
— Supporting Information —

Modelling Nanostructure in Graphene Oxide:

Inhomogeneity and the Percolation Threshold

Robert C. Sinclair† and Peter V. Coveney∗,†,‡

†Centre for Computational Science - University College London, 20 Gordon Street,

London, WC1H 0AJ, United Kingdom

‡Computational Science Laboratory, Institute for Informatics, Faculty of Science,

University of Amsterdam, 1098XH, The Netherlands

E-mail: robert.sinclair.15@ucl.ac.uk

In this supporting information, we provide additional discussions of the methods used in

our work, including more details about the software which accompanies this article. This

includes details about the extension of Yang et al.’s data set of graphene oxide reactivities in

section I, an outline of the atomistic GO building program in section II, and more information

about our percolation model in section III, IV, V and VI.

Methods for extending Yang’s data set

Yang et al. used density functional theory to calculate the relative stability of different GO-

MnO−
4 structures and thereby deduced the rates of reaction of various oxidation reactions.

We refer the interested reader to their work.1 We characterised the intermediate’s structure

as follows.

1

The MnO−
4 ion attaches to a pair of bonded carbons, the ion sitting on one face of a

graphene(oxide) sheet. There are then 4 first neighbour carbon sites and 8 second neighbour

carbon sites, the oxidation state of which significantly effect the stability of the intermediate

structure. We record the number of first and second neighbour carbons with an alcohol

group and epoxy group, and on which side of the flake they reside relative to the MnO−
4 ion.

Given that approximately 16000 combinations of these parameters exist1 and we only have

a small set of 52 to train with, we must reduce the system’s characteristics. We simplify

the problem by assuming the direction of neighbouring functional groups is not important,

and we only consider whether they are first or second neighbours. This assumption may

become an issue when there are multiple neighbouring oxygen groups, but it has a good

foundation based on Yang et al.’s work. They deduced that the reactivity is a function of

broken adjacent π-bonds, steric availability, and hydrogen bond formation with the MnO−
4

ion, but it should be noted that they did not include directionality as an important factor. It

is difficult to say if these factors are directly dependent on the relative positions of multiple

functional groups; the most problematic case might be that steric availability may differ if

two groups are adjacent or on opposite sides of the permangenate ion. However, reducing

the feature set was necessary and we do not think it impacts the local structure significantly.

Now, each potential reactive site has 8 features: the number of alcohol or epoxy groups

in first or second neighbour position and on the same or opposite side of the flake, relative

to the MnO−
4 ion.

Given such a small training set, we found that some machine learning techniques did not

perform well to predict the reactivity of different sites. The available data is far too sparse

to train a neural network. However, a decision tree or random forest (RF) approach worked

well (probably because the features were discrete. i.e. the number of first neighbour alcohol

groups above the plane is an integer ranging from 0 to 4). We used the Scikit-learn software

to generate our RF model:2 the random forest had a maximum depth of 4 and the output

2

is an average of 500 estimators.

It was also necessary, when training the RF, to use the logarithm of the reactivities.

This is a method to regularise the data set and is necessary for target values such as these,

which span many (31) orders of magnitude; otherwise the largest values would completely

dominate the RF fitting process.

To validate our model the 52 known reactive sites we used various metrics to measure

the model’s success. The first was the coefficient of determination, R2:

R2(X) = 1−
∑

i(y(Xi)− y(X))2∑
i(y(Xi)− f(Xi))2

. (1)

For a data set X, the true rates are denoted y(X), and the model predictions f(X).

For this validation our data was split into a training, Xtrain, and test set, Xtest, with

a split of 39:13 (75% : 25%). The model was fitted to the training set and then assessed

with the test set. This was repeated on several randomly generated training/test sets to

cross-validate our scores.

Our RF model achieves R2(Xtest) = 0.29, which shows some level of correlation but is far

from the ideal value of 1. Note that R2(Xtrain) = 0.72, because we have reduced the features

of the system, the model will never predict exact values for all of the training set because

some of the information has been lost.

It is more important that this model correctly predicts the most reactive sites than the

least, so the sum of all residuals is likely not to be the best measure of the model’s suitability.

The second method we use to evaluate the model is how well it predicts the most reactive

structure from a subset. Taking a subset of size n, Sn(X), of the set X, we can rank our

model by how often it correctly predicts the most reactive sites and the average ranking of

the site it predicts to be the most reactive.

For a subset S5(Xtest), the RF model predicts the most reactive site correctly 53% of

3

the time. For a larger subset (reusing some of the training data points to increase the size)

S20(X) it predicts correctly 30% of the time. By these measures the RF model performs far

better than other methods we tried such as linear regression or multi-layer perceptron neural

networks.

