APPENDIX 3 Table A.3.1. Baseline Characteristics of Eligible Studies | Study
Identification | Population
Characteristics | Study
Design | Exposure | Outcome | Mean Age at
Initiation of
Cannabis Use
(Years) | Mean
Length of
Follow-Up | Covariates | Results | |--------------------------|---|-----------------|-----------------------------|---|---|--------------------------------|---|--| | Andreasson et al. (1987) | 45,570 Swedish conscripts | Cohort | Self-reported cannabis use | Schizophrenia at
15-year follow-
up | NA ² | 15 years | Socioeconomic status,
prior psychiatric
diagnosis, other substance | A dose-response relationship between cannabis use at age 18 and | | | Sweden | | | 1 | | | abuse, father's alcohol | greater future risk for | | Mean age: | % Male: 100 | | | | | | abuse, parental divorce,
disturbed conditions of
upbringing, police contact | developing schizophrenia at follow up; | | | Mean age: NR ¹ (Age range: 18 to 20) | | | | | | | Higher relative risk (RR) for schizophrenia among high consumers of cannabis (> 50 times) compared to non-users ($RR = 6.0$; 95% $CI = [4.0, 8.9]$) | | Arseneault, | 759 | Cohort | Drug use at | Psychiatric | NA | Follow-up at | Psychotic symptoms at | All participants were male
Cannabis users by age 15 | | (2002) | % Male: NR | Conort | ages 15 and 18 | symptoms
(Symptoms of | NA | age 26 | age 11, use of other drugs
during adolescence | and by age 18 had more
schizophrenia symptoms | | | Mean Age: NR | | Controls vs. Cannabis users | schizophrenia,
depression, | | | - | than controls at age 26, which remained significant | | | New Zealand | | by age 15 and age 18 | Diagnosis of | | | | after controlling for | | | Recruitment as part of the | | uge 10 | schizophreniform disorders, | | | | psychotic symptoms at age 11, | | | Dunedin
Multidisciplinary | | | depression) | | | | Cannabis use by age 15 did not predict depressive | ¹ Not reported ² Not available | | Health and Development | | | | | | | outcomes at age 26 No sex differences reported | |--------------------------|---|------------------|---|---|---|---|---|--| | Bechtold et al. (2015) | Study 506 boys in seventh grade (249 included in follow-up) USA % Male: 100 Mean Age at start: 14 Data taken from the oldest cohort of the Pittsburgh Youth Study | Cohort | Different
developmental
patterns of
cannabis use
from early-
adolescence to
young
adulthood
(mid-20s) | Psychosis
(among other
physical and
mental health
outcomes) | NA | From age 15 to age 26 (Every 6 months for 2.5 years, then annually for an additional 10 assessments Final assessment at age 36) | Socioeconomic status, co-
occurring use of other
substances, prior
physical/mental health,
access to medical care | The various cannabis trajectory groups were not significantly different from one another in terms of physical and mental health outcomes in the mid-30s All participants were male, thus sex differences not investigated | | Cloak et al. (2015). | 122 participants (80 cannabis users and 42 controls) between the ages of 13 to 23 years recruited from a community in Hawaii Controls – used cannabis less than 5 times | Case-
control | Cannabis use
vs non-use
measured
through self-
report | Psychiatric
symptoms
measured
through
Symptoms
Checklist-90R
and Brief
Psychiatric
Rating Scale | Controls: 18.5
(SD = 0.8)
Light cannabis
users: 15.7
(SD = 0.4)
Heavy
cannabis
users: 13.9
(SD = 0.4) | NA | Number of tobacco
cigarettes smoked in
lifetime, alcohol use | Younger age at initiation of cannabis use was associated with more psychiatric symptoms: Paranoid ideation ($r = -0.24 p = .031$) | | Degenhardt et al. (2012) | 1756 adolescents followed to | Cohort | Cannabis use
and
dependence | Major depressive
episode (MDE)
and anxiety | NA | 15-year with
9 waves
(adolescence
to age 29) | Sex, neither parent having completed secondary | Daily cannabis use associated with anxiety disorder at 29 years [Adjusted <i>OR</i> = 2.5, 95% | | | adulthood (n = 1388 at wave 9) Australia % Male: 47 Mean age: 14.9 (at wave 1) Secondary school recruitment | | | disorder (AD) at
age 29 | | | education (yes/no),
school location at study
inception
(non-
metropolitan/metropolitan
location), parental
