Supporting Data

A Large-Scale Multicenter Study Validates AKR1B10 as a New Prevalent Serum Marker for Detection of Hepatocellular Carcinoma

Xu Ye,¹* Cunyan Li,²* Xuyu Zu,³* Minglin Lin,⁴* Qiang Liu,¹ Jianghua Liu,³ Guoguo Xu,⁵

Zhiyong Chen,⁵ Yongliang Xu,⁵ Long Liu,⁵ Diteng Luo,⁴ Zhe Cao,⁵ Guiyuan Shi,⁵ Zirui Feng,⁶

Hongyu Deng,¹ Qianjin Liao,¹ Chuan Cai,⁶ Duan-Fang Liao,⁶ Jing Wang,^{1†} Junfei Jin,^{4†} and

Deliang Cao^{1,6†}

¹Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China.

²Department of Laboratory Medicine, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Hunan, China.

³Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hunan, China.

⁴Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guangxi, China.

⁵Light of Life Biotechnology Co., Ltd., Hunan, China.

⁶Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, Hunan, China.

*These authors contributed equally to this work.

[†]Corresponding authors:

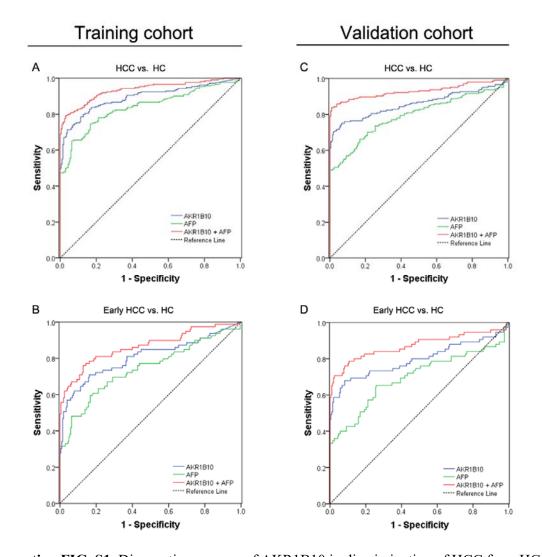
Deliang Cao, Ph.D., Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China. E-mail: deliangcao0062@hnszlyy.com. Tel.:/Fax: 86-731-88651681.

Junfei Jin, Ph.D., Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of

Guilin Medical University, 15 Lequn Road, Guilin 541001, Guangxi, China. E-mail:

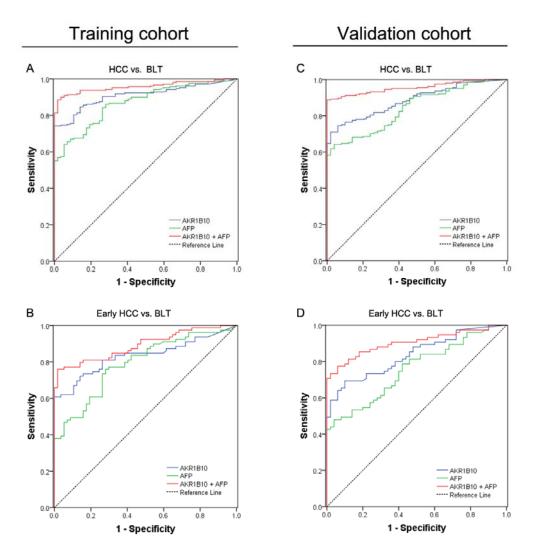
changliangzijin@163.com. Tel.: 86-773-2862270.

Jing Wang, Ph.D., Hun an Cancer Hospital and the Affiliated Cancer Hospital of Xiangya

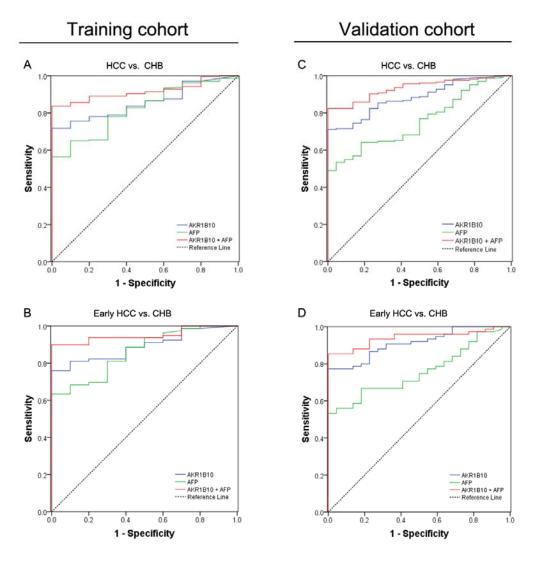

School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan,

China. E-mail: wangjing0081@hnszlyy.com. Tel.: 86-731-88651108.