Atomistic graphene oxide builder program

Figure 1: Simple flowchart representing the general method taken to oxidise a graphitic
structure using a random forest regressor to calculate site reactivites.

An outline of the way we oxidise a graphitic structure, using the program given in Ref.,3

is shown in figure 1. The RF regressor described in the previous section is used to calculate

the reactivities of graphene C-C bonds to permanganate oxidation.

As is described by Yang et a,1 we assume that whether an alcohol or epoxy group forms

4

after a permanganate ion binds to a C-C bond is random and equally likely.

The function that decides whether to nucleate a new island takes two arguments: a user

specified ‘nucleation frequency’ (this is analogous to kn, described in the main text); and the

total reactivity of the system. We use the total reactivity of the system to predict the time

elapsed between adding OH or epoxy groups. New islands are added according to a Poisson

distribution, with mean equal to the ‘nucleation frequency’ multiplied by the time between

adding functional groups.

Percolation model sensitivity

The percolation model has three input parameters: χ, which is discussed at length in the

main text; δt, the timestep used to increment the islands’ radii and how often the algorithm

attempts to add new islands; and the number of Monte Carlo points used to estimate the

coverage area once the percolation threshold has been reached.

Figure 2: The fractional coverage of a sheet in oxidised islands against different values of χ,
for diminishing discritisation. These are mean values of 1000 runs at each point; the mean
is essentially unchanged for different precisions but the error in these values is correlated, as
shown figure 3.

Recall that δr = δtkrx
√
A. We can show that the qualitative outcome of the simulations,

5

taken as the average coverage at the percolation threshold for different values of χ, is inde-

pendent of the timestep used; see the plot in figure 2. However, the error in the result due

to the change in coverage between timesteps is pronounced; see figure 3.

Figure 3: Average uncertainty in the coverage over 1000 runs for different precisions vs. the
nucleation rate χ. The percolation threshold is reached at time c, therefore φ(t − δt) <
φ(c) < φ(t). The uncertainty in the result is reported as [φ(t)− φ(t− δt)]/2.

The error reported in our method of calculating the coverage for a given system state is

straightforward to explain. See figure 4, in which the errors shown are relative to the best

estimate we had, namely that using 106 points.

Calculating the C/O ratio of an oxidised domain

For the continuum model, we approximated oxygenated regions to a circle with even density

whereas in reality they are more irregularly shaped and have unoxidised islands that must be

accounted for. Calculating where the effective boundary of this region lies (to approximate

it as a circle) is not a trivial task. Knowledge of the region’s effective area is necessary to

compute the C/O ratio of an oxidised island.

Using the random forest algorithm described in the previous section, a sheet was nucleated

only once and 10,000 oxygen atoms were added to analyse the resulting oxidised region. The

6

Figure 4: Average difference in the estimated coverage of the same set of 10000 systems,
compared to an estimate using 106 points.

values discussed are taken from an ensemble of 15 such simulations.

We plot the O/C ratio as a radial distribution of oxygenated sites from the centre of mass

of the oxidised region in figure 5 (the O/C ratio is used here so the value does not tend to

infinity at large radii). The radial distribution forms a plateau near the centre of the island,

which can be taken as the O/C ratio of a fully oxygenated region. The average O/C ratio

between r =0-5 nm is 0.53. This cut-off is somewhat arbitrary but is necessary so that we

can derive an effective area of the island. We can then say that the radius at which one is

equally likely to find oxidised and unoxidised region has a O/C ratio of 0.26: reading from

figure 5, this is at r = 12.0± 0.7 nm.

However, this constitutes a lower bound to the effective radius of an oxidised island.

We are concerned with when these islands overlap so we want to know about the island’s

boundary. The offshoots that grow from the edges constitute the long tail in figure 5 and

are more important than the density at the centre.

One way to measure the area of the oxidised region is to find the area of the convex

hull that encloses all the oxygenated sites. The convex hull can be thought of as the shape

enclosed by an elastic band stretched around all oxygenated sites. The effective radius of this

7

Figure 5: Oxygen density as measured from the centre of an oxidised island. The island has
a higher oxygen density near the centre. We use an O/C ratio (instead of the usual C/O)
because it does not rise to infinity at large radial distance. It is not immediately obvious
what the effective radius of this island is.

island would be the radius that gives a circle with the same area as this convex hull. Over

the same 15 simulations, the radius calculated by this method is 151± 6 nm. This method

captures the area around the irregular boundary. Some examples are shown in figure 6.

In reality, the effective radius of these islands probably lies between the two values cal-

culated. Any value in between can be arrived at by constructing the concave hull of the

island with a given shape parameter. A concave hull is a polygon which contains all the

oxygenated sites but has less area than a convex hull; several algorithms exist which can be

used to construct such a polygon. Here, we constructed a Delaunay triangulation using the

coordinates of all the oxygen sites, then removed the triangles with edges over length α.4 We

find the outer edges of the resulting mesh and use this boundary to compute the effective

area of the island. Examples are shown in figure 7. The code used for this is given at the end

of the Supporting Information. By sweeping through different values of α, the relationship

in figure 8 is found.