divorce/separation by
wave 6 (yes/no) | CI < 1.2–5.2], as was cannabis dependence (adjusted OR = 2.2, 95% CI = [1.1–4.4]) Among weekly adolescent cannabis users, those who continued to use cannabis use daily at 29 years remained at significantly increased odds of anxiety disorder (adjusted OR 3.2, 95% CI: [1.1–9.2]) | |------------------------|---|------------------|--------------------------|----------------------------------|-------------------------------------|----|---|--| | | | | | | | | | No evidence of effect modification by sex | | de Graaf et al. (2010) | 85,088 subjects from 17 countries | Case-
control | Early onset cannabis use | Later onset (≥ 17 years) risk of | NA
(Early onset | NA | Sex, age, tobacco use, other mental health | The association between early onset cannabis use | | | % Male: 32 | | (age < 17 years) | depression spell | cannabis use:
age < 17
years) | | problems | and later risk of depression
spell was modest after
controlling for sex and age | | | Mean age: NR Population-based World Health Organization | | | | , 344.57 | | | (Risk ratio $(RR) = 1.5, 95\%$
CI = [1.4, 1.7]) | | | World Mental
Health Survey
Initiative (2001-
2005) | | | | | | | The association was reduced to non-significance after adjustment for childhood conduct problems | | | | | | | | | | The nature of the association was not consistent between countries | | | | | | | | | | No difference in association according to sex | |---------------------------|---|-----------|----------------------------------|--|---|----|-------------------|---| | Di Forti et al.
(2014) | 410 first episode psychosis patients | Cohort | Patterns of cannabis use | Age of Onset of
Psychosis (AOP) | 16.04 (<i>SD</i> = 4.3) | NA | Ethnicity, gender | The patients who started cannabis use at age 15 or | | | UK | | | | | | | younger had an earlier onset of psychosis (Mean | | | % Male: 66 | | | | | | | years = 27.0 , $SD = 6.2$,
Median Years = 26.9) than | | | Mean age: NR (Age range: 18-65) | | | | | | | those who had started after
15 years of age (mean | | | Recruitment as part of the Genetics and Psychosis (GAP) | | | | | | | years =29.1, <i>SD</i> = 8.5,
median years = 27.8; <i>HR</i> =
1.40, 95% <i>CI</i> = [1.06,
1.84]) | | | Study | | | | | | | Within each gender,
cannabis use was
associated with earlier
onset of psychosis | | Estrada et al. | 157 Caucasian | Cross- | Cannabis use | Age at onset of | Schizophrenia- | NA | NA | age at first cannabis use | | 2011) | psychiatric
inpatients | sectional | vs non-use
measured | admission for psychosis | spectrum
group: 14.6 | | | correlates with age at onset in both schizophrenia- | | | Classified into 2 groups: | | through a
semi-
structured | measured
through
interviews with | years (SD = 1.61) | | | spectrum and other psychiatric disorder groups | | | 80 with
schizophrenia-
spectrum
disorders | | interview | patients,
information
provided by
relatives, and
review of | Non-psychotic
disorders
group: 13.8
years (SD =
1.44) | | | No gender differences were reported. | | | 77 with non-
psychotic
disorders | | | medical records | | | | | | | Mean age = 17.01
SD = 3.6 | | | | | | | | |----------------------------|--|---------------------|---|---|----|--------|--|---| | Faiman &
Anthony (2012) | 173,775 community- dwelling adult participants USA % Male: NR Mean age: NR Data from the National Surveys on Drug Use and Health (NSDUH) (2005-2009) | Cross-
sectional | Early onset cannabis use (≤ 18) | Incident
depression spell
during adulthood | NA | NA | Sex, age, race/ ethnicity, years of cannabis involvement, tobacco cigarette onset, alcohol onset | Both early-onset (≤ 18 years) and adult-onset (> 18 years) cannabis smokers had a modest excess odd of a depression spell compared to never cannabis smokers, even with covariate adjustment ($OR = 1.7$ and 1.8 , respectively; both $p < .001$) Estimates for early- and adult-onset cannabis smokers did not statistically differ from one another | | Fergusson et al. (1996) | 927 children recruited as part of Christchurch Health and Developmental Study, New Zealand, % Male: NR Mean age: NR (Age range: 14- 15) | Cohort | Cannabis users
(Identified
from self-
report or
parental
reports) vs.