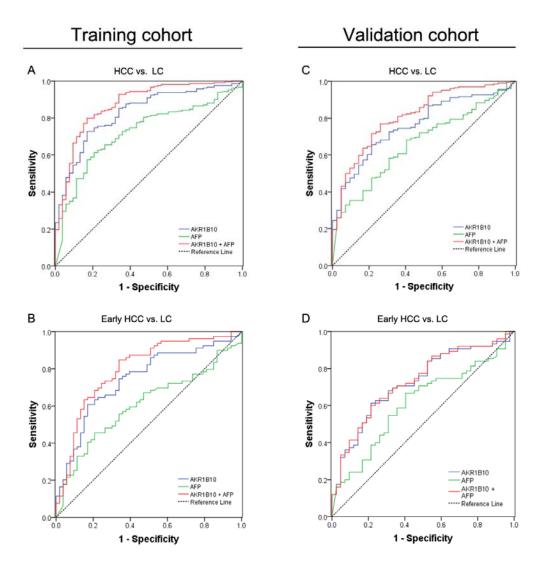
Table of Contents


- Supporting Figures (Figures S1-S9)

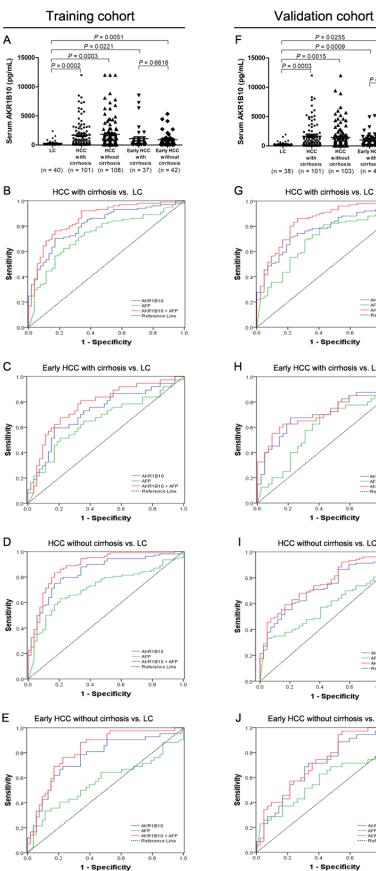
- Supporting Tables (Tables S1-S9)


Supporting FIG. S1. Diagnostic accuracy of AKR1B10 in discrimination of HCC from HCs. (A and B) ROC curve analyses of AKR1B10, AFP, or both in training cohort for patients with HCC versus HCs and patients with early HCC versus HCs, respectively. (C and D) ROC curve analyses of AKR1B10, AFP, or both in validation cohort for patients with HCC versus HCs and patients with early HCC versus HCs, respectively.

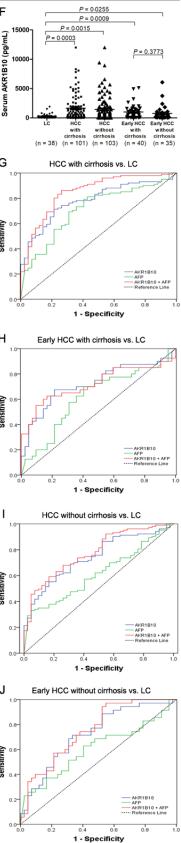
Abbreviations: AFP, alpha-fetoprotein; AKR1B10, aldo-keto reductase family 1 member B10; HCC, hepatocellular carcinoma; HC, healthy control; ROC, receiver operating characteristic.


Supporting FIG. S2. Diagnostic accuracy of AKR1B10 in differentiating patients with HCC from patients with BLT. (A and B) ROC curve analyses of AKR1B10, AFP, or both in training cohort for patients with HCC versus patients with BLT and patients with early HCC versus patients with BLT, respectively. (C and D) ROC curve analyses of AKR1B10, AFP, or both in validation cohort for patients with HCC versus patients with BLT and patients with early HCC versus patients with BLT, respectively. (C and D) ROC curve analyses of AKR1B10, AFP, or both in validation cohort for patients with HCC versus patients with BLT and patients with early HCC versus patients with BLT, respectively.

