ISCI, Volume 16

Supplemental Information

High-Performance Planar Perovskite Solar

Cells with Negligible Hysteresis Using

2,2,2-Trifluoroethanol-Incorporated SnO₂

Yigang Luan, Xiaohui Yi, Peng Mao, Yuanzhi Wei, Jing Zhuang, Ningli Chen, Tao Lin, Cheng Li, and Jizheng Wang

Supplemental Information

Figure S1 TEM images of the a) SnO₂ and b,c) T-SnO₂ nanoparticles. Related to figure 1.

Figure S2 FTIR spectra of the TFE, SnO₂ and T-SnO₂ films. Related to figure 1A and 1B.

Figure S3 The UPS cut-off edge of the SnO₂ and T-SnO₂ films. Relate to figure 1D.

Figure S4 The UPS data of the perovskite film. a) the cut-off edge. b) Valence band. c) Bandgap. d) band structure. It can be calculated that the conduction band (E_c) of the perovskite is 4.18 eV. Relate to figure 1D.

Figure S5 The electron mobility for the SnO₂ and T-SnO₂ films calculated by the SCLC model with the device structure of Glass/ITO/Al/ETL/Al. Related to figure 1.

Figure S6 The morphology of perovskite deposited on the SnO_2 and $T-SnO_2$ substrates. Top-view SEM images and the grain size distribution of perovskite coated on a,c) SnO_2 and b,d) T-SnO₂. Related to figure 2.

Figure S7 XRD spectra of the perovskite film grown on the SnO_2 and T-SnO₂ ETLs. Related to figure 2.

Figure S8 *J-V* curves of the PSCs based on the T-SnO₂ ETLs. T-SnO₂ ETLs with various TFE contents in the SnO₂ solution. The solar cells show the optimum performance at the TFE volume of 350 μ l. Related to figure 2B.

Figure S9 *J-V* curves of the PSCs based on the $T-SnO_2$ ETLs. $T-SnO_2$ ETLs with various annealing temperatures. The solar cells show the best performance at the annealing temperature of 130°C. Related to figure 2B.

Figure S10 Comparison of photovoltaic parameters for the SnO_2 and $T-SnO_2$ devices. There were 50 cells for each counted from 10 different batches. All the data are from reverse scan. Related to figure 2C.

Figure S11 SEM cross-sectional image of the p-T-SnO₂ device. Related to figure 4A.

Figure S12 a) FTIR spectra of the SnO_2 , T-SnO₂ and p-T-SnO₂ films. b) XPS spectra of the F 1s peaks for the T-SnO₂ and p-T-SnO₂ films. Related to figure 4.

Figure S13 The AFM images of the T-SnO₂ films (with different plasma powers). Note that the 0 W condition is T-SnO₂ without any plasma treated. Related to figure 4B.

Figure S14 The UPS cut-off edge of the T-SnO₂ films (with different plasma powers). Related to figure 4B.

Figure S15 The XPS spectra of F 1s peaks of T-SnO₂ films without any treatment, with DMSO washed and washed with DMSO after depositing perovskite on the T-SnO₂ films. and once fluorine entered into the perovskite lattice from the T-SnO₂/perovskite interface, it could be dissolved in DMSO. Related to figure 1A.

ETI	Scan	$V_{ m oc}$	$J_{ m sc}$	FF	PCE
EIL	direction	(V)	$(mA cm^{-2})$	(-)	(%)
SmO	Reverse	1.10	23.12	0.755	19.17
51102	Forward	1.06	23.03	0.674	16.47
100 T SpO.	Reverse	1.10	23.51	0.756	19.55
100-1-ShO ₂	Forward	1.06	23.43	0.703	17.49
250-T-SnO ₂	Reverse	1.11	23.74	0.779	20.57
	Forward	1.08	23.69	0.757	19.33
350-T-SnO ₂	Reverse	1.12	23.91	0.780	20.92
	Forward	1.11	23.87	0.777	20.62
380-T-SnO ₂	Reverse	1.10	23.55	0.767	19.88
	Forward	1.09	23.54	0.766	19.71

Table S1 Photovoltaic parameters of the PSCs with different ETLs. Related to figure 2B.

Table S2 Parameters of the TRPL spectra of perovskite deposited on different substrates. Related to figure 3C.

Sample	$ au_{ m ave}/ m ns$	$oldsymbol{ au}_1/\mathrm{ns}$	A_1	$ au_2/\mathrm{ns}$	A_2
Glass/perovskite	763.36	303.56	41.68	890.16	51.54
SnO ₂ /perovskite	146.89	61.73	34.74	164.11	64.60
T-SnO ₂ /perovskite	52.39	10.65	35.60	56.64	65.74

Table S3 EIS parameters of the SnO₂ and T-SnO₂ devices. Related to figure 3D.

Substrates	$R_{ m s}(\Omega)$	$R_{ m tr}(\Omega)$	$C_{ m tr}(\Omega)$	$R_{\rm rec}(\Omega)$	$C_{ m rec}\left(\Omega ight)$
SnO ₂	29.9	56.4	5.781E-8	294.2	1.056E-8
T-SnO ₂	27.6	36.8	8.419E-8	650.5	4.480E-8

64.1-	Power	$V_{ m oc}$	$J_{ m sc}$	FF	PCE
Style	(W)	(V)	$(mA cm^{-2})$	(-)	(%)
Oxygen plasma	0	1.12	23.91	0.780	20.92
	60	1.12	24.06	0.802	21.68
	100	1.10	24.00	0.795	21.07
	140	1.07	23.92	0.796	20.35

Table S4 Photovoltaic parameters of the p-T-SnO₂ devices with different plasma powers at fixed O_2 gas flow rate of 0.05 L h⁻¹. Related to figure 4B.

