Supplementary information to the article "SOCS2 is part of a highly prognostic 4-gene signature in AML and promotes disease aggressiveness"

Chi Huu Nguyen^{1,2}, Tobias Glüxam^{1,2}, Angela Schlerka^{1,2}, Katharina Bauer^{1,2,3}, Alexander M. Grandits^{1,2}, Hubert Hackl⁴, Oliver Dovey⁵, Sabine Zöchbauer-Müller^{1,2}, Jonathan L. Cooper⁵, George S. Vassiliou⁵, Dagmar Stoiber^{6,7}, Rotraud Wieser^{1,2*} and Gerwin Heller^{1,2,8*}

¹Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria. ²Comprehensive Cancer Center, Vienna, Austria. ³Institute of Science and Technology Austria, Vienna, Austria, ⁴Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria. ⁵Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK. ⁶Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria. ⁷Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria. ⁸Institute of Pharmacology and Toxicology, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.

Supplementary Methods

Cell culture, transduction of human myeloid cell lines, and proliferation assay

The packaging cell line Phoenix-GP was maintained in DMEM (Invitrogen) supplemented with 10% fetal bovine serum (FBS) (Invitrogen) 1% and Penicillin/Streptomycin (Sigma-Aldrich). U937 and HL60 cells and their derivatives were grown in **RPMI** 1640 (Invitrogen) containing 10% FBS 1% and Penicillin/Streptomycin/Glutamine (Life Technologies). A codon optimized version of the human SOCS2 cDNA was cloned into the retroviral vector pMSCV IRES GFP using the XhoI and EcoRI restriction sites. The resulting vector, pMSCV SOCS2 IRES GFP, as well as empty pMSCV IRES GFP as a control, were transfected into Phoenix-GP cells, along with helper plasmids pMD2.G and pGag-Pol, and retroviral particles were harvested and used to infect U937 and HL60 cells through standard procedures. Three days later, the resulting cell lines U937_Vec, U937_SOCS2, HL60_Vec, and HL60_SOCS2 were sorted for GFP positivity on an Astrios (Beckman Coulter). For the proliferation assays, cells were seeded into 12-well plates at a density of 1.5×10^5 cells/ml, split at equal ratios when necessary, and total viable cells were counted every 24 h using a CASY counter (Roche Innovates).

Supplementary Figures

Supplementary Figure S1. Kaplan Meier curves for overall survival of 162 cytogenetically normal AML patients (GSE12417, cohort 1) according to expression values for alternative probe sets for *SOCS2*, *IL2RA*, *NPDC1* and *PHGDH*. Expression values were dichotomized by maximally selected rank statistics. Statistical significance was calculated using the log rank test and p-values were adjusted for multiple testing as described by Altman *et al.*¹.

Supplementary Figure S2. Kaplan Meier curves for overall survival of AML patients classified as cytogenetically favourable, intermediate, or adverse (GSE6891, combined cohorts 1 and 2). Patients were stratified into 4-GES^{low} (blue) and 4-GES^{high} (red) subgroups. Statistical significance was calculated using the log rank test and p-values were adjusted for multiple testing as described by Altman *et al.*¹.

Supplementary Figure S3. The 4-GES is able to refine the ELN classification of AML patients included in the GSE37642 data set. (A) A shift of patients from ELN 2010 favourable, intermediate I/II and adverse (left side) to ELN 2010 + 4-GES favourable, intermediate and adverse (right side) is shown. ELN favourable/4-GES^{high} patients with low median OS were re-assigned to ELN intermediate risk group, ELN intermediate/4-GES^{high} patients with low median OS were re-assigned to ELN adverse risk group, and ELN adverse/4-GES^{low} patients with high median OS were re-assigned to ELN intermediate risk group, and ELN intermediate risk group. (B) Kaplan Meier curves for overall survival of AML patients <60 years of age (left) and >60 years of age (right) stratified into favourable, intermediate, and adverse risk based on the ELN 2010 + 4-GES classification. ELN, European Leukemia Net.

Α

Supplementary Figure S4. SOCS2 (Affymetrix probe set: 203373_at) expression in various hematopoietic cells determined by gene expression microarray analyses. Log2 transformed gene expression values are shown. HSC, Hematopoietic stem cell; MPP, Multipotential progenitors; CMP, Common myeloid progenitor cell; GMP, Granulocyte monocyte progenitors; MEP, Megakaryocyte-erythroid progenitor cell; early_PM, Early Promyelocyte; late_PM, Late Promyelocyte; MY, Myelocyte; MM, Metamyelocytes; BC, Band cell; PMN, Polymorphonuclear cells; Mono, Monocytes

Supplementary Figure S5. *MLL-AF9*-transduced LSK cells cause an aggressive AML-like disease in mice. (A) Schematic overview of the experiment. (B) Kaplan Meier plot of mice transplanted with *MLL-AF9*-transduced LSK cells (160,000 unsorted cells per mouse, n = 3). (C) Flow cytometric analysis of spleen cells from terminally ill mice confirmed the expression of myeloid (Mac-1, Gr-1) and the absence of lymphoid (CD3, B220) markers in LCs (Venus⁺ cells; representative experiment).