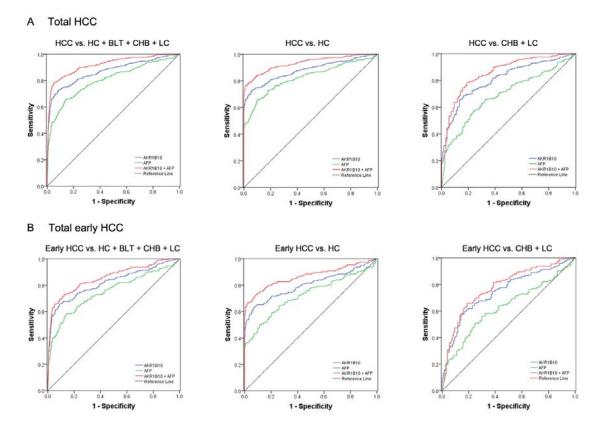
Abbreviations: AFP, alpha-fetoprotein; AKR1B10, aldo-keto reductase family 1 member B10; BLT, benign liver tumor; HCC, hepatocellular carcinoma; ROC, receiver operating characteristic.

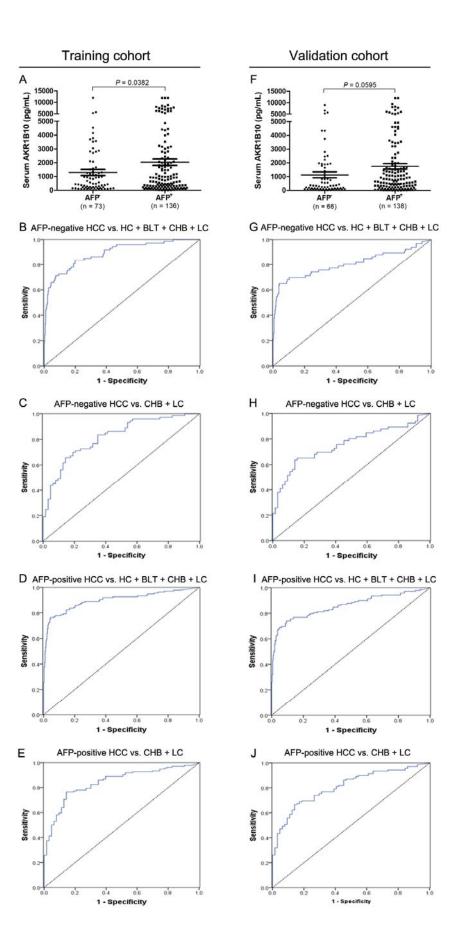

Supporting FIG. S3. Diagnostic accuracy of AKR1B10 in differentiating patients with HCC from patients with CHB. (A and B) ROC curve analyses of AKR1B10, AFP, or both in training cohort for patients with HCC versus patients with CHB and patients with early HCC versus patients with CHB, respectively. (C and D) ROC curve analyses of AKR1B10, AFP, or both in validation cohort for patients with HCC versus patients with CHB and patients with early HCC versus patients with CHB, respectively. (C and D) ROC curve analyses of AKR1B10, AFP, or both in validation cohort for patients with HCC versus patients with CHB and patients with early HCC versus patients with CHB, respectively.

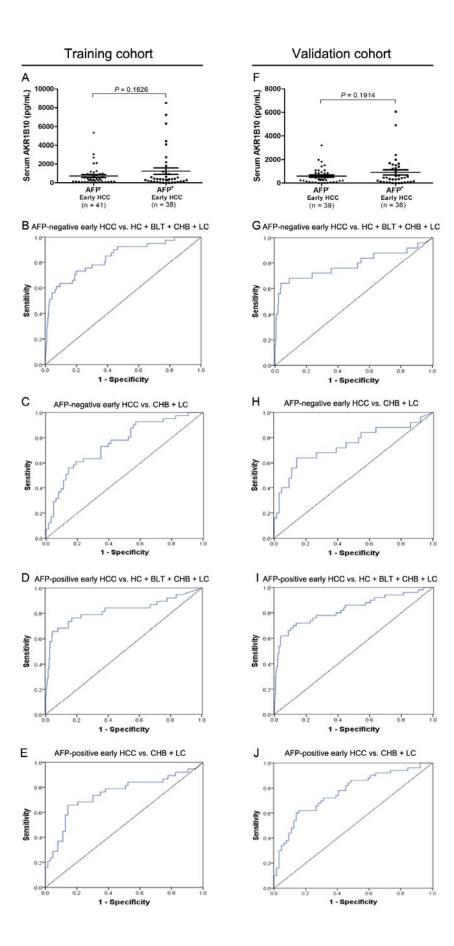
Abbreviations: AFP, alpha-fetoprotein; AKR1B10, aldo-keto reductase family 1 member B10; CHB, chronic hepatitis B; HCC, hepatocellular carcinoma; ROC, receiver operating characteristic.