non-users | Depression and
anxiety (Self-
reports using the
Diagnostic
Interview
Schedule for
Children, DISC) | NA | 1 year | Family and social background (Family social position, family functioning, family history of alcohol or drug abuse), individual characteristics (childhood behavioural problems and cognitive abilities, commitment to education at age 15, peer affiliation at age 15, adjustment at age 15) | After adjustment for confounders including family disadvantages, early adjustment problems, substance using and delinquent peers, no more significant differences in risk between the cannabis users and non-users: (Depression: $OR = 1.4$, 95% $CI = [0.7, 2.7]$; Anxiety: $OR = 1.2$, 95% $CI = [0.5, 2.8]$) No sex differences reported | | | Study-based recruitment | | | | | | | | |--|--|---------------------|--|---|-----------------------|----|--|--| | Fergusson et al. (2003) | 1025 adolescents
and young adults
% Male: NR
Mean Age: NR
New Zealand
Data taken from
longitudinal study
of Christchurch
Health and
Development
Study (CHDS) | Cohort | Cannabis
dependence at
ages 18 and 21 | Rates of
psychotic
symptoms | NA | NA | Pre-existing psychotic symptoms, substance use, anxiety and major depression in the preceding 12 months, deviant peers, adverse life events, age of leaving the family home sociodemographic factors, family functioning, parental adjustment, individual characteristics, prior mental health, adjustment measures, | Following adjustment for confounding factors, those with cannabis dependence still had an increased rate of psychotic symptoms (rate ratio: 1.8; 95% CI: [1.2-2.6]; <i>p</i> < .005) | | Galvez-
Buccollini et al.
(2012) | 57 people aged
18 to 39 years
with non-
affective
psychosis
USA
% Male: 82.5
Mean age: 25.2 | Cross-
sectional | History of cannabis use (Heavy cannabis use was defined as a history of using cannabis 50 or more times in one year) | Age at onset of psychosis (the age when the patient first experienced delusions, hallucinations, disorganized speech, disorganized or catatonic behavior) | 15.4 (<i>SD</i> = 3) | NA | Age, sex, lifetime diagnosis of alcohol abuse or dependence, family history of schizophrenia in a first degree relative | Found a significant association between age at initiation of cannabis use and age at onset of psychosis ($\beta = 0.4$, 95% $CI = [0.1, 0.7]$, $p = .004$) as well as age at first hospitalization following psychosis onset ($\beta = 0.4$, 95% $CI = [0.1, 0.8]$, $p = .008$) after adjustment for confounders | | Green & Ritter (2000) | 1941 young men USA % Male: 100 Mean age: NR Data from the 1985 wave of the Young Men and Drugs Survey (a nationally representative sample of men from the 1944- 1954 birth cohort) | Cross-
sectional | Age of cannabis initiation (Obtained retrospectively, age ≤ 16 as early users), Frequency of current cannabis use | Depressive
symptomatology | 21 (and 7
months)15.4
(SD = 3) | NA | Educational attainment, employment status, marital status, frequency of cannabis use, number of other drugs in the last year, frequency of use of other drugs including tobacco and alcohol | Early cannabis initiation (< 16 years) was weakly associated with higher depression in adulthood and this relationship was mediated by educational attainment, employment status, marital status and other drug use mainly alcohol and tobacco use All participants were male | |---------------------------|--|---------------------|---|--|--------------------------------------|------------------------|--|--| | Hayatbakhsh et al. (2007) | Data used from Mater University Study of Pregnancy participants followed from birth to age 21 | Cross-
