Supporting Information

Content	Page number
1. General	S2
2. Synthesis of compounds 1	S2
3. Synthesis of compounds 2	S8
4. General procedure C: cross-coupling between potassium alkenyltrifluoroborate and propargylic alcohols	S11
5. Synthesis of ((<i>R</i>)- 3h)	S20
6. Diels-Alder reaction of compound 3k with <i>N</i> -phenylmaleimide	S21
7. Selectively epoxidation of double bond in compound 3u	S22
8. Computational details	S23
9. References	S107
10. Chiral HPLC analysis spectra	S108
11. ¹ H & ¹³ C-NMR spectra	S110

1. General.

and tetrahydrofuran (HPLC grade) was distilled Toluene (ACS grade) over sodium/benzophenone under N_2 atmosphere. Dichloromethane (HPLC grade) and 1,2dichloroethane (HPLC grade) were distilled over calcium hydride. Other commercially available solvents (ACS grade) and reagents were used without further purification. Reactions were monitored by thin layer chromatography (TLC) using Silicycle precoated silica gel plates. Flash column chromatography was performed over Silicycle silica gel (230-400 mesh). ¹H NMR and ¹³C NMR spectra were recorded on Varian 400 MHz, 500 MHz, or 600 MHz spectrometers using residue solvent peaks as internal standards (CHCl₃, ¹H: 7.26 ppm; ¹³C: 77.00 ppm. CH₂Cl₂, ¹H: 5.32 ppm; ¹³C: 53.84 ppm. Acetone, ¹H: 2.05; ¹³C: 206.68; DMSO, ¹H: 2.50; ¹³C: 39.51). ¹⁹F NMR spectra were recorded on Varian 400 MHz calibrated by trifluoroacetic acid peak (CF₃COOH, ¹⁹F: -76.55 ppm). Infrared spectra were recorded with a Perkin Elmer FT-IR spectrum 2000 spectrometer and are reported in reciprocal centimeter (cm⁻¹). Mass spectra were recorded with HP 5970 GC/MS equipped with J&W DB 5 ms GC column (0.25 µm ID and 0.25 µm film thickness) using electron ionization and Xevo G2-XS QTof Quadrupole Time-of-Flight Mass Spectrometry using electron spray ionization. Chiral columns (IB or IC) were used for monitoring the chiral purities of **3h** or (*R*)-**3h** and their starting materials by using hexanes/IPA = 97 to 3 (v/v) as eluent at 1.0 mL/min. No effort was taken to improve the yields of the substrates.

2. Synthesis of compounds 1:

General procedure A: step 1): In a sealed and flame-dried schlenk flask, the alkyne (1.0 equiv.) was heated with catecholborane (1.8 equiv. 1.0 M in THF) at 70 °C in THF overnight. Upon completion, the solvent was removed and the boron ester was obtained and directly used in the next step. Step 2): the boron ester was dissolved in Et_2O , and KHF_2 (3.5 equiv.) dissolved in H_2O

(4.5 M) was added dropwise at 0 °C. The reaction was stirred at 0 °C for 3 hrs, and then the precipitation was filtered and washed with Et₂O twice. The solid was dissolved in hot acetone, and was precipitated after adding Et₂O slowly. The precipitation was filtered, washed with Et₂O, and dried under vacuum to get the target substrates as white solids.

Potassium (*E*)-trifluoro(styryl)borate ((*E*)-1a):

 $\vec{\mathsf{BF}}_{3}\vec{\mathsf{K}}$ Compound (*E*)-**1a** was obtained according to the general procedure A (step 2) by using the commercially available (*E*)-2-phenylvinylboronic acid as starting material, yield 80%. Its spectral data was consistent with those described in the corresponding reference^[1].

Potassium (*E*)-(4-chlorostyryl)trifluoroborate (**1b**):

 $\vec{F}_{3}\vec{K}$ The starting material 1-chloro-4-ethynylbenzene was synthesized by following the known procedure^[2], and then compound **1b** was obtained according to the general procedure A, yield 53%. Its spectral data was consistent with those described in the corresponding reference^[3].

Potassium (*E*)-(4-bromostyryl)trifluoroborate (**1c**):

∕_BF₃K

Br The starting material 1-bromo-4-ethynylbenzene was synthesized by following the known procedure^[4], and then compound **1c** was obtained according to the general procedure A, yield 51%. Its spectral data was consistent with those described in the corresponding reference^[5].

Potassium (*E*)-trifluoro(4-methoxystyryl)borate (**1d**):

BF₃K⁺

MeO The starting material 1-ethynyl-4-methoxybenzene was synthesized by following the known procedure^[4], and then compound **1d** was obtained according to the general procedure A, yield 64%. Its spectral data was consistent with those described in the corresponding reference^[6].

Potassium (*E*)-trifluoro(3-(methoxycarbonyl)styryl)borate (**1e**):

The starting material methyl 3-ethynylbenzoate was synthesized by following the known procedure^[7], and then compound **1e** was obtained according to the general procedure A, yield 64%. ¹H NMR (400 MHz, (CD₃)₂CO) δ 7.99 (s, 1H), 7.74 (d, *J* = 6.0 Hz, 1H), 7.58 (s, 1H), 7.37 (s, 1H), 6.69 (d, *J* = 18.2 Hz, 1H), 6.45 (d, *J* = 18.4 Hz, 1H), 3.87 (s, 3H). ¹³C NMR (126 MHz, (CD₃)₂CO) δ 167.90, 142.54, 134.24 (q, *J* = 4.4 Hz, 1H), 131.48, 131.29, 129.57, 127.88, 127.63, 52.56. ¹⁹F NMR (376 MHz, (CD₃)₂CO) δ -139.95 (d, *J* = 49.2 Hz). **HRMS(ESI):** m/z calcd for C₁₀H₉BF₃O₂ [M-K]⁻: 229.0653, found: 229.0647. IR (neat): 3012, 2964, 1709, 1633, 1599, 1457, 1924, 1098, 991 cm⁻¹.

Potassium (*E*)-trifluoro(2-methylstyryl)borate (**1f**):

₿ĒF₃K⁺

The starting material 1-ethynyl-2-methylbenzene was synthesized by following the known procedure^[8], and then compound **1f** was obtained according to the general procedure A, yield 47%. Its spectral data was consistent with those described in the corresponding reference^[9].

Potassium (*E*)-trifluoro(2-(thiophen-3-yl)vinyl)borate (**1g**):

 F_3K The starting material 3-ethynylthiophene was synthesized by following the known procedure^[10], and then compound **1g** was obtained according to the general procedure A, yield 60%. ¹H NMR (400 MHz, (CD₃)₂CO) δ 7.28 (dd, *J* = 4.8, 3.0 Hz, 1H), 7.22 (d, *J* = 4.4 Hz, 1H), 7.02 (d, *J* = 2.3 Hz, 1H), 6.66 (d, *J* = 18.2 Hz, 1H), 6.10 (dq, *J* = 18.2, 3.7 Hz, 1H). ¹³C NMR (101 MHz, (CD₃)₂CO) δ 145.87, 129.50 (q, *J* = 4.7 Hz), 126.54, 126.11, 119.96. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -136.04 (s). **HRMS(ESI):** m/z calcd for C₆H₅BF₃S [M-K]⁻: 117.0163, found: 117.0162. IR (neat): 3102, 3086, 2990, 2964, 1705, 1628, 1466, 1254, 1231, 1103, 973, 922, 839, 774 cm⁻¹.

Synthesis of potassium (*E*)-trifluoro(3-methylbuta-1,3-dien-1-yl)borate (**1h**)

The (*E*)-4,4,5,5-tetramethyl-2-(3-methylbuta-1,3-dien-1-yl)-1,3,2-dioxaborolane was synthesized by following the previous known study^[11]. and then compound **1h** was obtained according to the general procedure A, step 2, yield 56% . ¹H NMR (400 MHz, (CD₃)₂CO) δ 6.42 (d, *J* = 18.1 Hz, 1H), 5.67 (d, *J* = 18.1 Hz, 1H), 4.74 (s, 2H), 1.76 (s, 3H). ¹³C NMR (101 MHz, (CD₃)₂CO) δ 146.00, 138.31 (q, *J* = 4.6 Hz), 112.66, 19.05. ¹⁹F NMR (376 MHz, (CD₃)₂CO) δ -139.46 (q, *J* = 45.8 Hz). **HRMS(ESI):** m/z calcd for C₅H₇BF₃ [M-K]⁻: 135.0598, found: 135.0602. IR (neat): 3081, 2988, 2947, 1709, 1628, 1599, 1434, 1368, 1236, 1105, 990, 962 cm⁻¹.

Synthesis of potassium potassium cyclo-en-1-yltrifluoroborate (1i-k)

$$HF_2 \xrightarrow{B(pin)} HF_2 \xrightarrow{BF_3K} 1i, n = 1$$

Potassium cyclopent-1-en-1-yltrifluoroborate (1i):

 $ightarrow BF_{3}K^{+}$ Compound **1i** was obtained according to the general procedure A (step 2) by using the commercially available 2-(cyclopent-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane as the starting material, yield 72%. ¹H NMR (500 MHz, DMSO-*d*₆) δ 5.31 (s, 1H), 2.12 (t, *J* = 7.3 Hz, 4H), 1.67 – 1.53 (m, 2H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 126.41 – 126.30 (m), 35.53, 33.52, 23.77. ¹⁹F NMR (376 MHz, (CD₃)₂CO) δ -140.29 (q, *J* = 52.0 Hz). **HRMS(ESI):** m/z calcd for C₅H₇BF₃ [M-K]⁻: 135.0598, found: 135.0602. IR (neat): 3040, 2949, 2843, 1644, 1621, 1423, 1366, 1231, 983, 917, 842 cm⁻¹.

Potassium cyclohex-1-en-1-yltrifluoroborate (1j):

BF₃K

The 2-(cyclohex-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane was synthesized by following the known procedure^[12], and then compound **1j** was obtained according to the procedure A (step 2), yield 42%. Its spectral data was consistent with those described in the corresponding reference^[13].

Potassium cyclohept-1-en-1-yltrifluoroborate (1k):

The 2-(cyclohept-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane was synthesized by following the known procedure^[12], and then compound **1k** was obtained according to the general procedure A (step 2), yield 42%. ¹H NMR (400 MHz, (CD₃)₂CO) δ 5.87 (t, *J* = 6.1 Hz, 1H), 2.13 – 2.09 (m, 2H), 2.05 – 2.00 (m, 2H), 1.72 – 1.65 (m, 2H), 1.43 – 1.35 (m, 4H). ¹³C NMR (101 MHz, (CD₃)₂CO) 130.35, 34.82, 31.57, 31.55, 30.79, 29.10. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -141.17 (s). **HRMS(ESI):** m/z calcd for C₇H₁₁BF₃ [M-K]⁻: 163.0911, found: 163.0919. IR (neat): 3010, 2908, 2941, 1640, 1604, 1447, 971, 955, 893, 855, 806 cm⁻¹. Potassium (*Z*)-dec-2-en-2-yltrifluoroborate (11):

 $B\bar{F}_3\bar{K}$ Compound **11** was obtained according to the general procedure A by using the commercially available 2-decyne as starting material, yield 75%. ¹H NMR (500 MHz, (CD₃)₂CO) δ 5.46 (s, 1H), 1.94 (d, *J* = 5.9 Hz, 2H), 1.50 (s, 3H), 1.30 (s, 10H), 0.88 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, (CD₃)₂CO) δ 128.52, 33.23, 31.54, 30.89, 30.67, 28.99, 23.88, 15.27, 14.88. ¹⁹F NMR (376 MHz, (CD₃)₂CO) δ -143.87 (d, *J* = 56.9 Hz). **HRMS(ESI):** m/z calcd for C₁₀H₁₉BF₃ [M-K]⁻: 207.1537, found: 207.1530. IR (neat): 2957, 2923, 2855, 1710, 1641, 1467, 1365, 1229, 948, 752 cm⁻¹.

Potassium (*E*)-trifluoro(pent-1-en-1-yl)borate (**1m**):

 $\overline{BF_3K}$ Compound **1m** was synthesized according to the general procedure A (step 2) by using the commercially available (*E*)-penten-1-ylboronic acid as starting material, yield 45%. Its spectral data was consistent with those described in the corresponding reference^[6].

Potassium (*E*)-trifluoro(oct-1-en-1-yl)borate (**1n**):

 BF_3K Compound **1n** was obtained according to the general procedure A by using the commercially available 1-octyne as starting material, yield 65%. Its spectral data was consistent with those described in the corresponding reference^[13].

Potassium (*E*)-trifluoro(7-methoxy-7-oxohept-1-en-1-yl)borate (**1o**):

O Compound **10** was obtained according to the general procedure A by using the commercially available methyl 6-heptynoate, yield 41%. ¹H NMR (400 MHz, (CD₃)₂CO) δ 5.70 (dt, *J* = 17.0, 6.1 Hz, 1H), 5.38 (dd, *J* = 17.6, 3.7 Hz, 1H), 3.62 (s, 3H), 2.29 (t, *J* = 7.5 Hz,

2H), 1.97 (dd, J = 13.8, 7.2 Hz, 2H), 1.59 (dt, J = 15.3, 7.5 Hz, 2H), 1.36 (dq, J = 15.0, 7.6 Hz, 2H). ¹³C NMR (101 MHz, (CD₃)₂CO) δ 174.69, 135.95 (q, J = 4.8 Hz), 51.85, 36.53, 34.75, 30.18, 25.77. ¹⁹F NMR (376 MHz, (CD₃)₂CO) δ -138.98 (s). **HRMS(ESI):** m/z calcd for C₈H₁₃BF₃O₂ [M-K]⁻: 209.0966, found: 209.0971. IR (neat): 2990, 2949, 2856, 1745, 1644, 1467, 1230, 1166, 946, 924 cm⁻¹.

Potassium (*E*)-(2-cyclopropylvinyl)trifluoroborate (**1p**):

 $B\bar{F}_{3}K^{\dagger}$ Compound **1p** was obtained according to the general procedure A by using the commercially available ethynylcyclopropane, yield 69%. Its spectral data was consistent with those described in the corresponding reference^[14].

3. Synthesis of compounds 2.

TMS +
$$H$$
 R^1 H R^1 R^1

General procedure B: In a flame-dried Schlenk flask backfilled with N₂, trimethylsilylacetylene (1.1 equiv.) dissolved in THF was added and the mixture was cooled to -78 °C. *n*BuLi (1.2 equiv. 2.5 M in hexaness) was added dropwise and the reaction was stirred for 30 min. After aldehyde (1.0 equiv.) was added dropwise, the reaction was elevated to room temperature slowly and stirred for another 3 hrs. Upon completion, the reaction was quenched using saturated NH4Cl. The solvent was removed and the residue was extracted using EA, and washed with H₂O for three times. The EA layer was combined, dried, and concentrated. The residue was treated with K₂CO₃ (3.0 equiv.) in methanol overnight. After the reaction was completed, the solvent was removed and the residue was purified by silica gel chromatography (hexanes/EA = 20:1 to 5 :1) to afford the propargylic alcohols.

1-Cyclohexylprop-2-yn-1-ol (2a):

OH

OН

OH

Compound **2a** was obtained according to the general procedure B by using the commercially available cyclohexanescarbaldehyde and ethynyltrimethylsilane as starting materials. Colorless oil, yield 78%, $R_f = 0.80$ (hexanes/EA = 4:1). Its spectral data was consistent with those described in the corresponding reference^[15].

1-Phenylprop-2-yn-1-ol (2b):

Compound **2b** was obtained according to the general procedure B by using commercially available benzaldehyde and ethynyltrimethylsilane as starting materials. Slight yellow oil, yield 83%, $R_f = 0.2$ (hexanes/EA = 8:1). Its spectral data was consistent with those described in the corresponding reference^[16].

1-(Benzyloxy)but-3-yn-2-ol (2c):

The 2-(benzyloxy)acetaldehyde was obtained by following the known procedure^[17], and then compound **2c** was obtained according to the general procedure B. Slight yellow oil, yield 70%, $R_f = 0.5$ (hexanes/EA = 5:1). Its spectral data was consistent with those described in the corresponding reference.^[18]

6-((*tert*-Butyldimethylsilyl)oxy)hex-1-yn-3-ol (**2d**):

OTBS 4-((*tert*-Butyldimethylsilyl)oxy)butanal was obtained by following the known procedure^[19], and then compound **2d** was obtained according to the general procedure B. colorless oil, yield 72%. $R_f = 0.38$ (hexaness/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 4.39 (d, *J* = 3.7 Hz, 1H), 3.71 – 3.56 (m, 2H), 2.40 (d, *J* = 1.9 Hz, 1H), 1.83 – 1.61 (m, 4H), 0.87 (s, 9H), 0.04 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 84.95, 72.46, 63.04, 61.66, 34.99, 28.27, 25.83, 18.21, -5.46, -5.49. **HRMS(EI):** m/z calcd for C₈H₁₅O₂Si [M-*t*Bu]⁺: 171.0841, found: 171.0842. IR (neat): 3351, 3312, 2956, 2930, 2859, 2130, 1472, 1464, 1256, 1098, 836, 776 cm⁻¹.

2-(4-Hydroxyhex-5-yn-1-yl)isoindoline-1,3-dione (2e):

OH

The 4-(1,3-dioxoisoindolin-2-yl)butanal was obtained by following the known procedure^[20].

In a flame-dried Schlenk flask backfilled with N₂, ethynyl magnesium chloride (1.3 equiv., 0.6 M in THF/toluene) in THF was added and the flask was cooled to 0 °C, and then aldehyde (1.0 equiv.) dissolved in THF was added dropwise at 0 °C. The reaction was stirred at the same temperature for another 2 h. The reaction was quenched using saturated NH₄Cl and the solvent was removed. The residue was dissolved in DCM, washed with H₂O three times. The organic layer was dried and removed under the reduced pressure. The residue was purified by silica gel chromatography (hexanes/EA = 20:1 to 2:1) to afford the target compound as white solid with a yield of 57%. R_f = 0.38 (hexanes/EA = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.79 (m, 2H), 7.72 – 7.67 (m, 2H), 4.43 (s, 1H), 3.73 (t, *J* = 6.9 Hz, 2H), 2.53 (s, 1H), 2.44 (d, *J* = 1.9 Hz, 1H), 1.95 – 1.80 (m, 2H), 1.80 – 1.69 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 168.43, 133.91, 131.94, 123.19, 84.40, 73.18, 61.60, 37.46, 34.52, 24.27. **HRMS(ESI):** m/z calcd for C₁₄H₁₃NO₃Na [M+Na]⁺: 266.0788, found: 266.0797. IR (neat): 3360, 3257, 3031, 2956, 2935, 2864, 2112, 1767, 1704, 1612, 1469, 1435, 1402, 1046, 1028, 874, 721 cm⁻¹.

4. General procedure C: cross-coupling between potassium *E*-vinyltrifluoroborate salt and propargylic alcohols.

In a 10 mL vial, propargylic alcohols (0.3 mmol, 1.0 equiv.), potassium *E*-vinyltrifluoroborate salt (0.9 or 1.8 mmol, 3.0 or 6.0 equiv.), and gold catalyst (0.05 or 0.08 equiv.) were added successively. After the mixture was dissolved in DCM (1.5 mL) and H₂O (0.38 mL), AgNTf₂ (0.048 or 0.078 equiv.) was added and the reaction was stirred at room temperature for 24 h. The reaction was washed with 15% NaOH (2 mL) and H₂O (30 mL \times 2) respectively. The organic layer was combined, dried, and removed. The residue was purified with silica gel chromatography (hexaness/EA = 30:1 – 2:1) to afford the target compounds as colorless oils or white solids.

(*E*)-3-Methylene-1-phenylhept-1-en-4-ol (**3a**)

Following the general procedure C, the target compound **3a** was obtained as a colorless oil in 71% yield. $R_f = 0.43$ (hexanes/EA = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, *J* = 7.4 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.24 (t, *J* = 7.6 Hz, 1H), 6.78 (d, *J* = 16.5 Hz, 1H), 6.74 (d, *J* = 16.5 Hz, 1H), 5.29 (s, 1H), 5.28 (s, 1H), 4.53 (dt, *J* = 7.7, 3.9 Hz, 1H), 1.78 – 1.58 (m, 3H), 1.57 – 1.35 (m, 2H), 0.96 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.00, 137.17, 128.93, 128.62, 127.93, 127.64, 126.44, 114.08, 72.07, 38.63, 19.06, 14.00. **HRMS(EI):** m/z calcd for C₁₄H₁₈O [M]⁺: 202.1358, found: 202.1361. IR (neat): 3303, 3028, 2958, 2933, 2872, 1602, 1494, 1449, 1378, 1068, 959, 895, 754 cm⁻¹.

