 14. p16 immunohistochemistry using tissue microarray analysis. a) The representative images of p16-negative (upper) and p16-positive (lower) results. b) The relationship between *CDKN2A* loss and p16 expression.

Supplementary Figure 15. DNA methylation profile of ATC. The 500 most variable CpG sites were displayed by heatmap.Samples were clustered by the average-linkage hierarchical clustering method. T27 which do not have any mutation in cancer related gene was colored by red.

Supplementary Figure 16. The top 15 significantly down-regulated KEGG pathways in *BRAF-* and *RAS-*positive **ATCs.** The significance of these pathways were also marked in PTC, FA/miFTC, and wiFTC, when they were also found within the top 15 significantly down-regulated pathways of each tumor.

Type of region	Cytoband	Wide peak boundaries	Genes in wide peak	Residual <i>q</i> -value ^a
	2q21.2	chr2:133,034,593-133,118,006	ANKRD30BL	0.0001
	16q22.2	chr16:70,882,524-71,200,029	HYDIN	0.0001
	6p11.2	chr6:57,212,739-57,568,050	hsa-mir-548u, PRIM2	0.0001
	15q26.3	chr15:102,504,813-102,531,392	WASH3P, DDX11L1, DDX11L9	0.0001
	1p36.13	chr1:16,837,477-16,838,671	CROCCP3	0.0007
Amplification	1q21.1	chr1:145,374,344-145,380,272	NBPF10	0.0011
	7q11.22	chr7:71,563,279-71,589,549	CALN1	0.0047
	17q12	chr17:36,269,518-36,405,553	TBC1D3F, LOC440434, TBC1D3	0.0047
	2p11.1	chr2:91,676,990-91,823,234	LOC654342	0.0051
	14q11.2	chr14:19,385,975-20,162,672	POTEG, POTEM, LOC642426	0.0093
	10q11.22	chr10:47,021,072-47,104,171	PPYR1, LOC643650	0.0216
	9p21.3	chr9:22,002,865-22,009,400	CDKN2A, CDKN2B	5.88E-07
	2q36.1	chr2:223,808,117-224,461,675	KCNE4	0.0004
	19p13.3	chr19:1,279,242-1,355,035	ENFA2	0.0194
Deletion	8p23.1	chr8:7,439,997-7,946,469	DEFB4A, SPAG11B, DEFB103B, DEFB104A, DEFB105A, DEFB106A, DEFB107A, DEFB103A, FAM90A13, FAM90A8, FAM90A18, FAM90A9, FAM90A10, DEFB107B, DEFB104B, DEFB106B, DEFB105B, DEFB109P1B, FAM90A14, SPAG11A, FAM90A19, FAM66E, LOC100132396	0.0194
	22q13.32	chr22:48,934,669-48,943,223	LOC284933	0.0194
	9q22.2	chr9:92,221,450-92,782,978	UNQ6494	0.0283
	17p11.2	chr17:21,826,480-22,022,469	FLJ36000	0.0213
	21q22.3	chr21:46,046,559-46,048,316	KRTAP10-9	0.0371

Supplementary Table 1. The regions with significant somatic copy number alteration in ATC.

^a The residual *q*-value represents the significance of peak region after excluding overlapped amplifications and deletions in other, more significant peak regions.

Model	All (n=113)		ATC (n=27)		Advanced DTCs (n=86)		
	HR (95% CI)	Р	HR (95% CI)	Р	HR (95% CI)	Р	
Model 1	11. 03 (4.97-24.45)	<0.001	2.95 (1.08-8.04)	0.034	31.36 (7.71-127.60)	<0.001	
Model 2	13.59 (5.54-33.37)	<0.001	4.47 (1.33-15.01)	0.016	21.48 (4.56-101.14)	<0.001	
Model 3	10.56 (4.29-25.96)	<0.001	3.90 (1.10-13.78)	0.035	15.00 (3.15-71.46)	<0.001	
Model 4	9.61 (3.73-24.79)	<0.001	6.67 (1.34-33.12)	0.02	9.88 (1.97-49.57)	<0.001	

Supplementary Table 2. Hazard ratios (HR) of CDKN2A loss for death in ATC and advanced DTCs.