sectional | Age at initiation of cannabis use and frequency of cannabis use measured using self-report | Anxiety and depression at age 21 measured using the Young Adult Self-Report version of the Child Behavior Checklist Anxiety and depression symptoms were measured using the Youth Self-Report | 15.9 years (SD = 1.9 years) | 21 years | Gender, age, mother's age and education, maternal marital status and quality, family income, maternal and adolescent's mental health, maternal substance abuse, adolescent tobacco and alcohol use | Early age of cannabis initiation and frequent cannabis use during adolescence was associated with symptoms of anxiety and depression at age 21 $OR = 3.4$, $CI = [1.9, 6.1]$ No sex differences reported | | Henquet et al.
(2004) | 2437 young
people 14 to 24
years of age | Cohort | Cannabis use,
and
predisposition | Psychotic
symptoms at
follow-up | NA | 4 years after baseline | Age, sex, socioeconomic status, urbanicity, childhood trauma, predisposition for psychosis at | After adjustment for the potential confounders, cannabis | | | Germany % Male: 51.3 % Mean age: 18.3 Population-based sample | | for psychosis
at baseline | | | | baseline, use of other
drugs, tobacco, and
alcohol | use at baseline increased the cumulative incidence of psychotic symptoms at follow up (Adjusted <i>OR</i> = 1.67, 95% <i>CI</i> = 1.13 to 2.46) No sex differences reported | |-------------------------------|--|---------------------|------------------------------|---|--|----------------------|---|--| | Konings et al. (2008) | 431 participants aged 12 to 23 Trinidad | Cross-
sectional | Early cannabis use | Psychotic symptoms | 13.3 (<i>SD</i> = 2.3, <i>range</i> = 7-19) | NA | Age, School type,
ethnicity, sex, current use
of cannabis, use of other | Exposure before
but not after the age of 14
years predicted psychotic
symptoms | | | % Male: 45 | | | | | | drugs | (Respectively <i>b</i> : 0.71, 95% | | | Mean age: 16 Population-based recruitment | | | | | | | <i>CI</i> = [0.22, 1.19], <i>p</i> = 0.004 and <i>b</i> : 0.11, 95% | | | | | | | | | | CI = [0.57, 0.36], p = 0.66) | | | | | | | | | | No sex differences reported | | Manrique-Garcia et al. (2012) | 45,087 Swedish conscripts with data on cannabis usage at ages 18-20 Sweden % Male: 100 Mean age: NR (age range: 18-20) | Cohort | Cannabis use | Depression and other affective outcomes | NA | 35-year
follow-up | Diagnosis of personality
disorders, IQ score,
disturbed childhood
behavior, social
adjustment, risky use of
alcohol, smoking, early
adulthood socioeconomic
position, use of other
drugs, being brought up
in a city | Only subjects with the highest level of cannabis use had an increased crude hazard ratio for depression (<i>HR</i> = 1.5, 95% <i>CI</i> = [1.0, 2.2]), the association disappeared after adjustment for confounders No evidence for an increased risk of depression among cannabis users | | | Data taken from
1969-1970 Survey | | | | | | | All participants were male | | | of Swedish
Conscripts) | | | | | | | | |-----------------------|--|------------------|---------------|----------------------------|----|----|---|---| | McGrath et al. (2010) | 3801 young adults (228 sibling pairs) | Case-
Control | Cannabis use | Psychosis related outcomes | NA | NA | Sex, age, parental mental illness, hallucinations | Duration since first cannabis use was | | | Australia | | | | | | at age 14 | associated with psychosis-
related outcomes | | | % Male: 47.5 | | | | | | | For duration since first | | | % Male: 60 male sibling pairs | | | | | | | cannabis use of 6 or more years, there was a significantly | | | Mean age: 20.1 | | | | | | | increased risk of (1) non-affective psychoses | | | Sibling pair
analysis nested
within a
prospective birth