The carbon to oxygen ratio is then calculated by dividing the number of carbon atoms

that fall within the effective area of the island by the number of oxygen atoms added (10,000).

8

Figure 6: This figure shows 6 examples, (a)-(f) of oxidised domains. We are trying to
calculate the effective radius of these islands to map to the continuum model described in
the main text. To do this we draw the convex hull of the island (green) and select a radius
which gives the same area, which is also shown in each case (orange).

9

Figure 7: The convex hull drawn in figure 6a probably overestimates an island’s effective
radius. Here we show the same island but draw the concave hull with different α values.
The exact algorithm to produce these boundaries is given in the text.

Figure 8: The effective radius of an oxidised domain with 10,000 oxygen atoms calculated
by different means. The convex hull method provides a maximum, and the half maximum
of the radial distribution of oxygen atoms is a minimum. The real value is expected to lie
between these values.

10

The density of carbon atoms on a graphene sheet is 38.46 carbons per nm2. Using the first

method described (half the radial distribution plateau), the C/O ratio within a propagating

oxidised island is 1.94± 0.20. Using the area of the convex hull, C/O = 2.76± 0.22. In the

main text we use a ratio of 2.76 which is the most conservative estimate for calculating the

percolation threshold of graphene oxide. The true answer is likely to be smaller.

Percolation Threshold

Figure 4 in the main text shows error bars as the 95% confidence interval in the average.

We show here the same data but with the median and percentile which give a different view

of the data, in figure 9.

Figure 9: The fractional coverage of a graphene sheet at the percolation threshold for different
values of χ. We show different percentiles for the distribution of coverages calculated to
indicate the shape of these distributions.

Recalling that χ = Akn/krx, a real sample of graphene flakes will have surface areas that

cross several orders of magnitude. This is inevitable by any of today’s current methods of

synthesising graphene. Therefore, a sample of graphene will not have a unique value of χ

that can describe it. It is clear, however, that there is minimum value that φc takes and

11

within one standard deviation φc will allways be greater than 0.58. Similarly, we can say

that, when φc > 0.43, at least 95% of the sheets will be below the percolation threshold,

whatever the flake size distribution. In the main text we use a coverage of 0.43 to define the

conservative estimate of graphene oxide that lies below the percolation threshold.

Concave hull code fragment

Below is a snippet of python code used to calculate the concave hull of an graphene-oxide

island, modified from the code found in Ref.4

1 def alpha_shape(points, alpha):

2

3 def add_edge(edges, edge_points, coords, i, j):

4 if (i, j) in edges or (j, i) in edges:

5 return

6 edges.add((i, j))

7 edge_points.append(coords[[i, j]])

8

9 tri = Delaunay(points)

10 edges = set()

11 edge_points = []

12 # loop over triangles:

13 # ia, ib, ic = indices of corner points of a triangle

14 for ia, ib, ic in tri.vertices:

15 pa = coords[ia]

16 pb = coords[ib]

17 pc = coords[ic]

18 # Lengths of sides of triangle

19 a = math.sqrt((pa[0]-pb[0])**2 + (pa[1]-pb[1])**2)

20 b = math.sqrt((pb[0]-pc[0])**2 + (pb[1]-pc[1])**2)

21 c = math.sqrt((pc[0]-pa[0])**2 + (pc[1]-pa[1])**2)

22

23 if a > alpha or b > alpha or c > alpha:

24 pass

25 else:

26 add_edge(edges, edge_points, points, ia, ib)

27 add_edge(edges, edge_points, points, ib, ic)

28 add_edge(edges, edge_points, points, ic, ia)

29 m = geometry.MultiLineString(edge_points)

30 triangles = list(polygonize(m))

31 concave_hull = cascaded_union(triangles), edge_points

32 return concave_hull

12

References

(1) Yang, J.; Shi, G.; Tu, Y.; Fang, H. High Correlation Between Oxidation Loci on

Graphene Oxide. Angewandte Chemie International Edition 2014, 53, 10190–10194.

(2) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blon-

del, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cour-

napeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E. Scikit-learn: Machine Learning in

Python . J. Mach. Learn. Res 2011, 12, 2825–2830.

(3) Sinclair, R. C. make-graphitics. 2019; 10.5281/zenodo.2642230.

(4) Dwyer, K. Drawing Boundaries In Python - http://blog.thehumangeo.com/2014/05/12/drawing-

boundaries-in-python/ Accessed: 2019-01-9.

13