Supplementary Figure S6. *Socs2* is required for proliferation and/or survival of *Flt3*-ITD/*NPM1c* LCs *in vitro*. **(A)** *Socs2* mRNA levels in spleen cells from *Flt3*-ITD/*NPM1c* (F/N) leukemic mice and from healthy mice were determined by qRT-PCR and normalised to those of the housekeeping gene β -2-microglobulin using the $\Delta\Delta C_T$ method. Mean \pm SEM of three independent experiments; ***, p < 0.001 (Student's two-tailed t-test). **(B)** Representative flow cytometric analysis of RFP⁺ cells from shCtrl or shSocs2 transduced *Flt3*-ITD/*NPM1c* LCs. Upper panel, cells on the day of sorting (day 0); lower panel, sorted cells after 10 days in suspension culture (day 10).

Ba/F3-ITD cells treated with DMSO or sorafenib

Supplementary Figure S7. Expression of *Npdc1*, *Socs2*, *Il2ra* and *Phgdh* in DMSO (n = 6) or sorafenib (n = 6) treated Ba/F3-ITD cells determined using MoGene-1_0-st-v1 microarrays (ArrayExpress ID: E-MTAB-4487). Ba/F3-ITD cells were treated with DMSO or 10nM sorafenib for 24 hours. Log2 transformed gene expression values are shown (blue, low expression; red, high expression). Asterisks indicate statistically significant differences in gene expression between DMSO and sorafenib treated cells (FDR < 0.005).

Supplementary Figure S8. Experimental expression of *SOCS2* promotes proliferation of the malignant human myeloid cell lines U937 (A, B) and HL60 (C, D). (A, C) Immunoblot analyses demonstrating expression of SOCS2 in U937_SOCS2 and HL60_SOCS2, but not U937_Vec and HL60_Vec cells. (B, D) Relative counts of U937_SOCS2, U937_Vec, HL60_SOCS2, and HL60_Vec cells over a period of 4 days. Mean \pm SEM of three independent experiments. *, p < 0.05; **, p < 0.01 (2-way ANOVA followed by Bonferroni's post-hoc test).

Supplementary Table S1. Univariable Cox regression analysis for overall survival of AML

patients

Data set	Variable	HR	HR 95% CI		
GSE12417 cohort 1	4-GES ^{high} vs. 4-GES ^{low}	4.09 2.52-6.64		1.3*10 ⁻⁰⁸	
	Age (years)	1.03	0.76-0.97	0.0005	
	FAB, M1 vs. others	1.44	0.51-4.07	0.491	
	FAB, M2 vs. others	1.1	0.39-3.12	0.858	
	FAB, M4 vs. others 0.71 0.24-2		0.24-2.07	0.533	
	FAB, M5 vs. others 0.82 0.26-2.58		0.26-2.58	0.735	
	FAB, M6 vs. others	0.61	61 0.14-2.72 0.516		
GSE12417 cohort 2 ^a	4-GES ^{high} vs. 4-GES ^{low}	4.93	1.19-20.35	0.027	
	Age (years)	1.04 1.01-1.06 0.006		0.006	
GSE6891 cohort 1	4-GES ^{high} vs. 4-GES ^{low}	2.33	1.68-3.25	4.5*10-07	
	Age (years)	1.01	0.99-1.03	0.066	
	FAB, M1 vs. others	0.5	0.2-1.28	0.149	
	FAB, M2 vs. others	0.46	0.18-1.17	0.103	
	FAB, M4 vs. others	0.48	0.18-1.24	0.127	
	FAB, M5 vs. others	0.68	0.27-1.72	0.419	
	FAB, M6 vs. others	0.16	0.02-1.41	0.1	
	Cytogenetic risk ^b	1.96	1.55-2.46	1.2*10 ⁻⁰⁸	
	Sex	1.22	0.89-1.68	0.226	
	<i>FLT3-</i> ITD	1.82	1.29-2.56	0.0007	
	FLT3-TKD	0.72	0.42-1.25	0.248	
	IDH1	0.66	0.32-1.35	0.252	
	IDH2	1.15	0.65-2.04	0.627	
	KRAS	0.92	0.23-3.7	0.903	
	NRAS	0.63	0.36-1.12	0.116	
	NPM1c	0.81	0.57-1.15	0.241	
	CEBPA (wt/mono/bi)	0.67	0.46-0.98	0.04	
	CEBPA (yes/no)	0.46	0.2-0.97	0.042	
	<i>EVI1</i> expression 1.81 1		1.09-3.01	0.022	
GSE6891 cohort 2	4-GES ^{high} vs. 4-GES ^{low}	-GES ^{high} vs. 4-GES ^{low} 2.48 1.7-3.62 2		2.5*10 ⁻⁰⁶	
	Age (years)	1.02	1-1.03	0.017	