(E)-2-Methylene-4-phenylbut-3-en-1-ol (**3b**)

OH

Following the general procedure C, the target compound **3b** was obtained as a cololess oil in 81% yield. $R_f = 0.21$ (hexanes/EA = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, J = 7.4 Hz, 2H), 7.33 (t, J = 7.6 Hz, 2H), 7.25 (t, J = 7.6 Hz, 1H), 6.82 (d, J = 16.6 Hz, 1H), 6.67

(d, J = 16.6 Hz, 1H), 5.35 (s, 1H), 5.28 (s, 1H), 4.46 (d, J = 4.7 Hz, 2H), 1.53 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 145.04, 137.01, 128.83, 128.62, 128.14, 127.71, 126.45, 116.19, 63.23. **HRMS(EI):** m/z calcd for C₁₁H₁₂O [M]⁺: 160.0888, found: 160.0888. IR (neat): 3224, 3026, 2853, 1605, 1449, 1195, 1071, 964, 901, 753 cm⁻¹.

(E)-3-Methylene-5-phenylpent-4-en-2-ol (**3c**)

^{OH} Following the general procedure C, the target compound **3c** was obtained as a cololess oil in 75% yield. $R_f = 0.27$ (hexanes/EA = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, J = 7.4 Hz, 2H), 7.33 (t, J = 7.6 Hz, 2H), 7.24 (t, J = 7.4 Hz, 1H), 6.79 (d, J = 16.6 Hz, 1H), 6.73 (d, J = 16.6 Hz, 1H), 5.34 (s, 1H), 5.25 (s, 1H), 4.77 – 4.70 (m, 1H), 1.64 (s, 1H), 1.45 (d, J = 6.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 150.05, 137.13, 128.91, 128.62, 128.03, 127.66, 126.43, 113.49, 67.78, 22.97. **HRMS(EI):** m/z calcd for C₁₂H₁₄O [M]⁺: 174.1045, found: 174.1053. IR (neat): 3357, 3028, 2925, 2854, 1602, 1495, 1449, 1285, 1073, 964, 855, 753 cm⁻¹.

(*E*)-1-Cyclohexyl-2-methylene-4-phenylbut-3-en-1-ol (**3d**)

Following the general procedure C, the target compound **3d** was obtained as a colorless oil in 61%. $R_f = 0.45$ (hexanes/EA = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.7 Hz, 2H), 7.25 (t, *J* = 7.2 Hz, 1H), 6.80 (d, *J* = 16.5 Hz, 1H), 6.76 (d, *J* = 16.5 Hz, 1H), 5.33 (s, 1H), 5.20 (s, 1H), 4.21 (d, *J* = 6.0 Hz, 1H), 1.96 (d, *J* = 12.7 Hz, 1H), 1.77 – 1.59 (m, 6H), 1.28 – 1.10 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 147.61, 137.20, 129.11, 128.57, 127.82, 127.57, 126.43, 114.91, 77.61, 41.88, 29.93, 27.97, 26.41, 26.26, 26.02. **HRMS(EI):** m/z calcd for C₁₇H₂₃O [M+H]⁺: 243.1749, found: 243.1748. IR (neat): 3392, 3027, 2925, 2852, 1637, 1493, 1450, 1265, 1027, 890, 755 cm⁻¹. (*E*)-1-(Benzyloxy)-3-methylene-5-phenylpent-4-en-2-ol (**3e**)

Following the general procedure C, the target compound **3e** was obtained as a white solid in 78% yield. $R_f = 0.29$ (hexanes/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.35 (m, 5H), 7.32 (t, J = 7.5 Hz, 3H), 7.26 – 7.22 (m, 2H), 6.77 (d, J = 16.6 Hz, 1H), 6.65 (d, J = 16.6 Hz, 1H), 5.45 (s, 1H), 5.36 (s, 1H), 4.81 (d, J = 8.5 Hz, 1H), 4.68 – 4.55 (m, 2H), 3.75 (dd, J = 9.9, 2.8 Hz, 1H), 3.47 (dd, J = 9.8, 8.6 Hz, 1H), 2.62 (d, J = 2.7 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 144.49, 137.79, 136.99, 128.60, 128.54, 128.50, 128.14, 127.87, 127.79, 127.69, 126.42, 116.04, 74.34, 73.39, 70.47. **HRMS(EI):** m/z calcd for C₁₉H₂₀O₂ [M]⁺: 280.1463, found: 280.1476. IR (neat): 3418, 3071, 3051, 3029, 2918, 2862, 1603, 1495, 1451, 1363, 1103, 964, 908, 754 cm⁻¹.

(*E*)-7-((*tert*-Butyldimethylsilyl)oxy)-3-methylene-1-phenylhept-1-en-4-ol (**3f**)

Following the general procedure C, the target compound **3f** was obtained as a colorless oil in 65%. $R_f = 0.42$ (hexanes/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.5 Hz, 2H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.23 (t, *J* = 7.3 Hz, 1H), 6.78 (d, *J* = 16.5 Hz, 1H), 6.71 (d, *J* = 16.5 Hz, 1H), 5.35 (s, 1H), 5.29 (s, 1H), 4.60 – 4.52 (m, 1H), 3.70 (t, *J* = 5.6 Hz, 1H), 3.01 (s, 1H), 1.97 – 1.87 (m, 1H), 1.76 – 1.65 (m, 3H), 0.92 (s, 9H), 0.09 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 148.74, 137.25, 128.60, 128.55, 128.26, 127.50, 126.39, 114.29, 71.68, 63.44, 33.98, 29.13, 25.92, 18.31, -5.37. HRMS(EI): m/z calcd for C₂₀H₃₃O₂Si[M+H]⁺: 333.2250, found: 333.2263. IR (neat): 3392, 3029, 2954, 2929,2885, 2857, 1639, 1472, 1463, 1389, 1256, 1097, 836, 776 cm⁻¹.

(E)-2-(4-Hydroxy-5-methylene-7-phenylhept-6-en-1-yl)isoindoline-1,3-dione (**3g**)

Following the general procedure C, the target compound **3**g was obtained as a white solid in 77% yield. $R_f = 0.53$ (hexanes/EA = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.74 (m, 2H), 7.72 – 7.63 (m, 2H), 7.38 (d, *J* = 7.3 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.22 (t, *J* = 7.2 Hz, 1H), 6.73 (d, *J* = 16.8 Hz, 1H), 6.69 (d, *J* = 16.9 Hz, 1H), 5.29 (s, 1H), 5.27 (s, 1H), 4.58 (d, *J* = 6.9 Hz, 1H), 3.75 (t, *J* = 6.9 Hz, 2H), 2.00 (s, 1H), 1.92 – 1.63 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 168.45, 148.41, 137.00, 133.81, 132.00, 129.00, 128.53, 127.61, 127.59, 126.41, 123.12, 114.43, 71.62, 37.75, 33.10, 24.81. **HRMS(EI):** m/z calcd for C₂₂H₂₂NO₃[M+H]⁺: 348.1600, found: 348.1608. IR (neat): 3457, 3027, 2931, 2850, 1770, 1708, 1614, 1494, 1467, 1438, 1398, 1371, 1043, 966, 897, 720 cm⁻¹.

(*E*)-4-(4-Bromophenyl)-2-methylene-1-phenylbut-3-en-1-ol (**3h**)

Following the general procedure C, the target compound **3h** was obtained as a white solid in 79% yield. $R_f = 0.35$ (hexanes/EA = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.43 (m, 2H), 7.41 – 7.35 (m, 4H), 7.32 – 7.28 (m, 1H), 7.20 – 7.16 (m, 2H), 6.71 (d, *J* = 16.5 Hz, 1H), 6.55 (d, *J* = 16.5 Hz, 1H), 5.57 (d, *J* = 3.7 Hz, 1H), 5.48 (s, 2H), 2.02 (d, *J* = 4.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 147.16, 141.80, 135.99, 131.63, 128.82, 128.61, 128.33, 127.96, 127.90, 126.82, 121.39, 116.60, 74.43. **HRMS(EI):** m/z calcd for C₁₇H₁₆BrO[M+H]⁺: 315.0385, found: 315.0385. IR (neat): 3384, 3032, 2918, 2850, 1602, 1487, 1453, 1038, 953, 861, 805, 757 cm⁻¹.

(E)-5-(4-Bromophenyl)-3-methylenepent-4-en-2-ol (**3i**)

Br Following the general procedure C, the target compound **3i** was obtained as a white solid in 75% yield. R_f = 0.21 (hexanes/EA = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 8.5 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 6.76 (d, *J* = 16.5 Hz, 1H), 6.66 (d, *J* = 16.5 Hz, 1H), 5.37 (s, 1H), 5.26 (s, 1H), 4.70 (q, *J* = 6.4 Hz, 1H), 1.81 (s, 1H), 1.44 (d, *J* = 6.5 Hz, 3H). 13C NMR (126 MHz, CDCl₃) δ 149.73, 136.07, 131.68, 128.70, 127.86, 127.67, 121.34, 114.15, 67.70, 22.94. **HRMS(EI):** m/z calcd for C₁₂H₁₄BrO [M+H]⁺: 253.0228, found: 253.0217. IR (neat): 3375, 2972, 2925, 2855, 1700, 1612, 1588, 1488, 1402, 1072, 1010, 813 cm⁻¹.

(E)-1-(4-Chlorophenyl)-3-methylenehept-1-en-4-ol (3j)

Following the general procedure C, the target compound **3j** was obtained as a slight yellow oil in 64% yield. $R_f = 0.35$ (hexanes/EA = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.35 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 6.73 (d, J = 16.5 Hz, 1H), 6.69 (d, J = 16.5 Hz, 1H), 5.30 (s, 1H), 5.28 (s, 1H), 4.50 (s, 1H), 1.75 – 1.59 (m, 3H), 1.56 – 1.36 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.74, 135.70, 133.20, 128.76, 128.51, 127.69, 127.59, 114.63, 72.10, 38.58, 19.05, 13.97. **HRMS(EI):** m/z calcd for C₁₄H₁₈ClO [M+H]⁺: 237.1046, found: 237.1051. IR (neat): 3388, 3030, 2960, 2929, 2873, 1706, 1611, 1593, 1491, 1465, 1096, 972, 814 cm⁻¹.

(E)-4-(4-Methoxyphenyl)-2-methylenebut-3-en-1-ol (**3**k)

Following the general procedure C, the target compound **3k** was obtained as a white solid in 76% yield. $R_f = 0.11$ (hexanes/EA = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.36 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 6.69 (d, J = 16.5 Hz, 1H), 6.62 (d, J = 16.6 Hz, 1H), 5.29 (s, 1H), 5.23 (s, 1H), 4.44 (s, 2H), 3.80 (d, J = 10.9 Hz, 3H), 1.60 (d, J = 14.3 Hz,

1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.29, 145.14, 129.74, 128.28, 127.64, 126.08, 115.19, 114.04, 63.26, 55. **HRMS(EI):** m/z calcd for C₁₃H₁₅O₂[M+H]⁺: 191.1072, found: 191.1073. IR (neat): 3235, 2956, 2912, 2884, 2840, 1603, 1514, 1462, 1452, 1248, 1031, 956, 862 cm⁻¹.

(E)-Methyl 3-(3-(hydroxymethyl)buta-1,3-dien-1-yl)benzoate (31)

Following the general procedure C, the target compound **31** was obtained as a white solid in 59% yield. $R_f = 0.10$ (hexanes/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.90 (d, J = 7.7 Hz, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.39 (t, J = 7.7 Hz, 1H), 6.88 (d, J = 16.6 Hz, 1H), 6.69 (d, J = 16.6 Hz, 1H), 5.39 (s, 1H), 5.32 (s, 1H), 4.46 (s, 2H), 3.97 – 3.90 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.98, 144.75, 137.38, 130.78, 130.52, 129.34, 128.68, 128.60, 127.75, 127.40, 117.07, 63.12, 52.19. **HRMS(EI):** m/z calcd for C₁₃H₁₄O₃ [M]⁺: 218.0943, found: 218.0941. IR (neat): 3375, 3032, 2953, 2925, 2854, 1721, 1604, 1586, 1444, 1291, 977, 752 cm⁻¹.

(E)-2-Methylene-4-(o-tolyl)but-3-en-1-ol (**3m**)

Following the general procedure C, the target compound **3m** was obtained as a colorless oil in 66% yield. $R_f = 0.27$ (hexanes/EA = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.49 (m, 1H), 7.22 – 7.13 (m, 3H), 6.90 (d, J = 16.4 Hz, 1H), 6.71 (d, J = 16.4 Hz, 1H), 5.36 (s, 1H), 5.29 (s, 1H), 4.48 (d, J = 4.3 Hz, 2H), 2.38 (s, 3H), 1.75 (t, J = 4.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 145.30, 136.08, 135.72, 130.31, 129.39, 127.57, 126.54, 126.10, 125.15, 115.93, 63.20, 19.74. **HRMS(EI):** m/z calcd for C₁₂H₁₄O [M]⁺: 174.1045, found: 174.1041. IR (neat): 3332, 3056, 3020, 2925, 2858, 1631, 1600, 1484, 1461, 1061, 963, 890, 753 cm⁻¹.

(E)-2-Methylene-4-(thiophen-3-yl)but-3-en-1-ol (**3n**)

Following the general procedure C, the target compound **3n** was obtained as a white solid in 59% yield. $R_f = 0.17$ (hexanes/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (dt, J = 10.4, 3.7 Hz, 2H), 7.22 – 7.19 (m, 1H), 6.70 (d, J = 16.6 Hz, 1H), 6.65 (d, J = 16.6 Hz, 1H), 5.31 (s, 1H), 5.24 (s, 1H), 4.42 (s, 2H), 1.68 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.97, 139.79, 128.10, 126.14, 124.68, 123.10, 122.54, 115.72, 63.16. **HRMS(EI):** m/z calcd for C₉H₁₁SO [M+H]⁺: 167.0531, found: 167.0526. IR (neat): 3243, 3098, 2924, 2888, 1631, 1461, 1415, 1241, 1074, 960, 776 cm⁻¹.

(*E*)-4-Cyclopropyl-2-methylenebut-3-en-1-ol (**3**0)

Following the general procedure C, the target compound **30** was obtained as a white solid in 50% yield. $R_f = 0.30$ (hexanes/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 6.16 (d, *J* = 16.0 Hz, 1H), 5.30 (dd, *J* = 16.0, 8.9 Hz, 1H), 5.07 (s, 1H), 4.99 (s, 1H), 4.26 (s, 2H), 1.64 (s, 1H), 1.48 - 1.36 (m, 1H), 0.81 - 0.72 (m, 2H), 0.48 - 0.39 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 144.87, 135.05, 126.94, 112.51, 63.32, 14.41, 7.25. **HRMS(EI):** m/z calcd for C₈H₁₂O [M]⁺: 124.0888, found: 124.0888. IR (neat): 3397, 3087, 3007, 2932, 2880, 1640, 1431, 1293, 1022, 977 cm⁻¹.

(*E*)-5-Methyl-2-methylenehexa-3,5-dien-1-ol (**3p**)

Following the general procedure C, the target compound **3p** was obtained as a white solid in 55% yield. $R_f = 0.25$ (hexanes/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 6.42 (d, *J* = 16.4 Hz, 1H), 6.24 (d, *J* = 16.4 Hz, 1H), 5.29 (s, 1H), 5.19 (s, 1H), 5.04 (s, 2H), 4.36 (s, 2H), 1.88 (s, 3H), 1.64 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.03, 141.78, 131.73, 128.16, 117.72, 115.76, 63.14, 18.31. ¹⁹F NMR (376 MHz, acetone) δ -141.69 (q, *J* = 47.8 Hz). HRMS(EI): m/z calcd for C₈H₁₂O [M]⁺: 124.0888, found: 124.0886. IR (neat): 3371, 3083, 2914, 2853, 1671, 1619, 1599, 1452, 1351, 1196, 1061, 961, 891 cm⁻¹.

2-(Cyclohex-1-en-1-yl)prop-2-en-1-ol (3q)

OH
Following the general procedure C, the target compound 3q was obtained as a colorless oil in 86% yield. R_f = 0.33 (hexanes/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 5.92 (s, 1H), 5.09 (s, 2H), 4.31 (s, 2H), 2.20 – 2.10 (m, 4H), 1.83 (s, 1H), 1.72 – 1.63 (m, 2H), 1.62 – 1.54 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.22, 133.98, 124.98, 109.60, 64.15, 25.78, 25.70, 22.68, 22.06. HRMS(EI): m/z calcd for C₉H₁₄O [M]⁺: 138.1045, found: 138.1047. IR (neat): 3381, 2931, 2860, 1638, 1448, 1436, 1056, 1031, 895, 848 cm⁻¹.

2-(Cyclopent-1-en-1-yl)prop-2-en-1-ol (3r)

Following the general procedure C, the target compound **3r** was obtained as a colorless oil in 60% yield. $R_f = 0.27$ (hexanes/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 5.82 (s, 1H), 5.19 (s, 1H), 5.02 (s, 1H), 4.34 (s, 2H), 2.54 – 2.42 (m, 4H), 1.95 – 1.81 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.41, 141.02, 127.12, 111.49, 64.16, 33.41, 32.67, 22.55. **HRMS(EI):** m/z calcd for C₈H₁₂O [M]⁺: 124.0888, found: 124.0889. IR (neat): 3349, 2953, 2877, 2850, 1670, 1438, 1298, 1042, 906, 843 cm⁻¹.

2-(Cyclohept-1-en-1-yl)prop-2-en-1-ol (3s)

Following the general procedure C, the target compound **3s** was obtained as a colorless oil in 78% yield. $R_f = 0.29$ (hexanes/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 6.00 (t, *J* = 6.8 Hz, 1H), 5.09 (s, 2H), 4.30 (d, *J* = 20.5 Hz, 2H), 2.38 – 2.34 (m, 2H), 2.21 (dd, *J* = 11.1, 6.6 Hz, 2H), 1.76 (dt, *J* = 15.0, 5.9 Hz, 3H), 1.54 – 1.43 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 148.76, 142.32, 129.31, 109.78, 64.41, 32.34, 29.80, 28.35, 26.53, 26.30. **HRMS(EI):** m/z calcd

for C₁₀H₁₆O [M]⁺: 152.1201, found: 152.1195. IR (neat): 3346, 3040, 2922, 2851, 1632, 1605, 1447, 1282, 1041, 892, 850 cm⁻¹.

(E)-3-Methyl-2-methyleneundec-3-en-1-ol (**3**t)

Following the general procedure C, the target compound **3t** was obtained as a colorless oil in 87% yield. $R_f = 0.40$ (hexanes/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 5.62 (t, *J* = 7.1 Hz, 1H), 5.12 (d, *J* = 9.6 Hz, 2H), 4.33 (s, 2H), 2.13 (q, *J* = 7.2 Hz, 2H), 1.80 (s, 3H), 1.68 (s, 1H), 1.45 – 1.34 (m, 2H), 1.33 – 1.23 (m, 8H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.31, 132.06, 128.45, 110.65, 64.29, 31.81, 29.54, 29.36, 29.17, 28.50, 22.63, 14.09, 14.05. **HRMS(EI):** m/z calcd for C₁₃H₂₄O [M]⁺: 196.1827, found: 196.1824. IR (neat): 3335, 2956, 2926, 2854, 1637, 1610, 1466, 1379, 1050, 895, 723 cm⁻¹.

(E)-5-Methylenedec-6-en-4-ol (**3u**)

^IOH Following the general procedure C, the target compound **3u** was obtained as a colorless oil in 67% yield. $R_f = 0.54$ (hexanes/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 6.01 (d, *J* = 16.3 Hz, 1H), 5.82 (dt, *J* = 15.9, 6.9 Hz, 1H), 5.08 (s, 1H), 5.02 (s, 1H), 4.37 (s, 1H), 2.07 (q, *J* = 7.9 Hz, 2H), 1.69 – 1.56 (m, 3H), 1.52 – 1.35 (m, 4H), 0.93 (t, *J* = 5.6 Hz, 3H), 0.90 (t, *J* = 5.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.22, 131.12, 129.17, 111.35, 71.93, 38.53, 35.18, 22.43, 19.02, 13.99, 13.68. **HRMS(EI):** m/z calcd for C₁₁H₂₀O [M]⁺: 168.1514, found: 168.1513. IR (neat): 3359, 2960, 2932, 2873, 1649, 1608, 1465, 1379, 1029, 967, 896, 742 cm⁻¹.

(E)-3-Methyleneundec-4-en-2-ol (**3v**)

¹OH Following the general procedure C, the target compound **3**v was obtained as a colorless oil in 57% yield. $R_f = 0.38$ (hexanes/EA = 5:1). ¹H NMR (500 MHz, CDCl₃) δ 6.02 (d, J = 16.0 Hz, 1H), 5.82 (dt, J = 16.0, 6.9 Hz, 1H), 5.12 (s, 1H), 4.99 (s, 1H), 4.56 (q, J = 6.3 Hz, 1H), 2.12 – 2.07 (m, 2H), 1.60 (s, 1H), 1.40 (dd, J = 13.1, 7.5 Hz, 2H), 1.33 – 1.24 (m, 6H), 0.88 (t, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 150.30, 131.44, 129.10, 110.61, 67.77, 33.13, 31.69, 29.24, 28.87, 22.81, 22.59, 14.06. **HRMS(EI):** m/z calcd for C₁₂H₂₃O[M+H]⁺: 183.1749, found: 183.1743. IR (neat): 3381, 2956, 2928, 2857, 1638, 1456, 1377, 1072, 906, 755 cm⁻¹.