Table S5 Roughnesses of the p-T-SnO₂ films with different plasma powers at fixed O₂ gas flow rate of 0.05 L h⁻¹. The scan size of all the films is 3 um. The roughness is almost 32% lower than original one (pure T-SnO₂), and when the power increased from 60 W to 140 W, the variation in roughness is negligible. Related to figure 4.

Plasma power (W)	R _q (nm)	R _a (nm)	R _{max} (nm)
0 W	1.67	1.27	14.2
60w	1.13	0.89	12.1
100W	1.09	0.86	12.6
160W	1.08	0.86	11.2

Table S6 Work functions of the p-T-SnO₂ films with different plasma powers at fixed O_2 gas flow rate of 0.05 L h⁻¹. Related to figure 4.

Plasma power (W)	0	60	100	140
Work function (eV)	4.19	4.21	4.34	4.40

Transparent Methods

Precursor SnO₂ and T-SnO₂ Solution

The SnO₂ precursor solution was obtained by diluting the SnO₂ colloidal solution (the concentration is 2.67%). For T-SnO₂ solution, the 2,2,2-Trifluoroethanol (aladdin) was added into the distilled water and fully stirred (the total volume is 650 μ l). After that, the SnO₂ colloidal solution (100 μ l) was added into the mixed solution. The solution was then heated to 32°C and stirred about 30 min to form T-SnO₂ solution.

Fabrication of Solar Cells

The glass/ITO was washed in the order of cleanser essence, distilled water, acetone and isopropyl alcohol for 30 min. For the SnO₂ ETL, the precursor solution was spin-coated onto the ITO at 3500 rpm for 35 s, and then annealed at 150 °C for 30 min. For the T-SnO₂ ETL, the precursor solution was spin-coated onto the ITO at 3500 rpm for 35 s, and then annealed at 130 °C for 30 min. For the p-T-SnO₂ ETL, the T-SnO₂ ETL surface was treated by O₂ plasma for 5 min with various powers at a fixed O₂ flow rate of 0.05 L h⁻¹. The perovskite film was made by two-step method. For the first step, 760 mg PbI₂ was added into 1 ml DMF and 160 µl DMSO mixed solution, then was stirred over night at 25°C. The as-prepared solution was used as PbI₂ layer by spin-coating at 1600 rpm for 23 s and then 4000 rpm for 27 s, Then annealed at 70°C for 2 min. For the second step, the FAI: MACI: MABr mixed solution (110: 11: 11.5 mg in 1.5 ml isopropyl alcohol) was spin-coated onto the PbI₂ layer at 2000 rpm for 23 s, then the sample was taken out of the glove box and annealed at 140 °C for 20 min (ambient air,~ 40% humidity). After annealing, the sample was rapidly transferred to the glove box for HTL coating. The Spiro-OMeTAD (72.3 mg) in chlorobenzene (CB) solution (1 ml), adding 17.5 µl Li-TFSI/acetonitrile mixed solution (170 mg ml⁻¹) and 28.8 µl 4-tBP, which was coated at 4000 rpm for 27 s. After that, the sample was stored in the drying cabinet (ambient air, ~1% humidity) for 20 h. Finally, 90 nm Au electrode was deposited by vacuum evaporation at the pressure of 3×10^{-6} Torr.

Thin Film Characterization

UPS and XPS tests were performed on XPS machine (ESCALAB250XI, Thermo Fisher Scientific). The XRD patterns were obtained to research the crystallographic characteristics of perovskite, which was measured by using Rigaku-2500 X-ray diffractometer with CuK α radiation, $\lambda = 1.5406$ Å. The surface morphology and cross section of the devices are investigated by SEM (S-4800, Japan). The surface roughness of the electron transfer layers were obtained by using atomic force microscope (AFM, Bruker MultiMode 8 SPM system).

Electron Mobility Calculation

The electron mobilities of SnO₂ and T-SnO₂ films were calculated by the SCLC method. The Equation is below:

$$J = \frac{9}{8}\mu_e \varepsilon_0 \varepsilon_r \frac{V^2}{L^3}$$

Where μ_e , ε_0 , ε_r and L are electron mobility, free space permittivity, dielectric constant and the thickness of electron transport layer.

Average Carrier Lifetime Calculation

The carrier lifetime (τ_{ave}) can be calculated using the Equation:

$$\tau_{ave} = \frac{\sum A_i \tau_i^2}{\sum A_i \tau_i}$$

where A_i and τ_i are the decay amplitude and decay time.

Device Characterization

All *J-V* curves were measured using the Keithley 2420, and the solar cell was illuminated by a solar simulator (Newport 94043A, AM 1.5G, USA). The light intensity was calibrated by the monocrystalline silicon reference cell with a standard value 100 mW cm⁻². The device area was 0.044 cm². The external quantum efficiency (EQE) spectra was obtained with Newport 300 W Xenon Light Source (Newport IQE 200, USA). The electrical impedance spectroscopy (EIS) was measured by Zennium (Zahner).