cohort | | | | | | | (a) Holl-affective psychoses (a) $CR = 2.2$; 95% $CI = [1.1, 4.5]$), (2) being in the highest quartile of Peters et al Delusions Inventory score (Adjusted $OR = 4.2$; 95% $CI = [4.2, 5.8]$), (3) hallucinations (Adjusted OR : 2.8; 95% $CI = [1.9, 4.1]$) | | Medina et al. | 16 cannabis user | Cross- | Cannabis use, | Dannasian | NA | NA | Alcohol use, other drug | No sex differences reported Cannabis users | | (2007) | aged 16 to 18
years | sectional | Cannabis use, | Depression | NA | NA | use | demonstrated more depressive symptoms than controls | | | USA | | | | | | | | | | % male: 72 | | | | | | | Cannabis use and smaller white matter volume | | | Mean age: 18 | | | | | | | each predicted higher levels of depressive | | | Recruitment from schools through ads | | | | | | | symptoms on the Hamilton
Depression
Rating Scale | | | | | | | | | | Cannabis use interacted with white matter volume in predicting depression scores on the Beck Depression Inventory No sex differences reported | |----------------------|--|--------|-----------------------------|-------------------------|----|---------------------------|---|---| | Patton et al. (2002) | 1601 students aged
14-15 | Cohort | Cannabis use in adolescence | Rates of depression and | NA | 6 years (7 waves) | Concurrent use of other substances including | Daily use in women associated with an over fivefold increase in | | | Australia | | | anxiety | | | alcohol, tobacco, and other illicit substances | the odds of reporting a state | | | % Male: 45.6 | | | | | | | of depression and anxiety after adjustment for | | | Mean age: 14.5 (at wave 1) | | | | | | | current use of other substances ($OR = 5.6$, 95% $CI = [2.6,12]$) | | | A statewide secondary school recruitment | | | | | | | Weekly or more frequent cannabis use in teenagers predicted an approximately twofold increase in risk for later depression and anxiety (<i>OR</i> = 1.9, 95% <i>CI</i> = [1.1,3.3]) after adjustment for confounders | | | | | | | | | | Daily cannabis use was
associated with higher
prevalence of depression
and anxiety among females | | Pedersen, (2008) | 2033 young participants | Cohort | Cannabis use | Later depression | NA | 13-year | Socioeconomic status, parental relationships and | Early adolescence use (< 16 years) had no | | | Norway | | | | | (From early teens to late | family characteristics, | associations with later | | | % Male: NR | | | | | twenties) | pubertal development, education, school | depression | | | Mean age: NR | | | | | | dropout, source of income, conduct problems, alcohol problems | No sex differences reported | | | Population-
based, Data from
the Young in
Norway
Longitudinal
Study | | | | | | | | |------------------------|--|---|--|--|------------|--|---|--| | Schubart et al. (2011) | 17698
adolescents and
young adults
% Male: 51 | Cross-
sectional | Age at initiation and amount of cannabis use | Subclinical psychosis symptoms, Top 10% scores | < 12 years | NA | NA | Cannabis use at age 12 or younger strongly associated with a top 10% score on psychotic experiences (<i>OR</i> 3.1, 95% | | | Mean Age: 21.6 | | | in three symptom dimensions of | | | | CI: [2.1–4.3]) | | | Mean Age: 21.6 Netherlands | self-reported
psychiatric
experiences | | | | For heavy users (>25 Euro/week) for negative Symptoms: (OR = 3.4 (95% CI: [2.9–4.1]), For psychotic experiences: (OR = 3.0 (95% CI: [2.4– 3.6]), For depressive symptoms: (OR = 2.8 (95% CI: [2.3–3.3]) No sex differences reported | | | | Zammit et al. (2002) | 50,053 Swedish conscripts | Cohort | Self-reported use of | Admissions to hospital for ICS- | NA | 26 years
(1970-96) | Personality traits related to social integration, | For subjects with sole cannabis use and no other | | | UK | | cannabis | 8/9