(*E*)-Methyl 8-(hydroxymethyl)nona-6,8-dienoate (**3**w)

Following the general procedure C, the target compound **3**w was obtained as a white solid in 70% yield. $R_f = 0.18$ (hexanes/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 6.07 (d, *J* = 16.1 Hz, 1H), 5.74 (dt, *J* = 16.0, 6.9 Hz, 1H), 5.14 (s, 1H), 5.02 (s, 1H), 4.29 (s, 2H), 3.66 (s, 3H), 2.31 (t, *J* = 7.5 Hz, 2H), 2.15 – 2.07 (m, 2H), 1.68 – 1.58 (m, 3H), 1.48 – 1.37 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 174.11, 145.03, 130.40, 129.78, 113.44, 63.21, 51.49, 33.86, 32.58, 28.62, 24.42. **HRMS(EI):** m/z calcd for C₁₁H₁₈O₃[M]⁺: 198.1256, found: 198.1258. IR (neat): 3392, 2932, 2860, 1737, 1649, 1438, 1365, 1211, 1065, 967, 895, 745 cm⁻¹.

5. Synthesis of (R,*E*)-4-(4-Bromophenyl)-2-methylene-1-phenylbut-3-en-1-ol ((*R*)-3h).

Br Following the general procedure C, the target compound (*R*)-**3h** was obtained as a white solid 76%. R_f = 0.30 (hexanes/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.43 (m, 2H), 7.40 – 7.34 (m, 4H), 7.34 – 7.28 (m, 1H), 7.18 (d, J = 8.5 Hz, 2H), 6.72 (d, J = 16.5 Hz, 1H), 6.55 (d, J = 16.5 Hz, 1H), 5.56 (s, 1H), 5.48 (s, 2H), 2.20 (s, 1H). ¹³C NMR (101

MHz, CDCl₃) δ 147.12, 141.77, 135.97, 131.62, 128.79, 128.61, 128.32, 127.96, 127.89, 126.82, 121.38, 116.63, 74.40. **HRMS(EI):** m/z calcd for C₁₇H₁₆BrO[M+H]⁺: 315.0385, found: 315.0394. IR (neat): 3390, 3029, 2924, 2853, 1603, 1487, 1453, 1072, 962, 863, 810, 764 cm⁻¹. 95.6% *ee* (Chiralcel IC column, Hexane/^{*i*}PrOH = 97/3, 1.0 mL/min, λ = 280 nm, t_R(minor) = 11.63, t_R(major) = 13.99).

6. Diels-Alder reaction of compound 3k with N-phenylmaleimide.

Compound (1.0 equiv.) and N-phenylmaleimide (2.0 equiv.) were dissolved in toluene (2.0 mL) and heated at 80 °C for 3 hrs. After the reaction was completed, the solvent was removed and the residue was purified directly using silica gel chromatography (hexanes/EA = 10:1 to 2:1). The product **4** was obtained as a white solid in 94% yield. $R_f = 0.10$ (hexanes/EA = 1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dt, *J* = 15.0, 5.0 Hz, 3H), 7.09 (d, *J* = 8.6 Hz, 2H), 6.82 (d, *J* = 8.6 Hz, 2H), 6.72 (dd, *J* = 7.9, 1.4 Hz, 2H), 6.12 (d, *J* = 5.3 Hz, 1H), 4.19 (s, 2H), 3.92 (s, 1H), 3.76 (s, 3H), 3.46 – 3.34 (m, 2H), 2.95 (d, *J* = 17.3 Hz, 1H), 2.54 (dd, *J* = 17.4, 7.0 Hz, 1H), 1.89 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 178.61, 176.37, 158.93, 138.42, 131.46, 130.20, 130.14, 128.82, 128.36, 126.18, 124.16, 113.88, 66.03, 55.27, 45.18, 40.44, 38.63, 22.88. **HRMS(EI):** m/z calcd for C₂₂H₂₂NO₄ [M+H]⁺: 364.1543, found: 364.1556. IR (neat): 3047, 3062, 2925, 2854, 1755, 1708, 1609, 1513, 1501, 1456, 1386, 1251, 1178, 1031, 835, 737 cm⁻¹.

7. Selectively epoxidation of double bond in compound 3u.

In a flame-dried schlenk tube backfilled with N₂, Va(acac)₂ (3.8 mg, 0.014 mmol, 0.16 quiv.) and 3Å MS (20 mg) were added and followed with DCM (1.0 mL). Compound (15.0 mg, 0.09 mmol, 1.0 equiv.) dissolved in dried DCM (0.5 mL) was added, and after the mixture was cooled to -30 °C, 'BuOOH (0.15 mL, 0.36 mmol, 4.0 equiv., 2.4 M in toluene) was added dropwise. After the reaction was completed (about 6 hrs), the reaction mixture was quenced using Na₂S₂O₄, and then dissolved in 20 mL DCM and washed using H₂O (10 mL × 3), dried using MgSO₄ and filtered through a pack of celite. After the solvent was removed using ice-H₂O bath under vacuum, the product **5** was obtained as a slight yellow oil with a quantitative yield. R_f = 0.24 (hexanes/EA = 5:1). ¹H NMR (400 MHz, CD₂Cl₂) δ 5.81 (dt, *J* = 15.6, 6.8 Hz, 1H), 5.58 (dt, *J* = 15.6, 1.3 Hz, 1H), 3.72 (dd, *J* = 8.2, 2.8 Hz, 1H), 2.95 (d, *J* = 5.3 Hz, 1H), 2.69 (d, *J* = 5.3 Hz, 1H), 2.03 (ddd, *J* = 14.5, 7.0, 1.3 Hz, 2H), 1.64 – 1.51 (m, 3H), 1.45 – 1.35 (m, 4H), 0.95 – 0.86 (m, 6H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 135.24, 125.95, 70.53, 61.07, 51.60, 35.67, 34.85, 22.52, 19.30, 14.26, 13.76. **HRMS(ESI):** m/z calcd for C₁₁H₂₀O₂Na [M+Na]⁺: 207.1356, found: 207.1367. IR (neat): 3351, 2960, 2932, 2874, 1706, 1586, 1530, 1458, 1380, 1364, 1246, 1197, 1026, 974, 847, 747 cm⁻¹.

Computational details.

Calculations were performed at the B3LYP^[21] level of theory with differentiated basis set in gas phase and also in DCM as solvent with Polarizable Continuum Model (PCM)^[22] as a single point calculation. The P, C, N, F, O, B and H atoms were described 6-31+G(d,p) basis set and Au atom with LANL2DZ^{[23],[24]} relativistic effective core potential (ECP) basis set using Gaussian 09 software suite.^[25] All of the degrees of conformational freedom were considered. Vibrational frequencies were computed at the same level of theory to verify that the optimized structures were minima. For TS, IRC calculations were computed at the same level of theory in order to confirm the structures.

Pathway III, B(F)OH moiety, in gas phase

Figure 1. Reaction pathway modeled.

Cartesian coordinates and energies calculated for complex B-F-OH in gas phase.

Energy = -1740.507147 (aU); Number of Imaginary Frequencies = 0

Р	3.44955300	-1.27946400	0.04285200
С	4.04700200	0.29358600	0.78025800
С	5.26431800	0.22981200	1.48720800
С	5.80504000	1.35486700	2.10533500
С	5.12539600	2.57172900	2.03077100
С	3.92445600	2.65026400	1.32908800
С	3.36427600	1.53182400	0.68478300
Н	5.80408900	-0.70749700	1.56917600
Н	6.74512200	1.27701300	2.64220800
Н	5.53158100	3.45762100	2.50922500
Н	3.40726300	3.60180300	1.25332400
С	2.08417600	1.74122400	-0.05332900
С	1.99518000	1.58522300	-1.44787200
С	0.94920100	2.18389900	0.63949300
С	0.79028800	1.82715200	-2.10564500
Н	2.87399100	1.30318100	-2.02031800
С	-0.26532700	2.43845900	-0.01324300
С	-0.35036600	2.23591600	-1.40096500

Н	0.73503700	1.69914700	-3.18415400
С	3.96594000	-2.63231500	1.17809700
Н	5.05301300	-2.69766500	1.26742600
Н	3.52833200	-2.47549000	2.16680700
Н	3.59216800	-3.57729800	0.77531700
С	4.45833500	-1.55623600	-1.47234900
Н	5.52246800	-1.49342600	-1.22571100
Н	4.23839100	-2.54501200	-1.88420000
Н	4.22233200	-0.79941600	-2.22332100
С	-1.28404200	-1.60384400	-0.56088100
С	-2.14134100	-0.81953800	0.37147700
Н	-1.50929700	-0.11556500	0.92921400
Н	-2.56525100	-1.52331700	1.09917300
0	-3.19155700	-0.20312400	-0.31354700
Н	-2.95311200	0.72519900	-0.62030000
С	-0.72639300	-2.29480800	-1.41501100
Н	-0.55232700	-2.97556000	-2.22495800
Au	1.17359100	-1.51915200	-0.45874600
С	-1.47141200	2.90971500	0.77793400
Н	-1.18681300	3.75102200	1.42102100
Н	-1.79739400	2.10985800	1.45654900
С	-2.64569900	3.32404200	-0.11337400
Н	-2.48605100	4.34091000	-0.51305400
Н	-3.57041500	3.33810300	0.46857200
С	-1.65638800	2.46448800	-2.13193500
Н	-1.64087900	3.45388100	-2.62753000
Н	-1.77501000	1.71634800	-2.92347600
С	-4.07115700	2.58968100	-1.94489500

Н	-4.16660800	1.85482900	-2.74928900
Н	-4.90702700	2.45921000	-1.25406300
Н	-4.12135000	3.59943300	-2.38272300
Ν	-2.80774900	2.36643700	-1.22311000
Н	1.01132700	2.33145600	1.71559600
С	-6.44295100	-0.78898200	0.77357600
Н	-6.88873100	-0.39128200	-0.13914800
С	-6.79018200	-2.03029100	1.16449200
Н	-6.35651300	-2.42415200	2.08550100
В	-5.48379700	0.10732200	1.58123300
С	-7.74384400	-2.94121600	0.45311000
Н	-8.13852400	-2.48666800	-0.46026100
Н	-7.25424600	-3.88779400	0.18918500
Н	-8.58786100	-3.20287000	1.10426400
F	-5.36253600	1.43189700	1.27395000
0	-4.77118900	-0.35208000	2.65415500
Н	-4.33366900	0.35395800	3.14655300

Cartesian coordinates and energies calculated for TS B-F-OH-TS1 in gas phase.

Energy = -1740.497046 (aU); Number of Imaginary Frequencies = 1(-171.2).

Р	-3.15300200	-1.32135300	0.11839000
С	-4.01741200	0.25262300	-0.29219000
С	-5.35406700	0.14801100	-0.72395800
С	-6.09045200	1.27156200	-1.09301000
С	-5.49148700	2.53135600	-1.04327600
С	-4.17299800	2.65170100	-0.60965000
С	-3.41537400	1.53290200	-0.21708400
Н	-5.83615000	-0.82203800	-0.78366700
Н	-7.11951200	1.16016100	-1.41995300
Н	-6.04998100	3.41682700	-1.33108100
Н	-3.71486200	3.63412700	-0.54736200
С	-2.02457900	1.78163100	0.26226100
С	-1.63410600	1.48684600	1.58036200
С	-1.09119500	2.38886600	-0.58711000
С	-0.33508300	1.75596300	2.00472600
Н	-2.35298000	1.06922300	2.27894900
С	0.21520500	2.67562300	-0.16661200
С	0.60348200	2.33277400	1.13829100

Н	-0.04529400 1.51561700 3.02492500
С	-3.79368700 -2.57853800 -1.06634800
Н	-4.86968100 -2.73692600 -0.96007300
Н	-3.57260200 -2.26777200 -2.09028300
Н	-3.28046200 -3.52363400 -0.87001000
С	-3.84601800 -1.85619500 1.74054900
Н	-4.93931900 -1.86636900 1.70021100
Н	-3.48165300 -2.85928100 1.97893600
Н	-3.52614200 -1.17029100 2.52802900
С	2.11400000 -1.26253400 -0.39608200
С	2.50120600 -0.25589000 -1.41286700
Н	1.57120800 0.27155600 -1.66920900
Н	2.86269100 -0.75979800 -2.31496700
0	3.50774300 0.63533000 -1.00059400
Н	3.20109500 1.38356400 -0.36335000
С	1.26813000 -1.90385000 0.30596800
Н	1.44531800 -2.74207800 0.96922400
Au	-0.79505700 -1.42649400 0.15078800
С	1.19566200 3.33926100 -1.11473000
Н	0.71490100 4.18961500 -1.61214000
Н	1.47238500 2.63995200 -1.91489200
С	2.46266500 3.82053200 -0.40529700
Н	2.26519000 4.75089500 0.15357000
Н	3.24522500 4.03806700 -1.13744300
С	2.01029400 2.60172900 1.62765700
Н	2.01484500 3.49924500 2.27301700
Н	2.35585200 1.76674800 2.24720100
С	4.29698600 3.13813900 1.04237100

Н	4.64661200	2.35798400	1.72221000
Н	5.00770300	3.20838400	0.21632500
Н	4.27344000	4.09815600	1.58011200
Ν	2.96497600	2.78022700	0.51815700
Н	-1.38717200	2.64180300	-1.60284700
С	4.46419700	-1.62623900	0.23099000
Н	4.30780800	-1.46133400	1.29845600
С	4.22829300	-2.87536500	-0.25670700
Н	4.43514500	-3.05616500	-1.31240300
В	5.19198900	-0.50439600	-0.61470200
С	3.78941900	-4.06039300	0.53919200
Н	3.56239500	-3.80472500	1.57854700
Н	2.92390900	-4.55536700	0.08094200
Н	4.59392400	-4.80808200	0.54698800
F	5.86809800	0.46920500	0.05960800
0	5.54884200	-0.81683000	-1.90258000
Н	6.10192100	-0.14829300	-2.32538000

Cartesian coordinates and energies calculated for complex B-F-OH-Int1 in gas phase.

Energy = -1740.542943 (aU); Number of Imaginary Frequencies = 0

Р	-3.06845600	-1.00/3/100	0.47709400
С	-3.79870100	0.59814200	-0.07667300
С	-5.16454900	0.59855400	-0.41996900
С	-5.80540300	1.74403500	-0.88907900
С	-5.07952900	2.92590200	-1.03229600
С	-3.72908700	2.94650100	-0.69085200
С	-3.06451700	1.80507600	-0.20421100
Н	-5.74913900	-0.30985000	-0.33327000
Н	-6.86012000	1.70694500	-1.14323500
Н	-5.56045100	3.82793500	-1.39813100
Н	-3.16988000	3.87321000	-0.77667400
С	-1.62602800	1.98284700	0.15768700
С	-1.15956800	1.79594400	1.47006000
С	-0.72219800	2.45794400	-0.80266600
С	0.16847400	2.06071000	1.79446700
Н	-1.84395300	1.47577300	2.24845100
С	0.61386600	2.73780200	-0.48676600

С	1.06356600	2.53342400	0.82604100
Н	0.51512300	1.89748100	2.81131100
С	-4.14487500	-2.31750400	-0.25243300
Н	-5.16702800	-2.28427700	0.13325700
Н	-4.16103000	-2.23015200	-1.34151900
Н	-3.70884400	-3.28537800	0.00929900
С	-3.46140000	-1.14279400	2.27686800
Н	-4.52273400	-0.94264800	2.45099000
Н	-3.22285000	-2.15578200	2.61365800
Н	-2.86433500	-0.43791300	2.85773600
С	2.17698100	-1.87462300	-0.78316300
С	2.23992100	-0.42366300	-1.23816300
Н	1.32312800	0.08406200	-0.91565700
Н	2.30855800	-0.36185400	-2.33265600
0	3.39722000	0.18747900	-0.67643700
Н	3.39549100	1.75436500	-0.32564400
С	1.04324000	-2.46742600	-0.28375100
Н	1.16465300	-3.51150500	0.00952900
Au	-0.80096400	-1.64785500	0.01280700
С	1.56631700	3.19332200	-1.57713900
Н	1.11659500	4.00263600	-2.16288600
Н	1.73473300	2.36767200	-2.28033900
С	2.91269700	3.68137300	-1.04257700
Н	2.83820900	4.68161000	-0.60326700
Н	3.66402800	3.70848000	-1.83490100
С	2.49615000	2.81329100	1.22392800
Н	2.60672300	3.80676400	1.67560100
Н	2.85006300	2.05535900	1.92531900

С	4.82834100	3.06147700	0.42073600
Н	5.14961500	2.31907300	1.15093600
Н	5.45675800	2.97467700	-0.46633900
Н	4.88812500	4.07174500	0.83183000
Ν	3.41446900	2.76570300	0.03592200
Н	-1.06589700	2.60689700	-1.82358500
С	3.50076500	-2.12071000	0.24537800
Н	3.29562500	-2.78456200	1.08529800
С	3.51365100	-2.70273000	-1.07275300
Н	4.06418300	-2.12885200	-1.82054600
В	3.95277600	-0.55611800	0.50023500
С	3.48275900	-4.19427200	-1.33092700
Н	2.93969500	-4.74198400	-0.55573700
Н	3.03625800	-4.42604100	-2.30253300
Н	4.51138600	-4.57090300	-1.33549900
F	3.30674500	-0.11050400	1.71293100
0	5.35885300	-0.30064000	0.53392500
Н	5.76065200	-0.58708500	1.36164900

Cartesian coordinates and energies calculated for TS B-F-OH-TS2 in gas phase.

Energy = -1740.534404 (aU); Number of Imaginary Frequencies = 1(-131.9).

Р	-3.14614300	-1.19379300	0.23461800
С	-3.92915200	0.43616900	-0.16065500
С	-5.29821100	0.41918400	-0.49082600
С	-5.98610200	1.57849200	-0.84321200
С	-5.30465700	2.79529700	-0.87821100
С	-3.95296000	2.83399400	-0.54454200
С	-3.24303700	1.67592000	-0.17296100
Н	-5.84726400	-0.51615100	-0.48382700
Н	-7.04178500	1.52720700	-1.09105900
Н	-5.82210600	3.70945400	-1.15281900
Н	-3.42888000	3.78504200	-0.54457200
С	-1.81027000	1.87203600	0.20242100
С	-1.33555600	1.59721100	1.49612200
С	-0.92415900	2.44579100	-0.71862700
С	-0.01597000	1.87936600	1.83968300
Н	-2.00553400	1.18498200	2.24393900
С	0.40475700	2.73851400	-0.38468400
С	0.86357700	2.44851600	0.90894000

Н	0.33518000	1.65329100	2.84321500
С	-3.99666600	-2.41032800	-0.86341100
Н	-5.07049100	-2.47661100	-0.67169600
Н	-3.83039800	-2.14289800	-1.90992500
Н	-3.54898600	-3.39147700	-0.68310100
С	-3.80624600	-1.61999600	1.90674700
Н	-4.89755200	-1.54515000	1.92499300
Н	-3.50793800	-2.64181600	2.15772200
Н	-3.39139300	-0.94424600	2.65830500
С	2.23057700	-1.57944800	-0.34853500
С	2.26683400	-0.35053000	-1.22256800
Н	1.35009900	0.22842200	-1.07174500
Н	2.32802100	-0.60852300	-2.29043300
0	3.41897900	0.40786000	-0.86441200
Н	3.26911400	1.91657700	-0.30109600
С	1.16336800	-2.23502200	0.13437600
Н	1.36928000	-3.15840900	0.67844300
Au	-0.79303000	-1.61478900	0.11479200
С	1.33916500	3.30913300	-1.43512900
Н	0.84690100	4.11925200	-1.98417500
Н	1.57328600	2.53588500	-2.17820400
С	2.64005800	3.85056000	-0.84798400
Н	2.48664700	4.80010100	-0.32457900
Н	3.39277100	4.00091600	-1.62503300
С	2.28611100	2.74682800	1.33258800
Н	2.34897300	3.68376100	1.89974900
Н	2.69015900	1.93834100	1.94592900
С	4.58897800	3.26247600	0.57704300

Н	4.93411900	2.53543700	1.31135400
Н	5.24058300	3.23020200	-0.29714400
Н	4.57295600	4.26850400	1.00216100
Ν	3.20549800	2.88441800	0.15307700
Н	-1.27608700	2.66440300	-1.72401400
С	3.71281200	-1.91264200	0.10150300
Н	3.77709400	-2.33354200	1.10650600
С	3.92928600	-2.83513400	-0.92967300
Н	3.86144000	-2.47073800	-1.95583400
В	4.36709200	-0.30815700	0.02336200
С	4.25092300	-4.27428800	-0.78403200
Н	4.26859300	-4.60375200	0.25643200
Н	3.55750500	-4.89577100	-1.36418900
Н	5.24240100	-4.44429700	-1.23249800
0	5.68749400	-0.18360700	-0.46975100
Н	6.35284200	-0.33018100	0.21160900
F	4.23838700	0.19113900	1.36626800

Cartesian coordinates and energies calculated for complex B-F-OH-Int2 in gas phase.