	FAB, M1 vs. others	0.67	0.3-1.48	0.319		
	FAB, M2 vs. others	vs. others 0.7		0.368		
	FAB, M4 vs. others	0.64	0.29-1.44	0.285		
	FAB, M5 vs. others	0.67	0.3-1.49	0.325		
	FAB, M6 vs. others	0.78	0.17-3.69	0.755		
	Cytogenetic risk ^b	1.57	1.14-2.16	0.005		
	Sex	0.91	0.63-1.33	0.64		
	<i>FLT3-</i> ITD	TD 1.44 0.97-2.1				
	<i>FLT3-</i> TKD	0.67	0.33-1.38	0.275		
	IDH1	1.15	0.6-2.2	0.672		
	IDH2	0.59	0.29-1.22	0.158		
	NRAS	0.98	0.54-1.78	0.942		
	NPM1c	0.96	0.64-1.44	0.86		
	CEBPA (wt/mono/bi)	0.76	0.47-1.22	0.255		
	CEBPA (yes/no)	0.68	0.3-1.55	0.361		
	EVI1 expression	3.52	1.85-6.69	0.0001		
GSE37642	E37642 4-GES ^{high} vs. 4-GES ^{low}		2.04-3.45	3.1*10 ⁻¹³		
	Age (years)	1.04	1.03-1.05	2.9*10 ⁻¹⁴		
	FAB, M2 vs. others	0.75	0.54-1.03	0.077		
	FAB, M4 vs. others	0.51	0.36-0.72	0.0001		
	FAB, M5 vs. others	0.92	0.62-1.36	0.669		
	FAB, M6 vs. others	0.78	0.41-1.48	0.449		
	FAB, M7 vs. others	1.92	0.47-7.86	0.366		
	ELN score ^c	1.43	0.7-1.28	2.3*10 ⁻¹¹		
TCGA_LAML	4-GES ^{high} vs. 4-GES ^{low}	1.91	1.28-2.86	0.0016		
	Age (years)	1.04	0.97-1.02	1.1*10 ⁻⁰⁵		
	FAB, M1 vs. others	1.14	0.54-2.39	0.737		
	FAB, M2 vs. others	1.12	0.53-2.37	0.766		
	FAB, M4 vs. others		0.55-2.28	0.72		
	FAB, M5 vs. others	1.56	0.67-3.62	0.303		
	FAB, M6 vs. others	2.71	0.59-12.55	0.202		
	FAB, M7 vs. others	2.61	0.71-9.59	0.149		
	Cytogenetic risk ^a	1.55	1.08-2.23	0.017		

Sex	1	0.67-1.5	0.97
<i>FLT3-</i> ITD	0.97	0.49-1.93	0.934
<i>FLT3-</i> TKD	1.47	0.71-3.04	0.3
IDH1	0.69	0.4-1.18	0.178
RAS	0.78	0.31-1.92	0.584
NPM1c	1.01	0.65-1.57	0.955

4-GES, 4-gene expression score; HR, hazard ratio; CI, confidence interval; FAB, French American British classification; ^a, FAB classification of GSE12417 cohort 2 was excluded from univariable analyses because of low subgroup sample numbers; *FLT3*-ITD, *FLT3* internal tandem duplication; *FLT3*-TKD, *FLT3* tyrosine kinase domain mutation; gene names in italics refer to mutations of the respective genes; mono, monoallelic; bi, biallelic. ^b, Assignment to cytogenetic risk groups were included in the respective GEO entries. ^c, Assignment to ELN risk groups was provided by T. Herold, University of Munich, Department of Internal Medicine III, Munich, Germany. No relevant patient data were provided in GSE71014; therefore, regression analyses were not performed.