schizophrenia | | | psychiatric diagnosis at conscription, disturbed | drugs, this dose–response relationship | | | % Male: 100 | | | and other | | | behaviour in childhood, IQ, history of alcohol | was significant, and the overall adjusted <i>OR</i> was | | | Mean age: NR (Age range: 18- to 20) | | | psychoses | | | abuse, family history of
psychiatric illness, family
financial situation,
father's occupation, other
sociodemographic factors | 1.3 (95% $CI = [1.1-1.5], p$ < .015) For those who had used | | Record linkage | (brought up in a city,
paternal age), cigarette
smoking | cannabis more than 50 times, the adjusted <i>OR</i> rose to 6.7 (95% <i>CI</i> = 2.1–21.7) | |----------------|---|--| | | | All participants were male | Table A.3.2. The Newcastle-Ottawa Scale for Assessing Quality of Observational Studies³ Cross-Sectional Studies (Psychosis as Study Outcome) | Study
Identification | | Se | lection | | Comparability of subjects in different | Out | come | Total | Quality | | |--|---|----------------|---------------------|--|--|----------------|---------------------|---------|------------------|--| | Identification | Representati
veness of
the sample | Sample
size | Non-
respondents | Ascertainm ent of exposure (Risk Factor) | outcome groups | Assessm
ent | Statistical
Test | - Score | Characterization | | | Estrada et al. (2011) | * | - | - | ** | - | ** | * | 6 | Medium | | | Galvez-
Buccollini et
al. (2012) | * | - | - | * | ** | ** | * | 7 | Medium | | | Konings et al. (2008) | ** | - | - | * | * | * | * | 6 | Medium | | | Schubart et al. (2011) | ** | - | - | * | - | * | * | 5 | Medium | | ³ An asterisk (*) indicates the study has the listed characteristic. A dash (-) indicates the above category is not applicable to that study. Studies can receive a maximum of ten stars. Studies are characterized based on scores. Some categories can receive a maximum of two asterisk: Ascertainment of exposure, comparability, outcome assessment (in cross sectional designs); comparability (in case-control and cohort designs). ## Case-Control Studies (Psychosis as Study Outcome) | Study
Identification - | | Selection | G.1: | D 61 111 | Comparability of cases and | | Outcome Assessment Method of Non | | | Quality
Characterization | |---------------------------|--------------------------------|---------------------------------|-----------------------------|------------------------------|--|------------------------|---|--------------------------|---|-----------------------------| | | Case
Definition
Adequate | Representativeness of the cases | Selection
of
Controls | Definition
of
Controls | controls on
basis of
design/analysis | Assessment of exposure | Method of
ascertainment
for cases and
controls | Non-
response
rate | | | | McGrath et al. (2010) | * | * | * | * | ** | - | * | - | 7 | Medium | ## Cohort Studies (Psychosis as Study Outcome) | Study
Identification | | Selection | on | | Comparability of cohorts on the basis of | | Exposure | Total | Quality | | |-------------------------|--|---------------------------------------|----------------------------------|--|--|-----------------------------------|---|---------------------------|-----------|----------------------| | | Representative
of Exposed
Cohort | Selection of
Non-exposed
cohort | Ascertainmen
t of
Exposure | Outcome
Not
Present at
Baseline | design/analysis | Assessm
ent of
Outcom
es | Sufficient
Follow-
up
Duration | Adequate
Follow-
up | Scor
e | Characterizat
ion | | Bechtold et al. (2015) | * | * | - | * | ** | * | * | * | 8 | High | | Fergusson et al. (2003) | * | - | * | * | ** | * | - | - | 6 | Medium | | Henquet et al. (2004) | * | * | * | - | ** | * | * | * | 8 | High | | Zammit et al. (2002) | * | * | - | * | ** | * | * | * | 8 | High | |---------------------------|---|---|---|---|----|---|---|---|---|--------| | Andreasson et al. (1987) | * | * | - | * | ** | * | * | - | 7 | Medium | | Di Forti et al.