Energy = -	1740.596171 (a	aU); Number	of Imaginary Frequencies = 0
Р	2.89448600	-1.21587700	0.64948100
С	3.97070000	0.24039200	0.25067700
С	5.35628200	0.11094000	0.46296900
С	6.24367900	1.14294700	0.16169600
С	5.75566800	2.33755100	-0.36980400
С	4.38576000	2.48812500	-0.57944100
С	3.47695500	1.46171600	-0.26924000
Н	5.76086000	-0.81227800	0.86493200
Н	7.30698400	1.01016500	0.33623000
Н	6.43455400	3.14829900	-0.61613000
Н	4.00103400	3.42067200	-0.98210400
С	2.02543000	1.73472600	-0.50836600
С	1.50750600	1.73967400	-1.81469400
С	1.16440500	2.03209400	0.55225600
С	0.15179900	1.96061000	-2.03145600
Н	2.16323800	1.53185100	-2.65445000
С	-0.20046900	2.27460900	0.34469700
С	-0.71353300	2.20283400	-0.95644100
Н	-0.24197800	1.91510500	-3.04385500
----	-------------	-------------	-------------
С	2.92858900	-1.29933200	2.49499100
Н	3.95593100	-1.29923000	2.87126800
Н	2.39695400	-0.44200100	2.91514600
Н	2.42446100	-2.21419400	2.81946600
С	3.88989500	-2.68797300	0.15131600
Н	4.83897100	-2.76125800	0.68840800
Н	3.29633100	-3.58140200	0.36418800
Н	4.08373100	-2.65340500	-0.92368100
С	-2.40432500	-1.52505900	-0.59461500
С	-2.59283000	-1.53305900	0.89695000
Н	-1.63207400	-1.56875100	1.41226100
Н	-3.21675600	-2.36952200	1.22582700
0	-3.27247700	-0.28986700	1.33024900
С	-1.16362800	-1.54414100	-1.14148000
Н	-1.14669500	-1.65836100	-2.22876900
Au	0.68367300	-1.37293400	-0.27387100
С	-1.10968000	2.55505800	1.52523900
Н	-0.64911200	3.28898400	2.19556800
Н	-1.24761000	1.64009400	2.11518700
С	-2.47439400	3.09092700	1.10528400
Н	-2.41509300	4.11151000	0.71485000
Н	-3.18855900	3.06585000	1.93013100
С	-2.19011000	2.36088200	-1.24369600
Н	-2.42192500	3.34130900	-1.67631300
Н	-2.53485300	1.58849100	-1.93619600
С	-4.47265600	2.54638100	-0.29228700
Н	-4.81624900	1.89075000	-1.09367700

Н	-5.05464400	2.36632300	0.61131400
Н	-4.55657800	3.59156200	-0.59527300
Ν	-3.03618100	2.23565200	-0.00451200
Н	1.56090000	2.07201400	1.56403500
С	-3.86113800	-1.17254400	-2.63737800
Н	-3.02829500	-0.71695100	-3.17668400
В	-4.13218000	-0.27411900	2.38213900
0	-4.44453200	-1.37252400	3.10524400
Н	-5.07833500	-1.23238800	3.81969000
С	-5.13714000	-1.34108500	-3.41167400
Н	-5.92754900	-1.78411300	-2.79774100
Н	-5.50318500	-0.38458900	-3.80725200
Н	-4.98188900	-1.99394500	-4.28044700
С	-3.66511500	-1.58763100	-1.37234500
Н	-4.51988700	-2.02439000	-0.84933100
Н	-3.00614100	1.24902700	0.33308500
F	-4.67374100	0.93922800	2.67465800

Energies for these structures computed	l as a single point in	DCM using diff	erentiated basis
set (6-31+G(d,p) for C, H, O, N, F, P ar	nd B; def2-TZVP ^[26]	for Au) were rep	ported below.

Compound Name	Energy (aU)	ΔG and ΔG^{\neq}
B-F-OH	-1740.889914	
B-F-OH-TS1	-1740.873925	$\Delta G^{\neq} = 10 \text{ kcal/mol}$
B-F-OH-Int1	-1740.924051	$\Delta G^{B\text{-}F\text{-}OH/Int1} = 21.4 \text{ kcal/mol}$
B-F-OH-TS2	-1740.915490	$\Delta G^{\neq} = 5.4 \text{ kcal/mol}$
B-F-OH-Int2	-1740.976708	$\Delta G^{Int1/Int2}=33 \text{ kcal/mol}$

Pathway II, B(OH)F moiety, in gas phase.

Figure 1. Reaction pathway modeled.

Cartesian coordinates and energies calculated for complex B-OH-F in gas phase.

Energy = -1740.516494 (aU); Number of Imaginary Frequencies = 0

Р	-2.83073900	-1.75962900	0.18883700
С	-3.95630300	-0.35889100	0.56882500
С	-5.33594200	-0.64498000	0.56923800
С	-6.28346100	0.34533400	0.81804200
С	-5.86073000	1.65218700	1.06499400
С	-4.49932100	1.94740000	1.07482400
С	-3.52145400	0.96293000	0.84044800
Н	-5.68914800	-1.64998400	0.36583400
Н	-7.33972800	0.09570200	0.81340600
Н	-6.58597200	2.43666500	1.25814600
Н	-4.17124800	2.95921000	1.29182200
С	-2.09456500	1.39392400	0.90330100
С	-1.19604600	0.86018700	1.84403300
С	-1.64327100	2.42464800	0.06696600
С	0.11585700	1.32604000	1.90836300
Н	-1.53181600	0.10558300	2.54865800
С	-0.32954500	2.90968700	0.13153100

С	0.56649900	2.34006900	1.05192300
Н	0.80019500	0.89932100	2.63759300
С	-3.73972100	-2.88080900	-0.95343100
Н	-4.63328000	-3.30322000	-0.48730200
Н	-4.02193900	-2.34118500	-1.86049900
Н	-3.07047700	-3.70039000	-1.22783300
С	-2.66909400	-2.74676200	1.73480800
Н	-3.66355000	-2.97998300	2.12688500
Н	-2.13565600	-3.67690900	1.52013600
Н	-2.11226200	-2.18643300	2.48806900
С	1.29543800	-0.54422000	-1.88281300
С	1.48642200	0.83191300	-2.40817100
Н	0.59139700	1.43120000	-2.20569500
Н	1.58560400	0.74403000	-3.49904100
0	2.65146700	1.40724900	-1.87145300
Н	2.45273600	2.20240600	-1.26266700
С	1.37428300	-1.70859600	-1.49124400
Н	1.73568100	-2.69770700	-1.28717600
Au	-0.72417100	-1.30615200	-0.73613200
С	0.11422500	4.02668200	-0.79542800
Н	-0.60769400	4.85090100	-0.75556000
Н	0.10048400	3.66920900	-1.83427400
С	1.51018100	4.56016400	-0.46080000
Н	1.46164600	5.26350500	0.38790800
Н	1.91732900	5.10854100	-1.31483400
С	2.00115200	2.81655000	1.12832800
Н	2.11709900	3.52954100	1.96526200
Н	2.66897300	1.97271500	1.32885200

С	3.82385000	3.90734200	-0.04300100
Н	4.46979900	3.05709300	0.18895000
Н	4.13033200	4.32738900	-1.00443100
Н	3.94853400	4.67581300	0.73533800
Ν	2.42462700	3.44863300	-0.13497800
Н	-2.33155300	2.85977100	-0.65439700
С	5.85428200	-1.34794500	1.25387200
Н	6.22691700	-0.58047500	1.93387500
С	6.29853500	-2.61008600	1.41376900
Н	5.93685800	-3.37921000	0.72865300
В	4.86902200	-0.93153900	0.14151100
0	4.45927200	0.35132800	-0.01455100
Н	3.87091100	0.52392200	-0.77828000
С	7.27164400	-3.07512200	2.45369300
Н	7.59055200	-2.25917500	3.10862100
Н	6.83172500	-3.86857800	3.07170400
Н	8.16181600	-3.51079500	1.98176700
F	4.36282600	-1.87503200	-0.71274700

Cartesian coordinates and energies calculated for TS B-OH-F-TS1 in gas phase.

Energy = -1740.495970 (aU); Number of Imaginary Frequencies = 1(-170.9).

Р	-3.14675700	-1.33153500	0.11537100
С	-4.02527700	0.23854200	-0.27953600
С	-5.36488500	0.12768100	-0.70042100
С	-6.11175000	1.24866400	-1.05591000
С	-5.52068500	2.51211500	-1.00304700
С	-4.19926600	2.63845300	-0.58019500
С	-3.43101700	1.52209000	-0.20163800
Н	-5.84099300	-0.84525100	-0.76219500
Н	-7.14280600	1.13260600	-1.37486000
Н	-6.08750700	3.39566100	-1.28030500
Н	-3.74678900	3.62337200	-0.51593100
С	-2.03702000	1.77624000	0.26547200
С	-1.63287200	1.48204800	1.57959200 s44

С	-1.11433400	2.38774000	-0.59222100
С	-0.33107900	1.75693100	1.99197900
Н	-2.34310900	1.06010800	2.28445400
С	0.19466900	2.67976600	-0.18387700
С	0.59685500	2.33841400	1.11716600
Н	-0.03089100	1.51769200	3.00944400
С	-3.77901900	-2.58291000	-1.08005300
Н	-4.85398500	-2.74909500	-0.97504500
Н	-3.56030600	-2.26161400	-2.10125000
Н	-3.25949000	-3.52628100	-0.89218500
С	-3.83524500	-1.88486500	1.73331100
Н	-4.92840500	-1.90409600	1.69271700
Н	-3.46234100	-2.88643500	1.96476500
Н	-3.52152500	-1.20167500	2.52569700
С	2.13407400	-1.25457000	-0.39627500
С	2.51978100	-0.25196700	-1.42022000
Н	1.58601900	0.27272100	-1.67053000
Н	2.87037900	-0.75759000	-2.32553800
0	3.52800200	0.63943000	-1.01645400
Н	3.21214200	1.39236500	-0.39927100
С	1.27650200	-1.87875900	0.31001200
Н	1.45330300	-2.70832400	0.98441000
Au	-0.78711200	-1.41673500	0.14925900 s45

С	1.16290600	3.34880500	-1.14019500
Н	0.66970300	4.18892400	-1.64272600
Н	1.44794500	2.64698300	-1.93534900
С	2.42458100	3.85054000	-0.43659300
Н	2.21345700	4.77641600	0.12522100
Н	3.19851800	4.08335500	-1.17320800
С	2.00601300	2.61672500	1.59527500
Н	2.00611500	3.50829800	2.24915500
Н	2.36604500	1.78011200	2.20448700
С	4.27752500	3.19083600	0.99728900
Н	4.66662900	2.39089200	1.63124600
Н	4.96668700	3.32559700	0.16031400
Н	4.23701700	4.12608500	1.57669500
Ν	2.94914200	2.81576900	0.47967400
Н	-1.42082200	2.64025200	-1.60492700
С	4.45814400	-1.64275100	0.26128900
Н	4.30850300	-1.51421700	1.33409300
С	4.19084400	-2.86676700	-0.27402100
Н	4.38980200	-3.01477200	-1.33647400
В	5.24185900	-0.52810200	-0.53736300
0	6.00333700	0.36701500	0.16176600
Н	6.61979000	0.85527900	-0.39918000
С	3.73735700	-4.07436300	0.47926800 546

Н	3.50603400	-3.85112400	1.52500400
Н	2.87270600	-4.54934300	-0.00009900
Н	4.53924700	-4.82489000	0.46910700
F	5.52970400	-0.78002500	-1.84687200

Cartesian coordinates and energies calculated for complex B-OH-F-Int1 in gas phase.

Energy = -1740.542306 (aU); Number of Imaginary Frequencies = 0

Р	-3.10900300	-1.09323800	0.37718200
С	-3.87871700	0.51150500	-0.11417800
С	-5.24447400	0.49310700	-0.45676200
С	-5.91134500	1.64237800	-0.87704900
С	-5.21218100	2.84593400	-0.96966600
С	-3.86241100	2.88419300	-0.62697500
С	-3.17303400	1.73807200	-0.18839200
Н	-5.80670500	-0.43264600	-0.40764000

Н	-6.96506700	1.59271100	-1.13315900
Н	-5.71426400	3.75100700	-1.29759600
Н	-3.32425200	3.82608600	-0.67422700
С	-1.73816700	1.92370000	0.18124500
С	-1.27061200	1.70317700	1.48795400
С	-0.83871200	2.43085700	-0.76551800
С	0.05461500	1.97377900	1.82001400
Н	-1.95155700	1.35024600	2.25574400
С	0.49497700	2.71285200	-0.44250500
С	0.94640900	2.48115100	0.86561400
Н	0.39987300	1.79319600	2.83469900
С	-4.05925600	-2.39099200	-0.52748800
Н	-5.11195600	-2.42118300	-0.23570500
Н	-3.98515800	-2.22463500	-1.60501400
Н	-3.60747400	-3.35914700	-0.29535100
С	-3.62263500	-1.36131300	2.13108600
Н	-4.70597500	-1.25010900	2.23583100
Н	-3.32980900	-2.36949600	2.43775900
Н	-3.12647200	-0.64244400	2.78653700
С	2.24083600	-1.80891600	-0.64630200
С	2.32820400	-0.43390800	-1.29214400
Н	1.37723600	0.08858300	-1.13846900
Н	2.50401100	-0.52106300	-2.37411700 548

0	3.39427000	0.29317700	-0.69410000
Н	3.33115800	1.83866800	-0.29023700
С	1.11079200	-2.33970900	-0.08145200
Н	1.25231200	-3.32928500	0.35729900
Au	-0.77827400	-1.59166000	0.07592300
С	1.44029000	3.21474300	-1.51741700
Н	0.96282600	4.00589400	-2.10577700
Н	1.65923700	2.40187200	-2.22180100
С	2.75058000	3.75936700	-0.95480400
Н	2.61433800	4.73916600	-0.48502400
Н	3.50692900	3.85448000	-1.73715900
С	2.37075900	2.78084200	1.28070500
Н	2.44352100	3.74616800	1.79676500
Н	2.76319200	1.99397800	1.92947600
С	4.68279300	3.21141900	0.50419300
Н	5.01836900	2.49291500	1.25080100
Н	5.32969400	3.15234200	-0.37235200
Н	4.68223400	4.22778000	0.90479300
Ν	3.29367100	2.83897400	0.09814500
Н	-1.18462700	2.60698900	-1.78134300
С	3.64275200	-2.01620100	0.24909000
Н	3.47724900	-2.55448900	1.18222100
С	3.53322500	-2.76779900	-0.96297200 549

Н	3.99745400	-2.31745500	-1.84166500
В	4.25831500	-0.47680700	0.26320000
0	4.18224600	0.18563000	1.55217100
Н	4.92993000	-0.06520500	2.10769200
С	3.41045800	-4.27287200	-1.02704000
Н	2.95263000	-4.69485500	-0.12829600
Н	2.84261100	-4.59990400	-1.90300300
Н	4.41946800	-4.69337800	-1.10592000
F	5.59305200	-0.51761100	-0.20937600

Cartesian coordinates and energies calculated for TS B-OH-F-TS2 in gas phase.

Energy = -1740.536816 (aU); Number of Imaginary Frequencies = 1(-124.6).

- P -3.14799600 -1.22860800 0.17067700
- C -3.95399400 0.39594600 -0.19515100

С	-5.31895700	0.36663000	-0.54063000
С	-6.01894100	1.52430500	-0.87381500
С	-5.35413100	2.75104600	-0.87317800
С	-4.00680200	2.80133600	-0.52323700
С	-3.28587800	1.64453800	-0.17020200
Н	-5.85434100	-0.57667700	-0.56038500
Н	-7.07101600	1.46467500	-1.13478600
Н	-5.88149700	3.66379100	-1.13325000
Н	-3.49546600	3.75898400	-0.49688800
С	-1.85933200	1.84761500	0.22598600
С	-1.40535700	1.58319700	1.52932400
С	-0.96035300	2.41561000	-0.68501600
С	-0.09221500	1.87179200	1.89199400
Н	-2.08688800	1.17440900	2.26873200
С	0.36237100	2.71372000	-0.33210500
С	0.80101600	2.43544000	0.97073800
Н	0.24121100	1.65815700	2.90443100
С	-3.92139500	-2.41982200	-1.00842500
Н	-5.00312100	-2.50365800	-0.87869300
Н	-3.70252700	-2.11551000	-2.03500800
Н	-3.47124300	-3.40138600	-0.83651100
С	-3.86202000	-1.72798200	1.79932600
Н	-4.95476900	-1.67890600	1.77931000 ^{\$51}

Н	-3.54850700	-2.75016600	2.02929100
Н	-3.49115700	-1.06715100	2.58653900
С	2.26544400	-1.52240600	-0.28749900
С	2.32450200	-0.34803400	-1.23581000
Н	1.37651300	0.19666200	-1.22539800
Н	2.52647300	-0.66777800	-2.26983900
0	3.38277400	0.48445700	-0.77204000
Н	3.26837600	1.98144000	-0.17911100
С	1.18964100	-2.13370100	0.24113700
Н	1.39991800	-3.00234500	0.86818200
Au	-0.77897900	-1.57406000	0.14178300
С	1.30837200	3.29117300	-1.36655000
Н	0.80767600	4.07502800	-1.94513900
Н	1.59144300	2.51301600	-2.08668600
С	2.56972000	3.88529400	-0.74893500
Н	2.36448500	4.82947800	-0.23338500
Н	3.33531300	4.06393200	-1.50705000
С	2.20988800	2.75985000	1.42234200
Н	2.23454900	3.68462100	2.01188300
Н	2.62295100	1.95442700	2.03509800
С	4.49632000	3.40734900	0.73658500
Н	4.88606100	2.67016500	1.43661300
Н	5.16208400	3.46289700	-0.12552400 552

Н	4.39519300	4.39149400	1.19987300
Ν	3.15269500	2.94680300	0.26939800
Н	-1.29749100	2.62934200	-1.69649300
С	3.74602900	-1.81720900	0.19237000
Н	3.81225600	-2.05137800	1.25609100
С	3.85663300	-2.92491600	-0.66267500
Н	3.82498000	-2.73269200	-1.73559900
В	4.51704200	-0.32008800	-0.25175000
0	5.07751500	0.35721400	0.87713000
Н	6.01666000	0.15624800	0.96543400
С	4.04590800	-4.34220800	-0.26980900
Н	5.04568500	-4.64837400	-0.61714100
Н	3.98735000	-4.49665800	0.80928300
Н	3.33888200	-5.00060200	-0.78757000
F	5.46934000	-0.59639100	-1.25729800

Cartesian coordinates and energies calculated for complex B-OH-F-Int2 in gas phase.

Energy = -1740.596431 (aU); Number of Imaginary Frequencies = 0

Р	2.88543900	-1.21131100	0.66663200
С	3.97233900	0.23215600	0.25153400
С	5.35829900	0.09256500	0.45432400
С	6.25183400	1.11528700	0.13950100
С	5.76980400	2.31022500	-0.39656000
С	4.39968000	2.47064500	-0.59726600
С	3.48469700	1.45412900	-0.27302800
Н	5.75850300	-0.83129200	0.85896300
Н	7.31528100	0.97482000	0.30700800
Н	6.45349100	3.11366100	-0.65333500
Н	4.01962100	3.40369300	-1.00319500
С	2.03411400	1.73653600	-0.50475800
С	1.51515100	1.76346500	-1.81049700

С	1.17446700	2.01941400	0.56107100
С	0.16006100	1.99214400	-2.02273600
Н	2.16955200	1.56617000	-2.65382400
С	-0.18989800	2.26893600	0.35851400
С	-0.70380500	2.22018600	-0.94345300
Н	-0.23451100	1.96426800	-3.03548000
С	2.90154700	-1.26175100	2.51381500
Н	3.92554300	-1.25812000	2.89910600
Н	2.36927300	-0.39519600	2.91387700
Н	2.39150800	-2.16903100	2.85017900
С	3.87528400	-2.69879100	0.20516700
Н	4.81711300	-2.77153900	0.75492700
Н	3.27173000	-3.58360000	0.42585600
Н	4.08202700	-2.68419300	-0.86787800
С	-2.40401700	-1.52122100	-0.61278000
С	-2.59864800	-1.53804800	0.87798900
Н	-1.63903300	-1.57464200	1.39546700
Н	-3.22000600	-2.38062100	1.19688300
0	-3.28279500	-0.29967500	1.31617800
С	-1.16041700	-1.53638700	-1.15311900
Н	-1.13793400	-1.64435100	-2.24088600
Au	0.68215500	-1.36858700	-0.27466400
С	-1.09837500	2.52939000	1.54429400 ^{\$55}

Η	-0.63706100	3.25154100	2.22684600
Н	-1.23545700	1.60433200	2.11852400
С	-2.46451600	3.07146500	1.13687200
Н	-2.40781600	4.10056400	0.76903100
Н	-3.17850900	3.02138200	1.96043800
С	-2.17985600	2.38892700	-1.22697000
Н	-2.40865200	3.37906400	-1.63860700
Н	-2.52686900	1.63293000	-1.93623300
С	-4.46271500	2.55698700	-0.27025100
Н	-4.80450700	1.92560500	-1.09167300
Н	-5.04069300	2.34485300	0.62896000
Н	-4.54756000	3.61075200	-0.54179100
Ν	-3.02569800	2.24006400	0.00884300
Н	1.57169600	2.04255700	1.57311200
С	-3.85111000	-1.15731700	-2.65972600
Н	-3.01622200	-0.69646700	-3.19126600
В	-4.15273100	-0.28210100	2.35936600
0	-4.71096600	0.92160500	2.69466000
Н	-5.32328700	0.86932700	3.44007500
С	-5.12290400	-1.32201100	-3.44152300
Н	-5.91578700	-1.77055600	-2.83484100
Н	-5.48812100	-0.36307300	-3.83184100
Н	-4.96228700	-1.96829100	-4.31422600 ^{\$56}

С	-3.66107100	-1.58033700	-1.39651100
Н	-4.51809300	-2.02154500	-0.88086000
Н	-2.99749900	1.24800600	0.32796700
F	-4.46480700	-1.39309900	3.04654100

Energies for these structures computed as a single point in DCM using differentiated basis set (6-31+G(d,p) for C, H, O, N, F, P and B; def2-TZVP^[26] for Au) were reported below.