Model 1. Unadjusted.

Model 2. Adjusted for age at surgery for analyzed tissue and sex.

Model 3. Adjusted for age at surgery for analyzed tissue, sex, and distant metastasis.

Model 4. Adjusted for age at surgery for analyzed tissue, sex, distant metastasis, and tumor origin.

Model	All (n=57)		ATC (n=17)		
WOUEI	HR (95% CI)	Р	HR (95% CI)	Ρ	
Model 1	13.86 (1.83-105.20)	0.011	7.10 (0.890-56.04)	0.063	
Model 2	10.67 (0.09-1.38)	0.023	35.25 (1.38-898.79)	0.031	
Model 3	2.58 (0.25-26.22)	0.424	30.05 (0.93-973.91)	0.056	
Model 4	1.13 (0.31-30.72)	0.333	5.17 (0.29-93.11)	0.266	

Supplementary Table 3. Hazard ratios (HR) of p16 expression for death in ATC.

Model 1. Unadjusted.

Model 2. Adjusted for age at surgery for analyzed tissue and sex.

Model 3. Adjusted for age at surgery for analyzed tissue, sex, and distant metastasis.

Model 4. Adjusted for age at surgery for analyzed tissue, sex, distant metastasis, and tumor origin.

Supplementary Table 4. The list of genes captured by custom probes.

Target	Gene symbols				
Small size mutations	AKT1, AKT3, ARID1A, ARID1B, ARID2, ARID5B, ATM, ATRX, BAZ2B ^a , BRAF, CDKN2A, CHEK2, CTNNA2, DICER1, EIF1AX, EZH1, HRAS, HUWE1 ^a , IDH1, KMT2A, KMT2C, KMT2D, KRAS, LATS1, LATS2, MCM6 ^a , MEN1, MLH1, MSH2, MSH6, MTOR, NF1, NF2, NFE2L2, NRAS, PBRM1, PIK3C2G, PIK3C3, PIK3CA, PIK3CG, PIK3R1, PIK3R2, PPM1D, PTEN, RB1, SETD2, SMARCB1, SOS1, SPOP, STARD9 ^a , STK11, TET1, TP53, TSC1, TSC2, TSHR, U2AF1				
Fusion genes	ALK, B4GALNT3, BRD4, FGFR2, FGFR3, MET, NTRK1, NTRK3, NUTM1, PAX8, RET, THADA				
Promoter mutations	TERT				

^aGenes from our unpublished work about distant metastasis of FTC.

Target	Primers	Nucleotide sequence
TERT promoter (Primter #1)	Forward	CACCCGTCCTGCCCCTTCACCTT
	Reverse	CTTCCCACGTGCGCAGCAGGA
TERT promoter (Primer #2)	Forward	CCCTTCACCTTCCAGCTC
	Reverse	CAGCGCTGCCTGAAACTC
TERT upstream translocation	Forward	ACTCCTTTCCCGTTTGTGTG
	Reverse	GAAGACAGGTGGCAGAGAGG
PDE8B-TERT	Forward	ATCGGATGACCATGAAGAGG
	Reverse	ACACTCATCAGCCAGTGCAG
<i>TP53 (</i> E11Q)	Forward	CAGCCATTCTTTTCCTGCTC
	Reverse	TCCCACAGGTCTCTGCTAGG
<i>TP5</i> 3 (R49H)	Forward	GTTTCTTTGCTGCCGTCTTC
	Reverse	ACACGCAAATTTCCTTCCAC
BCL2L1	Forward	CCTCTCCCGACCTGTGATAC
	Reverse	CCAAAACACCTGCTCACTCA
SOCS3	Forward	AGGCTCCTTTGTGGACTTCA
	Reverse	AACTTGCTGTGGGTGACCAT
МҮС	Forward	GAGGCTATTCTGCCCATTTG
	Reverse	CACCGAGTCGTAGTCGAGGT
β-ACTIN	Forward	TGACGTGGACATCCGCAAAG
	Reverse	CTGGAAGGTGGACAGCGAGG

Supplementary Table 5. Nucleotide sequences of primers used for PCR.