(2014) | * | * | * | * | * | * | * | * | 8 | High | | Areseneault et al. (2002) | * | * | - | * | ** | * | * | - | 7 | Medium | ## Cross-Sectional Studies (Depression and/or Anxiety as Study Outcome) | Study | | Se | election | | Comparability of | Out | come | Total | Quality | | |-------------------------------|---|----------------|-------------------------|---|--------------------------------------|---------|---------------------|---------|------------------|--| | Identification | Representati
veness of
the sample | Sample
size | Non-
responde
nts | Ascertainment
of exposure
(Risk Factor) | subjects in different outcome groups | Assessm | Statistical
Test | - Score | Characterization | | | Faiman &
Anthony
(2012) | * | * | * | * | ** | * | * | 8 | High | | | Green & Ritter (2000) | * | - | - | * | ** | * | * | 6 | Medium | | | Medina et al. (2007) | - | - | - | * | * | ** | * | 5 | Medium | | Case-Control Studies (Depression and/or Anxiety as Study Outcome) | Study
Identification | | Selection | | | Comparability of | | Outcome | | Total | Quality | |-------------------------|--------------------------|---------------------------------|-----------------------------|------------------------|-------------------|------------------------|---------|------------------------------|---------|----------------------| | | Case Definition Adequate | Representativeness of the cases | Selection
of
Controls | Definition of Controls | controls on basis | Assessment of exposure | | Non-
respo
nse
rate | - Score | Characterizatio
n | | Cloak et al. (2015) | - | * | * | * | * | - | * | - | 5 | Medium | | de Graaf et al. (2010) | - | * | * | * | ** | - | * | - | 6 | Medium | Cohort Studies (Depression and/or Anxiety as Study Outcome) | Study
Identification | | Selecti | ion | Comparability of cohorts on | n | | | | Quality | | |---------------------------|--|---------------------------------------|---------------------------|--|---------------------------------|------------------------------|-------------------------------------|-----------------------|---------|----------------------| | | Representative
of Exposed
Cohort | Selection of
Non-exposed
cohort | Ascertainment of Exposure | Outcome
Not
Present at
Baseline | the basis of
design/analysis | Assessment
of
Outcomes | Sufficient
Follow-up
Duration | Adequate
Follow-up | Score | Characterizati
on | | Degenhardt et al. (2012) | * | * | - | - | * | * | * | * | 6 | Medium | | Fergusson et al. (1996) | * | * | * | - | * | - | - | * | 5 | Medium | | Hayatbakhsh et al. (2008) | * | * | - | * | ** | - | - | * | 6 | Medium | | Manrique-Garcia et al. (2012) | * | * | - | * | ** | * | * | * | 8 | High | |-------------------------------|---|---|---|---|----|---|---|---|---|--------| | Patton et al. (2002) | * | * | - | - | * | * | * | * | 6 | Medium | | Pedersen, (2008) | * | * | * | - | * | * | * | * | 7 | Medium |