Compound Name	Energy (aU)	ΔG and ΔG^{\neq}
B-OH-F	-1740.897698	
B-OH-F-TS1	-1740.873480	$\Delta G^{\neq} = 15.2 \text{ kcal/mol}$
B-OH-F-Int1	-1740.923618	$\Delta G^{CPX-PROD} = 16.3 \text{ kcal/mol}$
B-OH-F-TS2	-1740.917418	$\Delta G^{\neq} = 3.9 \text{ kcal/mol}$
B-OH-F-Int2	-1740.976635	$\Delta G^{\text{PROD-PROD-REAL}} = 33.3 \text{ kcal/mol}$

Pathway I, B(OH)₂ moiety, in gas phase.

Figure 1. Reaction pathway modeled.

Cartesian coordinates and energies calculated for complex B-(OH)₂ in gas phase.

Energy = -1716.485291 (aU); Number of Imaginary Frequencies = 0

P -2.75253500 -1.71707800 0.02812200

С	-3.86669500	-0.34431700	0.52425300
С	-5.24670500	-0.62917500	0.52657500
С	-6.18837700	0.34213400	0.85814800
С	-5.75932100	1.62869300	1.18785000
С	-4.39743100	1.92171300	1.19681700
С	-3.42522000	0.95489400	0.88012800
Н	-5.60442500	-1.61777700	0.25966700
Н	-7.24504600	0.09424900	0.85324500
Н	-6.48012200	2.39849200	1.44582400
Н	-4.06406500	2.91599900	1.47747700
С	-1.99607200	1.37751100	0.95232200
С	-1.09219000	0.78816800	1.85427800
С	-1.54717300	2.44944800	0.16810800

С	0.22284400	1.24308000	1.93129600
Н	-1.42605600	-0.00347300	2.51843900
С	-0.22945600	2.92236500	0.24582600
С	0.67097200	2.30012700	1.12674800
Н	0.91282000	0.77311200	2.62759000
С	-3.66547700	-2.72165600	-1.21460400
Н	-4.57005400	-3.16760400	-0.79401100
Н	-3.93102200	-2.10069700	-2.07339100
Н	-3.00686900	-3.52553200	-1.55369700 ^{\$59}

С	-2.60663300	-2.83692600	1.48217500
Н	-3.60411800	-3.10182800	1.84557800
Н	-2.07285000	-3.74554400	1.19031300
Н	-2.05375800	-2.34509900	2.28472600
С	1.39067300	-0.40816900	-1.90806400
С	1.56512400	0.98523000	-2.39948800
Н	0.68034500	1.57785000	-2.14172400
Н	1.61964200	0.93367200	-3.49554100
0	2.75245600	1.54538000	-1.89366100
Н	2.56576100	2.29262200	-1.22080500
С	1.49408600	-1.58262100	-1.55391900
Н	1.85517500	-2.57385400	-1.35771900
Au	-0.63117800	-1.20906900	-0.82912700
С	0.21520100	4.08126900	-0.62795800
Н	-0.50041800	4.90750700	-0.54232300
Н	0.19109800	3.77600600	-1.68318000
С	1.61705600	4.58988700	-0.27889000
Н	1.57819200	5.25167200	0.60301700
Н	2.02063200	5.17723400	-1.10857500
С	2.10770600	2.76509000	1.22009900
Н	2.22874600	3.43651900	2.08990500
Н	2.77122100	1.90840500	1.37275600

Н	4.57310600	3.06004500	0.31409300
Н	4.24106600	4.37542700	-0.83453200
Н	4.04653500	4.65334300	0.91647300
Ν	2.52967500	3.46036800	-0.01203800
Н	-2.23994400	2.92648400	-0.52187800
С	4.96455600	-1.77220600	1.50792600
Н	4.77669900	-1.22573500	2.43462600
С	5.49256300	-3.00771000	1.60107200
Н	5.69809500	-3.55222300	0.67767100
В	4.64205600	-1.07304100	0.16013500
0	4.19607000	0.22840600	0.17954800
Н	3.87675700	0.58574200	-0.66956100
0	4.77761700	-1.78758500	-1.01961700
Н	4.74272400	-1.25699800	-1.82436100
С	5.85053200	-3.72060800	2.87075200
Н	5.61533300	-3.12171600	3.75586600
Н	5.31973600	-4.67876500	2.94586100
Н	6.92140100	-3.96129600	2.89033200

Cartesian coordinates and energies calculated for TS B-(OH)2-TS1 in gas phase.

Energy = -1716.467936 (aU); Number of Imaginary Frequencies = 1(-166.05).

Р	-3.04985000	-1.42602600	0.00214500
С	-4.05702800	0.09686500	-0.24244100
С	-5.40658400	-0.08867100	-0.60142000
С	-6.24676600	0.99273700	-0.85580500
С	-5.74190700	2.29130000	-0.76162800
С	-4.41216800	2.49030300	-0.39683100
С	-3.55107100	1.41270900	-0.11996200
Н	-5.81615000	-1.08983600	-0.69308500
Н	-7.28307200	0.82046000	-1.12925500
Н	-6.38242400	3.14485700	-0.96178800
Н	-4.02412500	3.49988000	-0.30099500
С	-2.15529400	1.73614800	0.29771600
С	-1.70548200	1.48398400	1.60524500
С	-1.28346300	2.36429300	-0.59870100

С	-0.40604700	1.82303100	1.97597400
Н	-2.37732500	1.03954000	2.33395200
С	0.02504500	2.71217200	-0.23463600
С	0.47346600	2.42109100	1.06319700
Н	-0.06836700	1.61819400	2.98924400
С	-3.52472100	-2.55561700	-1.37514000
Н	-4.59521400	-2.77517500	-1.37911000
Н	-3.24754400	-2.10306000	-2.33035000
Н	-2.97259300	-3.49218200	-1.25925300
С	-3.75797300	-2.23270800	1.50153500
Н	-4.84093400	-2.35025800	1.40113300
Н	-3.29784600	-3.21538700	1.63668700
Н	-3.54824900	-1.62233800	2.38316800
С	2.26307500	-1.19540700	-0.36254900
С	2.61322100	-0.28651400	-1.48618300
Н	1.63934300	0.08105800	-1.84900800
Н	3.07405500	-0.85650300	-2.29852600
0	3.49344700	0.75446500	-1.16126500
Н	3.09299100	1.45790700	-0.56601500
С	1.37582600	-1.71444800	0.40354000
Н	1.56531300	-2.45235200	1.17470200
Au	-0.69024800	-1.35526100	0.16110700
С	0.94518100	3.37932300	-1.23794200 563

Н	0.41002100	4.17941600	-1.76262600
Н	1.23998300	2.65266200	-2.00706700
С	2.20329500	3.95005500	-0.58251600
Н	1.97064100	4.88630400	-0.04486100
Н	2.94888200	4.18828100	-1.34651500
С	1.88414300	2.76412000	1.49231400
Н	1.86819100	3.67414800	2.12210800
Н	2.29045500	1.95869700	2.11441900
С	4.11867600	3.37268900	0.80449000
Н	4.54308800	2.59599400	1.44591200
Н	4.77546000	3.49897700	-0.06038500
Н	4.08663900	4.32238500	1.36275400
Ν	2.78398300	2.96062200	0.34476700
Н	-1.62810700	2.58329600	-1.60704000
С	4.48066000	-1.63586600	0.37133000
Н	4.29349500	-1.48605500	1.43497000
С	4.17281800	-2.85378300	-0.16495900
Н	4.41145200	-3.01693400	-1.21667500
В	5.42782700	-0.61308700	-0.37484300
0	6.01942400	0.34731700	0.40497900
Н	6.69568400	0.88713500	-0.02050200
0	5.75966800	-0.92284900	-1.67171900
Н	6.32186100	-0.29681600	-2.14148900 564

С	3.64669200	-4.03823800	0.57592500
Н	3.38227700	-3.80380100	1.61094100
Н	2.79033800	-4.49216400	0.06427100
Н	4.43024600	-4.80809600	0.60223800

Cartesian coordinates and energies calculated for complex $B-(OH)_2$ -int1 in gas phase.

Energy = -1716.493605 (aU); Number of Imaginary Frequencies = 0

Р	-3.04268200	-1.31197700	0.17386600
С	-3.96805300	0.21848400	-0.27600000
С	-5.30672000	0.06357100	-0.68505800
С	-6.07979500	1.15325200	-1.07986600
С	-5.51690600	2.43080800	-1.07771800
С	-4.19712300	2.60184700	-0.66629800
С	-3.40315500	1.51694000	-0.25008400
Н	-5.76153600	-0.92138000	-0.70694200

Н	-7.10937500	1.00256400	-1.38920100
Н	-6.10448100	3.29058100	-1.38505600
Н	-3.76607500	3.59811900	-0.64086200
С	-2.01338200	1.81762000	0.19997200
С	-1.59138200	1.56390700	1.51672700
С	-1.11256700	2.43013400	-0.67994200
С	-0.29484900	1.88697800	1.91289600
Н	-2.28444700	1.13994300	2.23739500
С	0.19157300	2.76477100	-0.29045600
С	0.60984000	2.47336900	1.01761800
Н	0.01836200	1.68312100	2.93422800
С	-3.63663600	-2.60850200	-0.99672600
Н	-4.71009200	-2.79170400	-0.90642400
Н	-3.40645700	-2.31222900	-2.02311900
Н	-3.10447600	-3.53753700	-0.77482300
С	-3.76117400	-1.83993200	1.79022000
Н	-4.85204500	-1.89169600	1.72685100
Н	-3.36603000	-2.82359500	2.05909500
Н	-3.48578300	-1.12756200	2.57144000
С	2.44069800	-1.39027000	-0.28476400
С	2.39425300	-0.26737600	-1.32307500
Н	1.41596700	0.21929900	-1.25037600
Н	2.49837600	-0.66891500	-2.33772900 566

0	3.45340000	0.65240200	-1.12456000
Н	3.18622200	1.41861500	-0.53386100
С	1.34054500	-1.84237800	0.40804500
Н	1.56633300	-2.63168400	1.12794800
Au	-0.64116800	-1.40332600	0.25577100
С	1.14143400	3.41064000	-1.28005600
Н	0.63278500	4.22412700	-1.81047200
Н	1.42686300	2.67675400	-2.04509100
С	2.40535300	3.95174400	-0.60956100
Н	2.19261100	4.90162100	-0.08772000
Н	3.16997000	4.15783100	-1.36413900
С	2.01508700	2.80346200	1.47349200
Н	1.99943700	3.72768500	2.08236400
Н	2.39468700	2.00612100	2.12226300
С	4.27627800	3.34858300	0.82370500
Н	4.65667500	2.57978600	1.50131100
Н	4.95882100	3.43227800	-0.02682800
Н	4.25854000	4.31497500	1.35339500
Ν	2.94310300	2.96020900	0.34186800
Н	-1.43106300	2.64477100	-1.69763600
С	3.91150400	-1.77181700	0.19951600
Н	3.92721600	-2.04888800	1.25344600
С	3.42941600	-2.78040800	-0.70391100 567

Н	3.61918700	-2.60774200	-1.76201600
В	5.06646800	-0.75489900	-0.25763600
0	5.58499000	0.04546900	0.73016000
Н	6.40225900	0.50908100	0.51329800
0	5.65775400	-1.04598200	-1.46235100
Н	6.32284300	-0.42781700	-1.78602000
С	3.11193400	-4.20376000	-0.34256000
Н	2.91886300	-4.34491600	0.72287200
Н	2.28192600	-4.61105400	-0.92553200
Н	4.00618100	-4.79024800	-0.59350500

Cartesian coordinates and energies calculated for TS $B\-(OH)_2\-TS2$ in gas phase.

Energy = -1716.500687 (aU); Number of Imaginary Frequencies = 1(-107.61).

Р	-3.13804900	-1.24852300	0.12092700
С	-3.96334900	0.37014900	-0.23042200
С	-5.32307800	0.32772000	-0.59417800

С	-6.03411200	1.48124400	-0.91836400
С	-5.38603500	2.71674900	-0.88974800
С	-4.04404900	2.77989200	-0.52153800
С	-3.31297600	1.62716900	-0.17718100
Н	-5.84513800	-0.62250000	-0.63511300
Н	-7.08187400	1.41199300	-1.19395200
Н	-5.92264800	3.62620000	-1.14238100
Н	-3.54566800	3.74357200	-0.47391900
С	-1.89351100	1.83567600	0.23974100
С	-1.45577700	1.55247100	1.54475600
С	-0.98307200	2.41226100	-0.65375200
С	-0.14329600	1.82165200	1.92272300
Н	-2.14818400	1.13849600	2.27107200
С	0.33927700	2.69234900	-0.28458300
С	0.76459000	2.38484000	1.01565200
Н	0.17933500	1.58886000	2.93446600
С	-3.85187400	-2.42168800	-1.11272000
Н	-4.93631400	-2.52259700	-1.02347800
Н	-3.60168600	-2.08931000	-2.12330500
Н	-3.39395600	-3.40104000	-0.94882600
С	-3.89726600	-1.79932300	1.71217200
Н	-4.98947400	-1.77162200	1.65586600
Н	-3.57080600	-2.81997000	1.93066800 569

Н	-3.56701800	-1.14876000	2.52575400
С	2.28944300	-1.45041900	-0.24545800
С	2.32862600	-0.32738400	-1.25909400
Н	1.38255000	0.22109200	-1.25706000
Н	2.50412400	-0.70966400	-2.27622700
0	3.40407100	0.52236200	-0.87150100
Н	3.26268200	1.94216300	-0.13949800
С	1.21930500	-2.03969300	0.32294200
Н	1.44177900	-2.86724800	0.99953600
Au	-0.76012600	-1.53767400	0.16946300
С	1.29977900	3.28305100	-1.29738900
Н	0.80933900	4.08003200	-1.86683000
Н	1.58992800	2.51704600	-2.02731000
С	2.55471900	3.86010700	-0.65135200
Н	2.34332300	4.79021100	-0.11288600
Н	3.32724700	4.05997000	-1.39699600
С	2.17559700	2.67422900	1.48246500
Н	2.20722600	3.57448100	2.10850500
Н	2.57348000	1.84167100	2.06872900
С	4.45999600	3.35804100	0.84829200
Н	4.85603500	2.60304900	1.52485500
Н	5.13779800	3.45336300	-0.00012100
Н	4.33553600	4.32347200	1.34456000 ^{\$70}

Ν	3.13019600	2.89477500	0.34570000
Н	-1.30909900	2.64371900	-1.66496500
С	3.77993300	-1.72165000	0.21501200
Н	3.87301400	-1.85508300	1.29423600
С	3.82247800	-2.90784000	-0.53864500
Н	3.79668100	-2.80032100	-1.62239400
В	4.57301600	-0.32638900	-0.43132300
0	5.26012600	0.44129700	0.58036700
Н	6.17257800	0.14217200	0.66588200
0	5.38469400	-0.80972600	-1.52410000
Н	5.76166600	-0.08727800	-2.04087100
С	3.95825900	-4.29170900	-0.02369400
Н	3.85309100	-4.35781700	1.06116000
Н	3.26603000	-4.98102900	-0.51896100
Н	4.96988900	-4.63356400	-0.29691500

Cartesian coordinates and energies calculated for complex B-(OH)₂-Int2 in gas phase.

Energy = -1716.571007 (aU); Number of Imaginary Frequencies = 0

Р	2.91010600	-1.21039300	0.63846300
С	3.97168600	0.26124400	0.25448800
С	5.35522900	0.14986700	0.48977900
С	6.23433200	1.19243900	0.20134700
С	5.73966700	2.38002300	-0.33995000
С	4.37150300	2.51300500	-0.57145100
С	3.47079900	1.47539400	-0.27476200
Н	5.76447500	-0.76739700	0.90097100
Н	7.29626500	1.07364100	0.39358000
Н	6.41214300	3.19896500	-0.57669900
Н	3.98132300	3.43998500	-0.98165400
С	2.01914300	1.73055800	-0.53371400
С	1.50940800	1.69432000	-1.84255100
С	1.14964900	2.05113800	0.51293300
----	-------------	-------------	-------------------------------
С	0.15305900	1.89784400	-2.07288700
Н	2.17175900	1.46844600	-2.67244600
С	-0.21596900	2.27612300	0.29094000
С	-0.72090200	2.16228400	-1.01013500
Н	-0.23463200	1.81969000	-3.08565900
С	2.96988100	-1.32690300	2.48144200
Н	4.00166300	-1.32963200	2.84534600
Н	2.43999300	-0.47929600	2.92303700
Н	2.47293500	-2.24929200	2.79545700
С	3.91522900	-2.66198400	0.09957000
Н	4.87673800	-2.72797200	0.61511700
Н	3.33920700	-3.56707200	0.31147800
Н	4.08597700	-2.60891500	-0.97862400
С	-2.40168300	-1.52369100	-0.54906300
С	-2.58277500	-1.47620900	0.94451000
Н	-1.61629100	-1.48134400	1.45170700
Н	-3.18385300	-2.31686800	1.30362100
0	-3.28208000	-0.23875300	1.33557400
С	-1.16583500	-1.57160900	-1.10444800
Н	-1.15710500	-1.72891900	-2.18647000
Au	0.68853000	-1.38011200	-0.25659100
С	-1.13420100	2.58373600	1.45713400 _{\$73}

Η	-0.68101500	3.33817900	2.10959900
Н	-1.27221600	1.68447500	2.07039000
С	-2.49970900	3.09927300	1.01459700
Н	-2.44458900	4.10921200	0.59638300
Н	-3.21796100	3.08528900	1.83556200
С	-2.19779100	2.29572500	-1.30844400
Н	-2.43467900	3.25730400	-1.77922900
Н	-2.53150800	1.49550800	-1.97419000
С	-4.48484800	2.50472500	-0.37706000
Н	-4.81651700	1.83170500	-1.16908200
Н	-5.06765400	2.33139000	0.52718700
Н	-4.57343800	3.54358200	-0.70052500
Ν	-3.04965700	2.20857800	-0.07161400
Н	1.53971600	2.12159100	1.52558200
С	-3.86928000	-1.24380000	-2.59601000
Н	-3.03791500	-0.81428800	-3.15848300
В	-4.12706300	-0.19683500	2.41474700
0	-4.68210400	1.04968100	2.65137000
Н	-5.28346300	1.11286200	3.40144200
С	-5.15218700	-1.43344200	-3.35422900
Н	-5.94068700	-1.84725300	-2.71772100
Н	-5.51536300	-0.49017300	-3.78309800
Н	-5.00843300	-2.11989700	-4.19881300 574

С	-3.66711200	-1.61000800	-1.31690800
Н	-4.52136400	-2.01923300	-0.77136100
Н	-3.02462800	1.23275200	0.30469000
0	-4.35095400	-1.32718700	3.14858200
Н	-4.96407000	-1.27842500	3.88927000

Energies for these structures computed as a single point in DCM using differentiated basis set (6-31+G(d,p) for C, H, O, N, P and B; def2-TZVP^[26] for Au) were reported below.

Compound Name	Energy (aU)	ΔG and ΔG^{\neq} (for TSs)
B-(OH)2	-1716.869283	
B-(OH) ₂ -TS1	-1716.844895	$\Delta G^{\neq} = 15.3 \text{ kcal/mol}$
B-(OH) ₂ -Int1	-1716.880957	$\Delta G^{CPX-INTERM} = 7.3 \text{ kcal/mol}$
B-(OH) ₂ -TS2	-1716.879067	$\Delta G^{\neq} = 1.18 \text{ kcal/mol}$
B-(OH) ₂ -Int2	-1716.952507	$\Delta G^{\text{INTERM-PROD-REAL}} = 44.9 \text{ kcal/mol}$

Pathway for L3, B(F)OH moiety, *in gas phase* and in DCM as a solvent.

Figure 1. Reaction pathway modeled.

Cartesian coordinates and energies calculated for complex L3-B-F-OH in gas phase.

Energy = -1740.516199 (aU); Number of Imaginary Frequencies = 0.