Method	Target	Clone/source organism	Fluorophor/ conjugate	Company	Cat. no	Dilution
IB	Human/mouse SOCS2	Rabbit	-	Cell Signaling	27798	1:1,000
	Human/mouse GAPDH	14C10	-	Cell Signaling	2118S	1:50,000
	Rabbit IgG	Goat	Horseradish peroxidase	Jackson ImmunoResearch	111035008	1:5,000
FC	Mouse Gr-1	RB6-8C5	AF700	Biolegend	108422	1:100
	MouseMac-1	M1/70	AF700	Biolegend	101222	1:100
	Mouse CD3	17A2	AF700	Biolegend	100216	1:100
	Mouse B220	RA3-6B22	AF700	Biolegend	103232	1:100
	Mouse Ter119	TER119	AF700	Biolegend	116220	1:100
	Mouse c-Kit	2B8	PE	Biolegend	105808	1:50
	Mouse c-Kit	2B8	APC-Cy7	Biolegend	105826	1:50
	Mouse Sca-1	D7	BV421	BD Bioscience	562729	1:50
	Mouse Sca-1	D7	PerCP/Cy5.5	Biolegend	122524	1:50
	Mouse CD34	RAM34	FITC	eBioscience	11034182	1:50
	Mouse CD34	MEC14.7	PE/Cy5.5	Biolegend	119312	1:50
	Mouse CD16/CD32	93	PE/Cy7	eBioscience	25016182	1:50
	Mouse Ki-67	16A8	APC	Biolegend	652406	1:50

Supplementary Table S2. Antibodies used for immunoblot analysis and flow cytometry

IB, immunoblot analysis; FC, flow cytometry. Gr-1, Mac-1, CD3, B220, and Ter119 antibodies were combined to define Lin⁻ cells.

Supplementary Table S3. Genes included in the 4-GES and in 3 published gene expression

signatures

4-GES	L-24	M-7	W-3
IL2RA	ALS2CR8	CD34	CAP1
NPDC1	ANGEL1	F2RL1	CXCR6
PHGDH	ARL6IP5	FAM92A1	FAM124B
SOCS2	BSPRY	MIR155HG	
	BTBD3	RHOC	
	CIRL	SCRN1	
	CPTIA	VWA8	
	DAPK1		
	ETFB		
	FGFR1		
	HEATR6		
	LAPTM4B		
	MAP7		
	NDFIP1		
	PBX3		
	PLA2G4A		
	PLOD3		
	PTP4A3		
	SLC25A12		
	SLC2A5		
	TMEM159		
	TRIM44		
	TRPS1		
	VAV3		

L-24, 24-gene expression signature by Li et al. ²; M-7, 7-gene expression signature

by Marcucci et al.³; W-3, 3-gene expression signature by Wilop et al.⁴

Supplementary Table S4. Univariable Cox regression analysis for overall survival of AML patients with respect to

	4-GES		L-24		M-7		W-3	
Data set	HR	р	HR	р	HR	р	HR	р
GSE12417, cohort 1	4.09	1.3*10 ⁻⁰⁸	2.19	0.00012	na	na	1.47	0.03
GSE12417, cohort 2	4.93	0.027	1.63	0.097	2.68	0.001	1.97	0.016
GSE37642	2.62	1.2*10 ⁻¹³	1.59	0.00011	na	na	1.15	0.171
GSE6891, cohort1	2.34	4.5*10-07	1.71	0.001	1.95	6.3*10 ⁻⁰⁵	1.34	0.082
GSE6891, cohort2	2.48	2.4*10-06	1.69	0.007	1.63	0.011	1.26	0.249
GSE71014	3.28	0.002	1.74	0.102	2.7	0.005	1.37	0.418
TCGA_LAML	1.91	0.002	1.78	0.006	1.16	0.471	2.19	0.01

the 4-GES and 3 published gene expression signatures

L-24, 24-gene expression signature by Li et al.²; M-7, 7-gene expression signature by Marcucci et al.³; W-3, 3-gene

expression signature by Wilop et al.⁴; HR, hazard ratio; na, not applicable (2 signature genes not represented on U133A

arrays). Significant p-values and corresponding HRs are indicated in bold.

Addendum to main Figure 5B: full length blot image

Addendum to supplementary Figures S8A and S8C: full length blot images

Supplementary References

- Altman, D. G., Lausen, B., Sauerbrei, W. & Schumacher, M. Dangers of using "optimal" cutpoints in the evaluation of prognostic factors. *J Natl Cancer Inst* 86, 829-835 (1994).
- Li, Z. *et al.* Identification of a 24-gene prognostic signature that improves the European LeukemiaNet risk classification of acute myeloid leukemia: an international collaborative study. *J Clin Oncol* 31, 1172-1181, doi:10.1200/JCO.2012.44.3184 (2013).
- Marcucci, G. *et al.* Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. *J Clin Oncol* 32, 548-556, doi:10.1200/JCO.2013.50.6337 (2014).
- Wilop, S. *et al.* A three-gene expression-based risk score can refine the European LeukemiaNet AML classification. *J Hematol Oncol* 9, 78, doi:10.1186/s13045-016-0308-8 (2016).