Р	-3.34836900	-1.52421600	0.13634700

C -4.23883300 0.08118900 0.18145600

С	-5.62700200	0.03889100	-0.05639900
С	-6.39482200	1.20101400	-0.07821800
С	-5.77765400	2.43549800	0.12994900
С	-4.40686000	2.49060400	0.37438300
С	-3.61262000	1.33039800	0.41811900
Н	-6.12612400	-0.90752700	-0.23529300
Н	-7.46281400	1.13955900	-0.26169900
Н	-6.36116600	3.35085100	0.11130900
Н	-3.93154700	3.44899400	0.55970000
С	-2.16165200	1.50595800	0.72229200
С	-1.58946000	1.01537300	1.90897500
С	-1.34924700	2.24601200	-0.14837700
С	-0.24004600	1.23356900	2.18392400
Н	-2.20813400	0.49089300	2.63161200
С	0.00590000	2.47192700	0.12602100
С	0.57917200	1.94764000	1.29730100
Н	0.18563700	0.85077000	3.10839700
С	-4.19349300	-2.56993500	-1.11884200
Н	-5.22936000	-2.78107300	-0.84214100
Н	-4.17144000	-2.07308600	-2.09164500
Н	-3.65297500	-3.51695200	-1.19585700
С	-3.69429500	-2.36652600	1.73597600
Н	-4.77382800	-2.39854700	1.91130200 577

Н	-3.30045900	-3.38619600	1.70677800
Н	-3.21654200	-1.82534200	2.55516000
С	1.22282700	-1.16568500	-1.09892800
С	1.55601500	-0.14126600	-2.12766700
Н	0.69721000	0.52492700	-2.27284000
Н	1.72467900	-0.67281800	-3.07285500
0	2.72298200	0.55689000	-1.78187300
Н	2.51746900	1.44299200	-1.31686200
С	1.16267400	-2.05268900	-0.24782000
Н	1.39685400	-2.84947600	0.43048200
Au	-1.04334900	-1.48707300	-0.27781700
С	0.83514000	3.31494500	-0.82237100
Н	0.67012700	4.38561800	-0.59953300
Н	0.50874100	3.15894700	-1.85700000
С	2.05794500	2.11913000	1.57554200
Н	2.21558600	2.39770900	2.62376300
Н	2.56063100	1.15323800	1.43696600
Н	-1.78318200	2.64962500	-1.06089400
С	6.94965800	-0.77296700	0.79398600
Н	7.49837500	-0.15975800	1.51068000
С	7.40010600	-2.01808900	0.54476400
Н	6.85646700	-2.62878500	-0.17842600
В	5.70768600	-0.17366200	0.09852800 _{\$78}

0	4.92959300	-0.85509100	-0.77482200
Н	4.19981800	-0.32662700	-1.15788900
С	8.60304000	-2.65903700	1.16706300
Н	9.09638500	-1.99405200	1.88188600
Н	8.32589500	-3.58597800	1.68597100
Н	9.33132700	-2.94384100	0.39660600
С	2.72202500	3.15832800	0.67097200
Н	2.48730800	4.18012300	1.01535200
Н	3.80614400	3.03279500	0.69970400
Ν	2.27027300	2.99643000	-0.72991000
С	3.05514900	3.85263000	-1.63730900
Н	4.10805900	3.56679500	-1.58116200
Н	2.71131300	3.71185500	-2.66594600
Н	2.96107800	4.91795800	-1.37606700
F	5.35285000	1.12065200	0.38936900

Cartesian coordinates and energies calculated for TS L3-FOH-TS-I in gas phase.

Energy = -1740.492768	(aU); Number	of Imaginary	Frequencies =	= 1(-170.80).
-----------------------	--------------	--------------	---------------	---------------

Р	-3.14018500	-1.29014300	0.18193600
С	-3.88049700	0.22111300	-0.56000300
С	-5.09103100	0.07688900	-1.26496400
С	-5.69932400	1.16172200	-1.89430500
С	-5.09487800	2.41777500	-1.83578400
С	-3.89924500	2.57634800	-1.13700600
С	-3.27444900	1.50022500	-0.48209100
Н	-5.57173100	-0.89213200	-1.33824300
Н	-6.63332100	1.02125100	-2.42922900
Н	-5.55376600	3.27179600	-2.32450400
Н	-3.43975400	3.55810900	-1.07355300
С	-2.01229000	1.79722600	0.26085300
С	-1.94534900	1.71650200	1.66063300
С	-0.88409300	2.26306100	-0.43764700

С	-0.77812500	2.07033900	2.34429300
Н	-2.82295900	1.41440100	2.22406700
С	0.27724600	2.63170800	0.24367900
С	0.33790300	2.53290300	1.64423200
Н	-0.74867500	2.00647900	3.42900100
С	-3.79343500	-2.71882600	-0.77821700
Н	-4.87695600	-2.82086500	-0.67550100
Н	-3.53421300	-2.61385500	-1.83429900
Н	-3.32174400	-3.62648100	-0.39263400
С	-3.90943400	-1.51553200	1.84031800
Н	-4.99821300	-1.44532300	1.75850400
Н	-3.63683400	-2.50024700	2.23053900
Н	-3.55089600	-0.75375500	2.53375300
С	2.00381400	-1.30469000	-0.41603300
С	2.34668500	-0.47752900	-1.59231200
Н	1.40220700	-0.02763300	-1.93215800
Н	2.71672200	-1.12197300	-2.39712800
0	3.32428200	0.50217000	-1.35105000
Н	3.02278700	1.32542400	-0.74904300
С	1.28831900	-1.87645300	0.45308500
Н	1.51245600	-2.58938100	1.23512700
Au	-0.79472000	-1.42882600	0.26348700
С	1.47906100	3.22151100	-0.44864700 581

Н	1.49213100	4.30889600	-0.26426000
Н	1.42031800	3.08827600	-1.53395000
С	1.64295000	2.93774400	2.28013000
Н	1.73220700	4.03345900	2.29236100
Н	1.70098600	2.60691300	3.32176100
Н	-0.92566500	2.34675900	-1.52128200
С	4.55192400	-1.40507000	0.11862800
Н	4.43132000	-1.05391400	1.14602200
С	4.40412200	-2.73416300	-0.10772200
Н	4.56670100	-3.10195000	-1.12207600
В	5.04251700	-0.37648100	-0.97949000
0	5.35238600	-0.88745700	-2.22317600
Н	5.79757200	-0.25308600	-2.79799200
С	4.10171700	-3.77195800	0.92652000
Н	3.93711900	-3.33453300	1.91628700
Н	3.22924500	-4.37674300	0.64469200
Н	4.94054900	-4.47584900	1.00516500
С	2.81255000	2.33015100	1.48680700
Н	3.76715200	2.68400700	1.88437500
Н	2.79298200	1.24138300	1.61147900
Ν	2.76881600	2.63289900	0.01769900
С	3.89033800	3.50334400	-0.40250100
Н	4.83661200	3.00569700	-0.18553600 582

Н	3.83037600	3.66871500	-1.48196900
Н	3.85857300	4.47780100	0.10504000
F	5.69531100	0.75178600	-0.54151100

Cartesian coordinates and energies calculated for complex L3-FOH-INT in gas phase.

Energy = -1740.540558 (aU); Number of Imaginary Frequencies = 0.

Р	-3.14087000	-0.95126300	0.38614900
С	-3.73634600	0.65001100	-0.32321700
С	-5.03177800	0.66575700	-0.87506700
С	-5.56091100	1.80459500	-1.48041600
С	-4.78911200	2.96349600	-1.55356100
С	-3.50801100	2.96969800	-1.00596200
С	-2.95832900	1.83598100	-0.37852300
Н	-5.64708700	-0.22583800	-0.84653300
Н	-6.56461000	1.77983000	-1.89313400

Н	-5.18280400	3.85993200	-2.02280500
Н	-2.91902200	3.88144100	-1.03542500
С	-1.59458000	1.99724100	0.20789300
С	-1.35195600	1.82257400	1.58088000
С	-0.53157000	2.43569000	-0.59462000
С	-0.08781100	2.05216800	2.11654900
Н	-2.16631300	1.54067000	2.23979400
С	0.73830800	2.68182500	-0.05646500
С	0.97680300	2.47985200	1.31122800
Н	0.07797200	1.90349300	3.18044800
С	-4.13745900	-2.26131900	-0.44940000
Н	-5.20351900	-2.18937800	-0.21939000
Н	-3.99225700	-2.21452500	-1.53138200
Н	-3.77245300	-3.22891600	-0.09444700
С	-3.79149600	-1.02048200	2.11357100
Н	-4.85828600	-0.77838200	2.12683700
Н	-3.64423500	-2.03193800	2.50319300
Н	-3.25749800	-0.32243400	2.75998600
С	2.09909500	-1.89357600	-0.62341300
С	2.09620700	-0.50901000	-1.25243400
Н	1.21726800	0.03516500	-0.88776200
Н	2.03227100	-0.57414100	-2.34791600
0	3.29647100	0.16821500	-0.90242700 _{\$84}

Н	3.22915500	1.69734500	-0.50777100
С	1.01789000	-2.44213000	0.01360900
Н	1.17816100	-3.43757900	0.43075700
Au	-0.84569900	-1.62932900	0.20059200
С	1.84371200	3.17568900	-0.96675600
Н	1.84127500	4.26949100	-1.05225500
Н	1.73814000	2.76145700	-1.97298400
С	2.35931000	2.63975400	1.90687500
Н	2.31507400	3.26350800	2.80691900
Н	2.72311100	1.65502400	2.21610900
С	4.29520800	3.24375000	-1.35241000
Н	5.23423700	2.82031300	-0.99389000
Н	4.10578200	2.88058700	-2.36326200
Н	4.33568300	4.33532300	-1.34258000
Н	-0.69760500	2.57628900	-1.66019000
С	3.59886800	-2.09336800	0.10992900
Н	3.54385700	-2.65016000	1.04546000
С	3.36258300	-2.82317900	-1.09661200
Н	3.71794800	-2.34910900	-2.01340900
В	4.16814200	-0.54099300	0.09387100
С	3.24950300	-4.32827700	-1.17505400
Н	4.24710600	-4.73683800	-1.37263200
Н	2.89661200	-4.77003500	-0.23928700 585

Н	2.59111400	-4.64582500	-1.98886000
Ν	3.19505100	2.77310400	-0.45767600
С	3.38280600	3.25872400	0.95419700
Н	3.30150100	4.35049200	0.91575900
Н	4.39735800	2.99305400	1.25640800
0	5.52153200	-0.37041900	-0.32632100
Н	6.14662300	-0.52306500	0.39107200
F	3.95144500	0.01541700	1.40595600

Cartesian coordinates and energies calculated for TS L3-FOH-TS-II in gas phase.

Energy = -1740.531399 (aU); Number of Imaginary Frequencies = 1(-103.69).

Р	-3.11798300	-1.20750200	0.24135700
С	-3.79686700	0.32242700	-0.54410900
С	-5.02052300	0.21704700	-1.23202000
С	-5.58391700	1.30195200	-1.90230700
С	-4.91957000	2.52806800	-1.90295000
С	-3.71118200	2.65398100	-1.22052900

С	-3.13162100	1.57509400	-0.52719300
Н	-5.54889400	-0.72910900	-1.26015200
Н	-6.52985100	1.18434700	-2.42179900
Н	-5.34121200	3.38361000	-2.42168900
Н	-3.20777800	3.61595400	-1.19776900
С	-1.85773500	1.86291800	0.20041800
С	-1.76574000	1.76183200	1.59757700
С	-0.74629600	2.35753700	-0.50459900
С	-0.60070100	2.13126700	2.27444100
Н	-2.62551600	1.42492900	2.16728500
С	0.41181100	2.74441700	0.17198300
С	0.49331200	2.63446900	1.56876900
Н	-0.55602500	2.04621900	3.35688800
С	-3.85133300	-2.61182300	-0.70510300
Н	-4.93890600	-2.66412800	-0.60787200
Н	-3.58091100	-2.53562700	-1.76109600
Н	-3.42326200	-3.53574900	-0.30674300
С	-3.97480000	-1.35317900	1.87159900
Н	-5.05665500	-1.24824000	1.74706300
Н	-3.75273400	-2.33575200	2.29804000
Н	-3.61822800	-0.58939500	2.56498200
С	2.22537500	-1.45075400	-0.30025300
С	2.10831600	-0.50777400	-1.47947200 587

Н	1.14146700	0.00368700	-1.47407400
Н	2.21186900	-1.03875100	-2.43756200
0	3.16985400	0.43051500	-1.33423700
Н	2.97723700	1.79070800	-0.54999500
С	1.24600900	-1.97013000	0.46239100
Н	1.55930100	-2.66731800	1.24169300
Au	-0.75209500	-1.52683100	0.35284500
С	1.59414400	3.35584000	-0.53164100
Н	1.65414400	4.43152100	-0.32647600
Н	1.54663700	3.22042500	-1.61462600
С	1.79047100	3.07547800	2.19877500
Н	1.85139500	4.17313500	2.21569200
Н	1.86408200	2.74596500	3.23944800
С	4.06331400	3.55158200	-0.57455500
Н	4.97813600	3.00335500	-0.35079400
Н	3.96466400	3.67203400	-1.65505400
Н	4.06730100	4.53057700	-0.08991100
Н	-0.79781900	2.44461200	-1.58710000
С	3.76814900	-1.59834200	0.02962200
Н	3.98896400	-1.55137700	1.09782500
С	3.86561400	-2.88364900	-0.53286900
Н	3.69346000	-2.96523900	-1.60586000
В	4.41230100	-0.30028100	-0.88977600 588

C	4.21587100	-4.13993100	0.16450200
Н	5.20284700	-4.44907800	-0.21787500
Н	4.28037100	-4.02806200	1.24832500
Н	3.53085200	-4.95367300	-0.10006100
Ν	2.90439600	2.75019700	-0.07257500
С	2.98551200	2.49830000	1.43031800
Н	3.92826900	2.91815500	1.78326100
Н	3.03402900	1.41569100	1.55405900
0	5.19031000	-0.85329600	-1.94336100
Н	5.61246800	-0.18328900	-2.49362500
F	5.10625300	0.61050400	-0.04762300

Cartesian coordinates and energies calculated for complex L3-FOH-PROD in gas phase.

Energy = -1740.593797 (aU); Number of Imaginary Frequencies = 0.

Р	2.95542000	-1.30301800	-0.00370400

C 3.69336300 0.33818900 0.43712400

С	4.91439300	0.34326900	1.13711800
С	5.51751600	1.52918100	1.55382300
С	4.89748800	2.74887000	1.28103700
С	3.69253400	2.76517100	0.58072400
С	3.07794800	1.57979500	0.13913800
Н	5.40804200	-0.59282200	1.37491100
Н	6.46016500	1.49640500	2.09136500
Н	5.35083600	3.68151100	1.60267800
Н	3.22002500	3.71472500	0.34656900
С	1.80916300	1.72376000	-0.63764800
С	1.74090200	1.38631300	-1.99849000
С	0.66633500	2.25948400	-0.02227000
С	0.55656500	1.54206300	-2.72288700
Н	2.62529800	1.00387600	-2.49886200
С	-0.51349400	2.42579500	-0.74840300
С	-0.58089100	2.05742800	-2.10075100
Н	0.52321700	1.25786800	-3.77110900
С	3.47830000	-2.43975200	1.35348000
Н	4.56333500	-2.55620000	1.41555000
Н	3.09787600	-2.07505900	2.31092100
Н	3.03389500	-3.41915500	1.15597300
С	3.96012000	-1.89566600	-1.43617000
Н	5.02951700	-1.84211500	-1.21146500 _{\$90}

Н	3.68681200	-2.93145700	-1.65734400
Н	3.75080300	-1.28796100	-2.31935500
С	-2.48038000	-1.64343800	0.00783900
С	-2.31306500	-1.29294800	1.46211100
Н	-1.27402000	-1.45241900	1.75973800
Н	-2.98242400	-1.88859300	2.09427600
0	-2.63474400	0.12354700	1.68342700
Н	-2.80768700	1.24480800	0.17293600
С	-1.39179300	-1.77656300	-0.79455500
Н	-1.62400400	-2.06232000	-1.82574500
Au	0.59568300	-1.50602600	-0.38516600
С	-1.76728800	2.99390500	-0.14441400
Н	-2.02345600	3.96687800	-0.57832600
Н	-1.70681900	3.10252600	0.93933100
С	-1.92606100	2.21174400	-2.76398800
Н	-2.14258600	3.27124700	-2.96018600
Н	-1.95701800	1.70485100	-3.73294800
С	-4.23740900	2.70573600	0.03127200
Н	-5.04188100	1.98020100	-0.09466100
Н	-4.14157800	2.97345300	1.08359800
Н	-4.43437600	3.59397500	-0.57162800
Н	0.70265800	2.52908600	1.03018400
С	-3.84464200	-1.86576600	-0.50075700 ^{\$91}

Н	-3.89288800	-2.20040900	-1.53850800
С	-5.00702200	-1.72313700	0.16694400
Н	-4.99572000	-1.39398100	1.20654600
В	-2.55853300	0.69537700	2.92237900
С	-6.36264000	-2.02183300	-0.40679300
Н	-7.03021200	-1.15252300	-0.34293700
Н	-6.29901600	-2.32883500	-1.45534200
Н	-6.85463200	-2.82856300	0.15156700
Ν	-2.95431000	2.08041000	-0.42678300
С	-3.03101200	1.60792000	-1.88434900
Н	-4.02174300	1.87320400	-2.25653100
Н	-2.94468800	0.52127900	-1.85082700
0	-2.28211900	0.10190200	4.10367500
Н	-2.13334700	-0.85024400	4.09790100
F	-2.78005200	2.02973800	2.93993000

Energies for these structures computed as a single point in DCM using differentiated basis set (6-31+G(d,p) for C, H, O, N, F, P and B; def2-TZVP^[26] for Au) were reported below.

Compound Name	Energy (aU)	ΔG and ΔG^{\neq} (for TSs)
L3-CPX	-1740.899756	
L3-TS-I	-1740.872056	$\Delta G^{\neq} = 17.4 \text{ kcal/mol}$
L3-INTERM	-1740.922382	$\Delta G^{CPX-INTERM} = 14.2 \text{ kcal/mol}$
L3-TS-II	-1740.912621	$\Delta G^{\neq} = 6.1 \text{ kcal/mol}$
L3-FINAL-PROD	-1740.975827	$\Delta G^{\text{INTERM-PROD-REAL}} = 33.5 \text{ kcal/mol}$

Pathway for B-F-OH moiety and L4 in gas phase and in DCM as a solvent.

Figure 1. Reaction pathway modeled.

Cartesian coordinates and energies calculated for complex L4-B-F-OH in gas phase.

Energy = -1740.513948 (aU); Number of Imaginary Frequencies = 0

Р	-3.12208000	-1.51075900	0.04688000
L	5.12200000	1.51075700	0.01000000

- C -3.90932200 0.14191100 -0.06458100
- C -5.19113800 0.21806100 -0.64462200

С	-5.87273000	1.43021800	-0.73144800
С	-5.27887400	2.59041900	-0.23189300
С	-4.01033200	2.52582900	0.34258200
С	-3.29903500	1.31693700	0.43707200
Н	-5.67333200	-0.67075800	-1.03569800
Н	-6.85970900	1.46354700	-1.18181500
Н	-5.80186300	3.54047100	-0.28371300
Н	-3.55447200	3.42660200	0.74339300
С	-1.95803000	1.35246200	1.10905300
С	-1.86223800	0.93356400	2.44376700
С	-0.82248000	1.89811100	0.46041300
С	-0.65208600	1.02478600	3.13572700
Н	-2.75069600	0.57088200	2.95301500
С	0.38757400	2.00020200	1.16940500
С	0.46557800	1.55410400	2.49655500
Н	-0.58966400	0.70250800	4.17072000
Н	1.40798000	1.63820600	3.03194700
Ν	1.57215400	2.74034200	-0.91052300
С	2.69004400	3.57336400	-1.39554500
Н	2.69896600	3.57339000	-2.48851400
Н	2.60615700	4.61132900	-1.03903200
Н	3.63625100	3.15836400	-1.03944500
С	0.27821000	3.28950500	-1.35350800
Н	0.31507600	3.43264900	-2.43782700
Н	0.11560600	4.28210300	-0.89812100
С	-3.88819300	-2.56875400	-1.24698500
Н	-4.95673200	-2.71427800	-1.06765700
Н	-3.74028900	-2.12736800	-2.23534700
Н	-3.39608100	-3.54442200	-1.22212900
С	-3.67269100	-2.27797000	1.62571200 ^{\$94}

Н	-4.76332900	-2.22818800	1.69789600
Н	-3.35320100	-3.32364700	1.64964400
Н	-3.22983600	-1.75276000	2.47323800
С	1.61131100	2.65793200	0.56225300
Н	2.51375600	2.11085900	0.85016300
Н	1.70343800	3.67508500	0.98605700
С	-0.87183000	2.35145200	-0.98816500
Н	-1.81857400	2.85336100	-1.20727000
Н	-0.84407200	1.47024200	-1.64641100
С	1.47592200	-1.41804200	-1.00748800
С	1.73174400	-0.63394200	-2.24449000
Н	0.77571700	-0.36688100	-2.71462700
Н	2.25810200	-1.29778000	-2.94149000
0	2.54480900	0.48236900	-2.00723700
Н	2.04232900	1.25884200	-1.57991800
С	1.41849100	-2.06001500	0.04124700
Н	1.67471700	-2.65001400	0.89950200
Au	-0.79662400	-1.58348500	-0.14233700
С	6.71705100	-0.31351500	0.88599000
Н	6.86571600	-0.04986900	1.93442900
С	7.70723800	-0.96649300	0.24603100
Н	7.56041100	-1.22439000	-0.80427400
В	5.39687000	0.08752700	0.19389900
0	5.10486900	-0.20454600	-1.09395800
Н	4.23659800	0.11922600	-1.40925200
С	9.01934600	-1.37634500	0.84134200
Н	9.09892500	-1.08963000	1.89402400
Н	9.15924400	-2.46236400	0.76285600
Н	9.85233200	-0.91922500	0.29155300
F	4.45633300	0.77614200	0.92429600 ^{\$95}

Cartesian coordinates and energies calculated for TS L4 L4-B-F-OH-TS-I in gas phase.

Energy = -1740.495316 (aU); Number of Imaginary Frequencies = 1(-188.43).

Р	-2.82099000	-1.50973200	-0.24008000
С	-3.62367600	0.11551500	-0.55324700
С	-4.75718500	0.14651900	-1.38852000
С	-5.44115800	1.33484800	-1.63858300
С	-4.99953700	2.51972100	-1.04792100
С	-3.87734800	2.50186500	-0.22114300
С	-3.16675000	1.31706800	0.03997600
Н	-5.12017400	-0.76240900	-1.85487500
Н	-6.31264000	1.33062200	-2.28575300
Н	-5.52750200	3.45188500	-1.22471300
Н	-3.54087500	3.42125500	0.24952000
С	-1.99512400	1.41145500	0.97362700
С	-2.16602100	1.02905500	2.31126300
С	-0.76729400	1.98403100	0.55953200
С	-1.13284300	1.18670300	3.23779300
Н	-3.12766100	0.64126300	2.63499100
С	0.26143000	2.15528200	1.50186900

С	0.07378000	1.74811700	2.83005800
Н	-1.27794400	0.89150700	4.27253600
Н	0.87488700	1.89096200	3.55153800
Ν	1.82242900	2.95259900	-0.30112900
С	2.94755800	3.87699500	-0.54330800
Н	3.17033900	3.90541200	-1.61311900
Н	2.71284500	4.89728300	-0.20216100
Н	3.83512400	3.52094300	-0.01538400
С	0.61436700	3.40853600	-1.01339800
Н	0.87080800	3.54815600	-2.06807000
Н	0.29378700	4.39028000	-0.62206900
С	-3.29372100	-2.60848100	-1.63981600
Н	-4.37161600	-2.78649500	-1.67493600
Н	-2.96293500	-2.17746900	-2.58780900
Н	-2.78851300	-3.56761800	-1.49926800
С	-3.70094900	-2.25098800	1.19882300
Н	-4.78190800	-2.22946200	1.03116300
Н	-3.37198200	-3.28638000	1.32529600
Н	-3.46525200	-1.69499500	2.10780400
С	1.55698900	2.86096100	1.14624200
Н	2.40487000	2.35115900	1.61712500
Н	1.52326600	3.87771900	1.57978600
С	-0.52224400	2.39704900	-0.87979100
Н	-1.42672600	2.82293800	-1.32312700
Н	-0.28737700	1.50458100	-1.47831000
С	2.36586900	-1.18572600	-0.41091600
С	2.58195000	-0.37689700	-1.63707600
Н	1.59068800	-0.27452100	-2.10350800
Н	3.22020100	-0.91832400	-2.34187700
0	3.18203900	0.86750200	-1.39058900 ^{\$97}

Н	2.55684000	1.52816200	-0.93954300
С	1.58461100	-1.75580800	0.42360100
Н	1.84243800	-2.34051800	1.29775000
Au	-0.48848200	-1.54210500	0.06305800
С	4.57043700	-0.90016000	0.42212700
Н	4.27433000	-0.68710600	1.44979600
С	4.66643200	-2.20950700	0.04921600
Н	5.01094600	-2.42623400	-0.96301300
В	5.15809100	0.28124800	-0.44537900
0	5.78956200	-0.02285400	-1.61281200
Н	6.18036600	0.73707600	-2.06265300
С	4.43678400	-3.39411800	0.92858500
Н	4.04827100	-3.11654100	1.91255100
Н	3.76829300	-4.12368400	0.45701900
Н	5.39371300	-3.91133900	1.08211600
F	5.34195200	1.48447900	0.15320900

Cartesian coordinates and energies calculated for complex L4-B-F-OH-Int1 in gas phase.

Energy = -1740.536293 (aU); Number of Imaginary Frequencies = 0 P -2.75346100 -1.47781900 -0.08197600

С	-3.52634800	0.13250500	-0.53627300
С	-4.64671000	0.12180200	-1.38748100
С	-5.29587400	1.29938200	-1.75262400
С	-4.83411300	2.51929500	-1.26191700
С	-3.72580100	2.54587600	-0.41793600
С	-3.04958100	1.37198200	-0.04456100
Н	-5.02642300	-0.81594700	-1.77743400
Н	-6.15809100	1.25871400	-2.41129600
Н	-5.33588700	3.44507800	-1.52746300
Н	-3.37556200	3.49487000	-0.02078200
С	-1.89051300	1.52926200	0.89642000
С	-2.07525200	1.25035800	2.25645000
С	-0.66015100	2.07937300	0.46313700
С	-1.05849900	1.48351700	3.18383700
Н	-3.03922000	0.88157900	2.59474900
С	0.34662000	2.33728300	1.40644400
С	0.14803400	2.02766500	2.75808400
Н	-1.21654600	1.26087200	4.23466500
Н	0.93702600	2.23053500	3.47820300
Ν	1.93723000	3.03831300	-0.43220000
С	3.06958400	3.96491000	-0.74795100
Н	3.31325100	3.86097600	-1.80672800
Н	2.76463000	4.99115900	-0.53002800
Н	3.92807100	3.67583900	-0.14253300
С	0.71160900	3.37962800	-1.22730700
Н	1.00633400	3.42338500	-2.27870400
Н	0.39715100	4.38072900	-0.91315000
С	-3.31060400	-2.68970600	-1.35661200

Н	-4.39516800 -2.83440600 -1.34815200
Н	-2.99129500 -2.37057500 -2.35278300
Н	-2.83279400 -3.64870400 -1.13447000
С	-3.64230300 -2.05346300 1.43117500
Н	-4.72595200 -2.00296400 1.28275100
Н	-3.35333900 -3.08899700 1.63856700
Н	-3.36624700 -1.43870100 2.29059400
С	1.64421500 3.03132200 1.04035600
Н	2.50381800 2.55569000 1.51745800
Н	1.61300900 4.08100200 1.35849600
С	-0.39128600 2.35176000 -1.00496200
Н	-1.29162400 2.71175700 -1.51072700
Н	-0.12121200 1.41256500 -1.50822400
С	2.64789900 -1.52568300 -0.46262800
С	2.50223300 -0.52067500 -1.60245500
Н	1.44288700 -0.37647300 -1.83873900
Н	3.01377700 -0.87126100 -2.50957700
0	3.07184600 0.70672800 -1.16819900
Н	2.27445400 2.06181600 -0.70631900
С	1.62289300 -1.97187100 0.32358500
Н	1.92605200 -2.61354300 1.15271500
Au	-0.37446300 -1.63439900 0.13228900
С	4.03824100 -1.02586400 0.37520400
Н	3.93017000 -1.10145100 1.45715800
С	4.12689700 -2.24431700 -0.36280200
Н	4.54672300 -2.15377100 -1.36506000
В	4.32969800 0.43001300 -0.34896300
0	5.51296900 0.29301100 -1.13049900

Η	5.84876300	1.13494000	-1.46896300
С	4.28951600	-3.61050800	0.26249800
Н	3.88326000	-3.66144400	1.27704300
Н	3.82889500	-4.39483500	-0.34622800
Н	5.36260000	-3.82564500	0.33012900
F	4.38456500	1.50031600	0.60370400

Cartesian coordinates and energies calculated for TS L4-B-F-OH-TS-II in gas phase.

Energy = -1740.530522 (aU); Number of Imaginary Frequencies = 1(-105.25).

Р	-2.85253900	-1.45602800	-0.22276000
С	-3.55594100	0.23060300	-0.50847800
С	-4.71501700	0.33765000	-1.30138000
С	-5.33088500	1.56495200	-1.54024200
С	-4.79521800	2.72313200	-0.97608400
С	-3.64822200	2.63509700	-0.18952900
С	-3.00411300	1.40778000	0.05496500
Н	-5.15381000	-0.54879900	-1.74527400
Н	-6.22394100	1.61122900	-2.15573300
Н	-5.26978700	3.68613600	-1.13858700

Н	-3.24310200	3.53302600	0.26923400
С	-1.80508100	1.45310100	0.95914700
С	-1.94352500	1.03283400	2.28818200
С	-0.58186700	2.03236700	0.53991700
С	-0.89164800	1.15814500	3.19767200
Н	-2.89670000	0.63260400	2.61996300
С	0.46294000	2.17694500	1.46727000
С	0.30732800	1.73124000	2.78653600
Н	-1.01434000	0.82455200	4.22327800
Н	1.12493900	1.84446000	3.49412100
Ν	2.01055800	3.03698200	-0.34385600
С	3.14240800	3.98302400	-0.60026800
Н	3.34042300	4.00121100	-1.67304000
Н	2.86354100	4.98066400	-0.25381600
Н	4.02302500	3.61724500	-0.07353600
С	0.76617300	3.46772000	-1.06269700
Н	1.02728100	3.60341200	-2.11490900
Н	0.48073700	4.44120500	-0.64952300
С	-3.40200100	-2.47438800	-1.65899200
Н	-4.48925900	-2.57407200	-1.71458000
Н	-3.02613900	-2.04545800	-2.59126500
Н	-2.96819500	-3.47108000	-1.54097200
С	-3.84535800	-2.15152300	1.16964500
Н	-4.91628900	-2.05384900	0.96835100
Н	-3.59282300	-3.20912000	1.28926300
Н	-3.60447800	-1.63241100	2.09942200
С	1.75952800	2.88864200	1.12820000
Н	2.62445000	2.35928300	1.53490700

Н	1.75200700	3.90065200	1.55123700
С	-0.35517500	2.44786600	-0.90170600
Н	-1.26078700	2.87951900	-1.33551200
Н	-0.13160200	1.55893600	-1.50658000
С	2.46999200	-1.25579300	-0.29165600
С	2.33863800	-0.41720200	-1.54209900
Η	1.29001200	-0.18686700	-1.75072000
Η	2.75588400	-0.92666100	-2.42358800
0	3.07561200	0.77379400	-1.28111100
Н	2.33979800	2.08400600	-0.71772300
С	1.51325500	-1.89507600	0.40096800
Н	1.83843900	-2.47635000	1.26547800
Au	-0.50205700	-1.67723500	0.09437400
С	3.94043000	-1.03457100	0.25895500
Н	3.98015100	-0.92806700	1.34452400
С	4.43414600	-2.25638700	-0.22668800
Н	4.43708000	-2.39342900	-1.30800400
В	4.36560200	0.39311500	-0.59411000
0	5.43647600	0.07440500	-1.47219300
Н	5.75441000	0.83286200	-1.97569200
С	4.97624500	-3.37932900	0.56838500
Η	4.88110000	-3.22948400	1.64530400
Η	4.52593300	-4.33423900	0.27185100
Η	6.04521100	-3.46721200	0.31420900
F	4.63739600	1.44189900	0.32751000

Cartesian coordinates and energies calculated for complex L4-FOH-PROD in gas phase.

Energy = -1740.599330 (aU); Number of Imaginary Frequencies = 0.

Р	2.45695400	-1.62293700	-0.40655900
С	3.28555700	-0.60507100	0.90180300
С	3.97962300	-1.25073200	1.94073100
С	4.63429600	-0.52929000	2.94084700
С	4.61237200	0.86437200	2.91539800
С	3.92528500	1.52170300	1.89361600
С	3.25164100	0.81291500	0.88672500
Н	4.01995900	-2.33291800	1.98095200
Н	5.16182100	-1.05836400	3.72854800
Н	5.12631500	1.43807200	3.68062500
Н	3.91119900	2.60794800	1.86550300
С	2.54132900	1.60685100	-0.17069200
С	3.23075700	1.98460400	-1.32904700
С	1.20031500	2.01833500	0.00760800
С	2.59735100	2.71655600	-2.33655300
Н	4.27439600	1.70416500	-1.43787700
С	0.55943800	2.71265400	-1.03011900
С	1.25606000	3.05765700	-2.19568000
Н	3.14310000	3.00250400	-3.23013800

Н	0.74650300	3.59388000	-2.99248600
Ν	-1.64168100	2.31293500	0.10189200
С	-3.05884200	2.77817300	0.24314800
Н	-3.56773000	2.10587900	0.93111900
Н	-3.05566100	3.80031200	0.62583100
Н	-3.54112600	2.73944000	-0.73406200
С	-0.89515000	2.37068000	1.41211000
Н	-1.52179800	1.89055200	2.16380900
Н	-0.79343800	3.43300600	1.65514900
С	2.58822400	-3.37007000	0.16380700
Н	3.62662500	-3.68996700	0.28807300
Н	2.04290000	-3.51404500	1.09970300
Н	2.11978700	-3.99625200	-0.60055700
С	3.60833200	-1.59828300	-1.84949000
Н	4.62314100	-1.86393400	-1.53878500
Н	3.25347400	-2.32289600	-2.58829100
Н	3.61426400	-0.60988100	-2.31107800
С	-0.90003100	3.10344400	-0.93907700
Н	-1.40547000	2.93199900	-1.89322100
Н	-1.02838900	4.15931200	-0.67408400
С	0.45681900	1.67673700	1.28542100
Н	1.05638100	1.95414000	2.15873600
Н	0.31329100	0.59112100	1.34977400
С	-2.90185800	-0.81203300	-0.77502900
С	-2.86326800	-1.35654100	0.63565400
Н	-1.90606000	-1.84871300	0.81903600
Н	-3.66971900	-2.06869800	0.82655200
0	-2.97194200	-0.24988600	1.58139900
Н	-1.67561300	1.31907400	-0.21109800
С	-1.75050800	-0.63781100	-1.48172800 _{\$105}

Н	-1.89425600	-0.25526700	-2.49799700
Au	0.18693000	-1.08370400	-0.96338000
С	-4.21303700	-0.49505800	-1.36545500
Н	-4.17644300	-0.13881500	-2.39645900
С	-5.42315200	-0.62453100	-0.78777300
Н	-5.49685800	-0.98837300	0.23687000
В	-3.52951000	-0.40115400	2.80776400
0	-4.07882000	-1.56591400	3.23431100
Н	-4.45307400	-1.53742400	4.12353200
С	-6.72795700	-0.32483100	-1.46555600
Н	-6.58128800	0.03651800	-2.48804000
Н	-7.35972000	-1.22119100	-1.50927000
Н	-7.30138500	0.42984200	-0.91168300
F	-3.51589800	0.69829600	3.60055700

Energies for these structures computed as a single point in DCM using differentiated basis set (6-31+G(d,p) for C, H, O, N, F, P and B; def2-TZVP^[26] for Au) were reported below.

Compound Name	Energy (aU)	ΔG and ΔG^{\neq} (for TSs)
L4-CPX	-1740.898343	
L4-TS-I	-1740.872386	$\Delta G^{\neq} = 16.3 \text{ kcal/mol}$
L4-INTERM	-1740.919389	$\Delta G^{CPX-INTERM} = 13.2 \text{ kcal/mol}$
L4-TS-II	-1740.912245	$\Delta G^{\neq} = 4.5 \text{ kcal/mol}$
L4-FINAL-PROD	-1740.978763	$\Delta G^{INTERM-PROD-REAL} = 37.3 \text{ kcal/mol}$

8. References:

- [1] A. J. J. Lennox, G. C. Lloyd-Jones, Angew Chem Int Edit 2012, 51, 9385-9388.
- [2] E. Najahi, A. Valentin, P. L. Fabre, K. Reybier, F. Nepveu, Eur J Med Chem 2014, 78, 269-274.
- [3] S. R. Dubbaka, M. Salla, R. Bolisetti, S. Nizalapur, *Rsc Adv* 2014, *4*, 6496-6499.
- [4] H. Ueda, M. Yamaguchi, H. Kameya, K. Sugimoto, H. Tokuyama, 2014, 16, 4948-4951.
- [5] A. T. Parsons, T. D. Senecal, S. L. Buchwald, Angew Chem Int Edit 2012, 51, 2947-2950.
- [6] K. Brak, J. A. Ellman, J Am Chem Soc 2009, 131, 3850-+.
- [7] Y. S. Feng, C. Q. Xie, W. L. Qiao, H. J. Xu, Org Lett 2013, 15, 936-939.
- [8] C. X. Xu, W. Y. Du, Y. Zeng, B. Dai, H. Guo, Org Lett 2014, 16, 948-951.
- [9] Y. Yasu, T. Koike, M. Akita, *Chem Commun* **2013**, *49*, 2037-2039.
- [10] Z. P. Chen, W. Zhang, C. A. Palma, A. L. Rizzini, B. L. Liu, A. Abbas, N. Richter, L. Martini, X. Y. Wang, N. Cavani, H. Lu, N. Mishra, C. Coletti, R. Berger, F. Klappenberger, M. Klaui, A. Candini, M. Affronte, C. W. Zhou, V. De Renzi, U. del Pennino, J. V. Barth, H. J. Rader, A. Narita, X. L. Feng, K. Mullen, *J Am Chem Soc* 2016, *138*, 15488-15496.
- [11] A. Cannillo, S. Norsikian, P. Retailleau, M. E. T. H. Dau, B. I. Iorga, J. M. Beau, Chem-Eur J 2013, 19, 9127-9131.
- [12] J. Takagi, K. Takahashi, T. Ishiyama, N. Miyaura, J Am Chem Soc 2002, 124, 8001-8006.
- [13] B. Gopula, C. W. Chiang, W. Z. Lee, T. S. Kuo, P. Y. Wu, J. P. Henschke, H. L. Wu, Org Lett 2014, 16, 632-635.
- [14] V. Bagutski, A. Ros, V. K. Aggarwal, *Tetrahedron* 2009, 65, 9956-9960.
- [15] L. J. Cheng, C. J. Cordier, Angew Chem Int Edit 2015, 54, 13734-13738.
- [16] L. W. Ye, W. M. He, L. M. Zhang, J Am Chem Soc 2010, 132, 8550-+.
- [17] N. Maulucci, I. Izzo, G. Bifulco, A. Aliberti, C. De Cola, D. Comegna, C. Gaeta, A. Napolitano, C. Pizza, C. Tedesco, D. Flot, F. De Riccardis, *Chem Commun* 2008, 3927-3929.
- [18] J. M. Aurrecoechea, E. Perez, M. Solay, J Org Chem 2001, 66, 564-569.
- [19] K. Asano, S. Matsubara, J Am Chem Soc 2011, 133, 16711-16713.
- [20] M. Spallarossa, Q. Wang, R. Riva, J. P. Zhu, Org Lett 2016, 18, 1622-1625.
- [21] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; (b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
- [22] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999-3094.
- [23] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270-283.
- [24] W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284-298.
- [25] M. J. T. Frisch, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G..; Barone, V.; Mennucci, B.; Petersson, G.. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G..; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;. Montgomery, A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski J.; Fox, D. J., Gaussian, Inc., Wallingford, CT, **2009**.
- [26] a) F. Weigend and R. Ahlrichs, "Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy," Phys. Chem. Chem. Phys., 7, 2005, 3297-3305. (b) F. Weigend, "Accurate Coulomb-fitting basis sets for H to Rn," Phys. Chem. Chem. Chem. Phys., 8, 2006, 1057-1065

10. Chiral HPLC analysis. <Chromatogram>

1 PDA Multi 1/210nm 4nm

PeakTable

PDA Ch1 21	l 0nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.022	5100869	315702	49.885	55.530
2	18.184	5124310	252825	50.115	44.470
Total		10225179	568527	100.000	100.000

<Chromatogram>

1 PDA Multi 1/210nm 4nm

			PeakTable			
P	DA Ch1 2	10nm 4nm				
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	13.617	13806858	830934	98.023	98.252
	2	17.550	278435	14780	1.977	1.748
	Total		14085293	845714	100.000	100.000
<Chromatogram>

1 PDA Multi 1/280nm 4nm

PDA Ch1 28	30nm 4nm		PeakTable		
Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.008	7028704	380142	49.621	54.605
2	14.722	7135957	316021	50.379	45.395
Total		14164661	696163	100.000	100.000

<Chromatogram>

1 PDA Multi 1/278nm 4nm

			PeakTable		
DA Ch1 2	78nm 4nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.631	440702	26145	2.320	3.212
2	13.992	18556004	787768	97.680	96.788
Total		18996706	813913	100.000	100.000

		σ,	က္ဆ	<u>D</u>	
Parameter	Value		-7.7 7.5	-7.3	∕_6.7 6.6
1 Title	LSR2-56-ST1	1	1 1		ור
2 Solvent	acetone				
3 Relaxation Delay	4.8000				
4 Spectrometer Frequency	399.78				

----3.87

110 100 f1 (ppm)

-10

Parameter	Value
1 Title	LSR2-120-2-F19
2 Solvent	acetone
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	376.11

		- I I I I I			- T - T - T - T	1 1 1 1	1 1 1 1	1 1 1 1		1 ' 1 '				- T - T - T - T		
10	0	-20	-40	-60	-80	-100	-120	-140 f1 (pp	-160 om)	-180	-200	-220	-240	-260	-280	-300

Parameter	Value	7.29 7.27 7.27 7.27 7.27 7.27 7.23	7.03 7.02 6.68 6.64	6.14 6.13 6.12 6.09 6.07 6.07
1 Title	LSR2-129-ST2	ارهــــــــــــــــــــــــــــــــــــ	r 11	
2 Solvent	acetone			
3 Relaxation Delay	4.8000			
4 Spectrometer Frequency	399. 78			

Parameter 1 Title 2 Solvent 3 Relaxation Delay 4 Spectrometer Fre	Value LSR2-129-S acetone y 1.0000 equency 100.54	TZ-C		145.87 $\int_{129.57}$	$\int 129.48$ 7 126.54	\119.96 119.96												
			s—		F , K ⁺	F F												
er di sen den en dan de tre de al seneralmente est i de en se base estatempte estatempte estatempte autoristica estate estatempte estatempte estatempte estatempte estatempte estat	e en a talante e general de la parte de la composita de la composita de la composita de la composita de la comp	niya ya da da waxaa ya ya ka ka iyo ya	and and provide fail interaction for first grap and any second state of the second party of the second state of the second party of the second party of the	 	in ed sjoch in	ne an		na adaddadan	tta kuring stalang panga Panganang Juna ya	ine hal hafter to	nterestation and a state of the	kystadust te navotik.	n djenja fi da stjuti vela	view (manalise				jini kil e terde
230 220 210	200 190	180 170	160 150	140	130	120 110 f1 (ppm)	100	90	80	70	60	50	40	30	20	10	0	-10

 \mathbf{T}

Parameter	Value
1 Title	LSR2-129-F19
2 Solvent	dmso
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	376.11

T			1 1			<u> </u>	<u> </u>		1 1 1 1	<u> </u>	 				1 1 1 1 I		<u> </u>	
20	10)	0	-20	-40	-60	-80	-100	-120	-140 f1 (ppr	-160 n)	-180	-200	-220	-240	-260	-280	-300

Parameter	Value
1 Title	LSR2-138-ST1
2 Solvent	acetone
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	399. 78

CH₂

H₃C

10.0

9.5

8.5

9.0

, Γ κ⁺

1.04

6.0

5.5

1.00

7.0

6.5

7.5

8.0

2.22

5.0 f1 (ppm) 4.5

4.0

---4.74

3.37-]

2.0

1.5

1.0

0.5

0.0

2.5

3.0

3.5

Parameter	Value
1 Title	LSR2-138-F19-2
2 Solvent	acetone
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	376.11

								1 1 1 1	1 1 1 1							1 1 1 1
10	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240	-260	-280	-300
								11 (h	JIII)							

	Value
litle	LSR2-162-TM1
Solvent	dmso
Relaxation Delay	4.8000
Spectrometer Frequen	су 499.86
	Г к⁺ К -в⁻—-г г

Parameter	Value
1 Title	LSR2-162-TM1-C
2 Solvent	dmso
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	125.70

-

		ng distant o the second bits		a an		a da a da sulta da da Unavas A gara (Internet y da Unavas			ng a samala ani salang Na samala ang sa	9,110,00 ⁰ 00,000,000		Alley Ageb - Sectored	a di sel ma bia					uli anatologa alam	n ji taya kuja ka kaj	
220 2:	10 200	190	180 170	160	150	140	130	120	110 f1 (pp	100 9 0m)	90 8) 70	60	50	40	30	20	10	0	-10

Parameter	Value
1 Title	LSR2-162-F19
2 Solvent	acetone
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	376.11

	- I - I - I	· · · ·				<u> </u>	<u> </u>	<u> </u>	 					<u> </u>	<u> </u>	
10	0	-20	-40	-60	-80	-100	-120	-140 f1 (pp	-160 om)	-180	-200	-220	-240	-260	-280	-300

Parameter	Value
1 Title	LSR2-121-ST
2 Solvent	acetone
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	399.78

0 110 f1 (ppm) -10

Parameter	Value
1 Title	LSR2-121-F19
2 Solvent	dmso
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	376.11

--141.17

				· · · ·	· · · ·				1 1 1 1	<u> </u>	<u> </u>	<u> </u>				
10	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	-220	-240	-260	-280	-300
								f1 (p	pm)							

Parameter	Value
1 Title	LSR1-285-2-2
2 Solvent	acetone
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	499.86

—5.46

Parameter	Value
1 Title	LSR1-285-2-F19
2 Solvent	acetone
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	376.11

Т Т -140 -160 f1 (ppm) -260 10 0 -20 -60 -80 -100 -120 -180 -200 -220 -240 -280 -300 -40

Parameter	Value
1 Title	LSR2-122-ST
2 Solvent	acetone
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	399.78

----3.62

120 110 f1 (ppm) -10

Parameter	Value
1 Title	LSR2-122-F19-2
2 Solvent	acetone
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	376.11

-140 -160 f1 (ppm) 10 0 -20 -60 -80 -100 -120 -180 -200 -220 -240 -260 -280 -300 -40

4.43	3.74 3.73 3.71

Parameter	Value
1 Title	LSR2-155-ST1
2 Solvent	cdc13
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	399. 78

Parameter	Value	
1 Title	LSR2-155-ST1-C	
2 Solvent	cdc13	
3 Relaxation Delay	1.0000	
4 Spectrometer Frequency	100.53	

	— 73.18			
--	---------	--	--	--

1	'	'		'	'		'	· I	'	'	·	·		' '	'	' '	' '	· 1	·	· .	·		· I	' '
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											1	f1 (ppm	1)											

Parameter	Value	-7.51 -7.50	-7.15	-6.88 -6.72 -6.69	5.36	4.49	-2.38 -1.76 -1.75
1 Title	LSR2-119-TM1				57	\checkmark	
2 Solvent	CDCl3						
3 Relaxation Delay	4.8000						
4 Spectrometer Freque	ncv 499.86						

ParameterValue1 TitleLSR2-119-TM12 SolventCDCl33 Relaxation Delay1.00004 Spectrometer Frequency125.70	-C	145.30 -136.08 -135.72	 129.39 126.54 115.93 	63.20	
					CH2
					СН3
f1 (pp	n)				
220 210 200 190 180	170 160 15	50 140	-	80 70 60 50	40 30 20 10 0 -10

Parameter	Value
1 Title	LSR1-233-1
2 Solvent	CDCl3
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	499.86

Parameter	Value
1 Title	LSR1-233-1C
2 Solvent	CDCI3
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	125.70

Parameter	Value
1 Title	LSR1-257-2
2 Solvent	CDCl3
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	499.86

424 424 2260 2260 2244 229	835 802 687 654
	0000
	11 Ir

~-5.354 ~-5.285
1.1

Parameter	Value
1 Title	LSR1-257-2C
2 Solvent	CDCI3
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	125.70

CH₂

∕он

----63.23

110 100 f1 (ppm) -10

Parameter	Value
1 Title	LSR1-253-1
2 Solvent	CDCl3
3 Relaxation Delay	4.8000
4 Spectrometer Frequence	y 499.86

44 M M M M M M M M M M M M M M M M M M	R
0.00	0

CH₂ CH₃ CH₃

9
3-1C

----67.78

		2400000	T 00 1- 74	<u> </u>	20			in c	n œ	<u>0</u> 4	200	2 0	i r	~ 9 7	- m O	0 N	- 10 4	2
Parameter		7.2	6.9 6.7 6.7	5.2	4.4	1.9	1.7	1.1		- - -	0,0,4	2 7			\sim	0.0		10
1 Title	LSR2-99-TM2			17	\mathbf{Y}													
2 Solvent	CDCl3																	
3 Relaxation Delay	4.8000																	
4 Spectrometer Frequen	cy 499.86																	

Parameter	Value
1 Title	LSR2-99-TM2-C
2 Solvent	cdcl3
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	100.53

					· 1	1	1		·				, , , ,		·	· 1	·	1	·			·		
230	220	210	200	190	180	170	160	150	140	130	120 1	110 f1 (ppm	100 n)	90	80	70	60	50	40	30	20	10	0	-10
	「7.32 「7.30 -7.25 -7.22 -6.79 -6.67	-5.45 -5.36 -5.36 -5.36	-4.65 -4.65 -4.65 -4.61 -4.58 -3.75 -3.75 -3.75	-3.47 -3.47 -3.45	2.62																			
---------------------------------	--	----------------------------------	--	-------------------------	------																			
1 Title LSR2-130-TM1					Y																			
2 Solvent cdcl3																								
3 Relaxation Delay 4.8000																								
4 Spectrometer Frequency 399.78																								
·																								
		CH ₂																						

Parameter	Value
1 Title	LSR2-106-TM1-C
2 Solvent	cdcl3
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	150.79

110 100 f1 (ppm) -10

Parameter	7.25 7.25 7.25 7.25 7.25 7.25 7.25	-6.80 -6.73 -6.73 -6.69	-5.35 -5.29	4.55	-3.72 -3.70 -3.69	-3.01	-1.93 -1.92	1.71 1.71 1.69	-0.92	-0.09
1 Title	LSR2-124-TM		57	\checkmark			\checkmark			
2 Solvent	cdcl3									
3 Relaxation Delay	4.8000									
4 Spectrometer Frequen	cy 399.78									

Parameter	Value
1 Title	LSR2-124-TM-C
2 Solvent	cdcl3
3 Relaxation Delay	1.0000
4 Spectrometer Freque	ency 100.53

	—148.74		128.55 128.55 128.26 127.50 126.39	
--	---------	--	--	--

86.0	9.13 5.92	3.31	
е Н	-26	Ψ	

--5.37

				- 1	·	·	·	·		- 1	·	· 1	1		1	·		· 1						
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											1	fl (ppm	n)											

ParameterValue1 TitleLSR2-158-TM12 Solventcdc133 Relaxation Delay4.80004 Spectrometer Frequency 399.78

<5.29 5.27 4.59 4.57 ~3.77 -3.75 ~3.73 -1.89-1.88-1.88-1.87-1.87-1.84-1.84-1.84-1.83-1.83

81 79 78 78 76

1.66 1 65

67

2.00

ParameterValue1 TitleLSR2-158-TM1-C2 Solventcdc133 Relaxation Delay1.00004 Spectrometer Frequency 100.53		$\frac{133.89}{227.61}$			—_71.62		
CH ₂	N N			—137.00			
Óн	•		-				
				138 136	134 132 f1	130 128 126 (ppm)	124 122

Т 120 110 100 f1 (ppm) 220 210 190 180 170 160 150 140 -10

Parameter	Value
1 Title	LSR2-15-4
2 Solvent	CDCI3
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	499.86

 $\stackrel{ extsf{2.03}}{ extsf{2.02}}$

 $\overbrace{-5.57}{5.57}$

Parameter	Value
1 Title	LSR2-15-4C
2 Solvent	CDCI3
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	125.70

.16	8	<u>66</u>	82	33	00
47	4	32	26	3	16.
Ī	Ĩ	Τ.	Ī	Ĩ	Ĩ

---74.43

Parameter	Value
1 Title	LSR2-3-2
2 Solvent	CDCl3
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	499.86

Parameter	Value
1 Title	LSR2-3-2C
2 Solvent	CDCl3
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	125.70

—149.73	-136.07 	
---------	-------------	--

----67.70

-22.94

Br	СН2
	H ₃ C

Br		СН ₂	
	,)-o	Н

220 210 200 190 180 170	160 150 140	130 120	110 100 f1 (ppm)	90 80 70	 + + + + 40 30	20 10 0 -10

	Parameter	Value	 8.751 8.718 707 6.707 8.674	5.305		 	
1 Title		LSR2-66-TM1			, 4		
2 Solve	ent	CDCl3					
3 Rela	xation Delay	4.8000					
4 Spec	ctrometer Frequency	499.86					

Parameter	Value
1 Title	LSR2-66-TM1-C
2 Solvent	CDCI3
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	125.70

70 78	59 59	83
333 32 333 32	27.	4.
- <u>5</u> [5	1	Ī

--72.10

—19.05 —13.97

			· 1		1		1		·		·	- I	·	·	· 1	·				1	<u> </u>		
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											f1 ((ppm)											

Parameter	Value
1 Title	LSR2-98-TM-C
2 Solvent	cdcl3
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	100.53

29		
59.		
ī		

129.74 128.28 127.64 126.08	~115.19 ~114.04
	- 57

—63.26 —55.27

بالمحديا والمحدود		ومرور وبليد والمعالي وا					r-diagonal-marking	ي الديان العلم الدين معادم معاد		and the second second	Confirmation and	بالماملاتين والالمرازي					1-e-e-e-e-e-e-e-e-e-e-e-e-e-e-e-e-e-e-e	المحراب والمقتاع ومعتاها	درادات وللمغدل ورديمه وال	فسريط والمغاد وواعطوه فارده			بالمحاد والمراكمة	
		1 1	I	I	1 1	1 1	ı	1 1	· · ·	I		· · · ·		·	1 1		1 1		, I I	1 1		1 1	ı	
220	220	910	200	100	190	170	160	150	140	120	190	110	100	00	00	70	60	50	40	20	20	10	Δ	_10
230	220	210	200	190	100	170	100	100	140	130	120	110	100	90	80	70	00	50	40	30	20	10	0	-10
											f	1 (nnm))											
											1	r (bbu)	/											

1 Title LSR2-109-TM1 2 Solvent cdcl3 3 Relaxation Delay 4.8000 4 Spectrometer Frequency 399.78	Parameter	Value	-8.10 -7.89 2.58	L7.39	6.90 6.86 6.71 6.67	~ 5.39 ~ 5.32		$\frac{3.93}{3.92}$
2 Solvent cdcl3 3 Relaxation Delay 4.8000 4 Spectrometer Frequency 399.78	1 Title	LSR2-109-TM1	1 1 1	ſſ	11 17		I.	ır
3 Relaxation Delay 4.8000 4 Spectrometer Frequency 399.78	2 Solvent	cdcl3						
4 Spectrometer Frequency 399.78	3 Relaxation Delay	4.8000						
	4 Spectrometer Frequenc	cy 399.78						

Parameter	Value
1 Title	LSR2-109-TM1-C
2 Solvent	cdcl3
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	100.53

-137.38 129.34 128.68 128.60 128.60 127.75 127.40 -117.07

----52.19 -63.12

20 20 25 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	72 67 63
	9 9 9 9 9

24	42
ດີ. ເວ	4
57	

88	
÷.	

Parameter	Value
1 Title	LSR2-134-TM1
2 Solvent	cdcl3
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	399.78

Parameter	Value
1 Title	LSR2-134-TM1-C
2 Solvent	cdcl3
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	100.53

---63.16

120 110 100 f1 (ppm) -10

Parameter	Value
1 Title	LSR2-163-TM1
2 Solvent	cdc13
3 Relaxation Delay	4.8000
4 Spectrometer Frequen	су 399.78

Parameter	Value
1 Title	LSR2-149-TM1-C
2 Solvent	cdc13
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	100.53

— 144.87	135.05		
----------	--------	--	--

----63.32

— 14.41 — 7.25

				1	1																			
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											f	1 (ppm))											

Parameter	Value
1 Title	LSR2-146-TM1
2 Solvent	cdcl3
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	399.78

—1.88 —1.64

Parameter	Value
1 Title	LSR2-146-TM1-C
2 Solvent	cdcl3
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	100.53

	-131.73 -128.16	~117.72 ~115.76
17	11	- 77

—18.31

I				, 1 ,								1						1	1 1						
230	220	210	200	190	180	170	160	150	140	130	120 f	110 f1 (ppm	100)	90	80	70	60	50	40	30	20	10	0	-10)

Parameter	Value
1 Title	LSR2-145-TM1
2 Solvent	cdcl3
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	399.78

9.5

10.0

Parameter	Value
1 Title	LSR2-145-TM1-C
2 Solvent	cdcl3
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	100.53

	-124.98

—147.22

---64.15

25.7825.70 222.68 222.06

		1		
, 1	l			

	I I				1																()	· ·		
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											f	1 (ppm))											

Parameter	Value
1 Title	LSR2-165-TM1-C
2 Solvent	cdc13
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	100. 53

----64.16

~33.41 ~32.67 —22.55

	· · · ·	· · · ·				· · · ·				1 1			· · · ·		· · · ·	1 1		· · · ·		· · · ·		1 1	1	· · ·
230	220	210	200	190	180	170	160	150	140	130	120 f	110 1 (ppm	100)	90	80	70	60	50	40	30	20	10	0	-10

Parameter	Value
ītle	LSR2-123-TM
Solvent	cdcl3
Relaxation Delay	4.8000
Spectrometer Frequency	399.78
	Parameter Title Solvent Relaxation Delay Spectrometer Frequency

888	

---4.28

---5.09

Parameter	Value
1 Title	LSR2-123-TM-C
2 Solvent	cdcl3
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	100.53

---64.41

20.34 29.80 28.35 28.35 26.53

—148.76

—142.32

		1	1	'	'	·			.		1			I	1 1			'		1	1 1		1	
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											f	1 (ppm)											

Parameter	Value
1 Title	LSR2-73-TM1
2 Solvent	cdcl3
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	399.78

--4.33

Parameter	Value
1 Title	LSR2-73-TM1-C
2 Solvent	cdcl3
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	100.53

—110.65

---64.29

81 54 50 50	83	03 05
29.29.29	-22	4.4
		$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$

J					
230 220 210 200 190 180 170 160 150) 120 110 100 f1 (ppm)	90 80 70	60 50 40 30	Дина Ілтан D 20	H 10 0 -10

Parameter	Value
1 Title	LSR1-282-1-3
2 Solvent	cdcl3
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	399.78

03 99 85 83 83 83 79 73 73	01 03	37
	, 5. 5.	4.

Parameter	Value
1 Title	LSR1-282-1-3C
2 Solvent	cdc13
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	100.53

2	~
<u>.</u>	
2	S
- 22	2
Ξ.	Ĵ,
) I	1

—111.35

—71.93

-38.53 -35.18 -35.18 -19.02 -19.02 -13.68

230 220 210 200 190 180 170 160 150	 110 100 90 80) 30 20 10 0 -10

Parameter	Value
1 Title	LSR1-295-2
2 Solvent	CDCl3
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	499.86

2.2	83 79	12 12	26 27 28
ဖ်ဖ်	က်က်က်	0.4	4444
\leq			

Parameter	Value
1 Title	LSR1-295-2C
2 Solvent	CDCl3
3 Relaxation Delay	1.0000
4 Spectrometer Frequency	125.70

З
- Q
4

—110.61

~131.44 ~129.10

---67.77

 $\begin{array}{c} 33.13\\ \hline 31.69\\ 29.24\\ \hline 28.87\\ \hline 28.87\\ \hline 22.81\\ \hline 22.59\\ \hline 14.06\end{array}$

110 100 f1 (ppm) -10

Parameter	Value
1 Title	LSR2-135-TM3
2 Solvent	cdc13
3 Relaxation Delay	4.8000
4 Spectrometer Frequency	399. 78

Parameter	Value	4.11
1 Title	LSR2-135-TM3-C	Ĥ
2 Solvent	cdc13	μ
3 Relaxation Delay	1.0000	
4 Spectrometer Frequency	100. 53	

28 88	62	4
8.8	28	24
\sim		

1					'	'	· 1	· 1		· 1	'		'		·		T	·	1			· 1	- T		
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	,
											f	⁻¹ (ppm	I)												

			 	66 D3	 45.18 40.44 ~38.63	— 22.88
Parameter 1 Title LS 2 Solvent cd 3 Relaxation Delay 1.4 4 Spectrometer Frequency 100	Value R2-168-TM2-C c13 0000 0.53					
HO		-Ph				
						i

Т Т Т Т Т Т Т 120 110 100 f1 (ppm) 230 220 210 200 190 180 170 160 150 140 130 90 80 70 60 50 40 30 20 10 -10 0

f1 (ppm)

f1 (ppm)

Parameter	Value			
1 Title	LSR2-171-TM1			
2 Solvent	cdc13			
3 Relaxation Delay	4.8000			
4 Spectrometer Frequency	399.78			

-2.20

Parameter	Value
1 Title	LSR2-17M-To1
2 Svlnect	d32d12
M Relaxativc Delay	4.7888
4 SOedtrvmeter preFuecdy	Mqq. 97

H₃C CH₃

Parameter	Value
1 Title	LSR2-17M-To1-C
2 Svlnect	d32d12
M Relaxativc Delay	1.8888
4 SOedtrvmeter preFuecdy	188. 54

—135.24 —125.95

---70.53 ---61.07 ---51.60 ---51.60 ---35.67 ---35.67 ---33.67 ---19.30