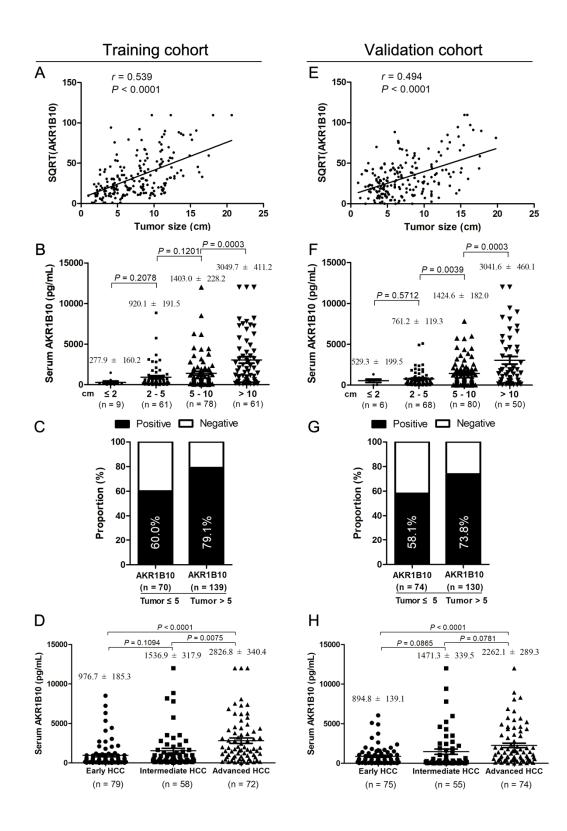


Supporting FIG. S4. Diagnostic accuracy of AKR1B10 in differentiating patients with HCC from patients with LC. (A and B) ROC curve analyses of AKR1B10, AFP, or both in training cohort for patients with HCC versus patients with LC and patients with early HCC versus patients with LC, respectively. (C and D) ROC curve analyses of AKR1B10, AFP, or both in validation cohort for patients with HCC versus patients with LC and patients with early HCC versus patients with LC, respectively. (C and D) ROC curve analyses of AKR1B10, AFP, or both in validation cohort for patients with HCC versus patients with LC and patients with early HCC versus patients with LC, respectively.


Abbreviations: AFP, alpha-fetoprotein; AKR1B10, aldo-keto reductase family 1 member B10; HCC, hepatocellular carcinoma; LC, liver cirrhosis; ROC, receiver operating characteristic.


Е


Supporting FIG. S5. Diagnostic accuracy of AKR1B10 in differentiating patients with HCC with or without cirrhosis from patients with LC. (A) Levels of AKR1B10 in patients with LC, patients with HCC with or without cirrhosis, and patients with early HCC with or without cirrhosis in training cohort. (B and C) ROC curve analyses of AKR1B10, AFP, or both in training cohort for patients with HCC with cirrhosis versus patients with LC and patients with early HCC with cirrhosis versus patients with LC, respectively. (D and E) ROC curve analyses of AKR1B10, AFP, or both in training cohort for patients with HCC without cirrhosis versus patients with LC and patients with early HCC without cirrhosis versus patients with LC. (F) Levels of AKR1B10 in patients with LC, patients with HCC with or without cirrhosis, and patients with early HCC with or without cirrhosis in validation cohort. (G and H) ROC curve analyses of AKR1B10, AFP, or both in validation cohort for patients with HCC with cirrhosis versus patients with LC and patients with early HCC with cirrhosis versus patients with LC, respectively. (I and J) ROC curve analyses of AKR1B10, AFP, or both in validation cohort for patients with HCC without cirrhosis versus patients with LC and patients with early HCC without cirrhosis versus patients with LC.


Supporting FIG. S6. Diagnostic accuracy of AKR1B10 in discrimination of patients with HCC from controls when participants in all three cohorts are combined. (A) ROC curves of AKR1B10, AFP, or both for total patients with HCC versus total controls, HCs, or high-risk controls (CHB + LC) from three cohorts. (B) ROC curves of AKR1B10, AFP, or both for total patients with early HCC versus total controls, HCs, or high-risk controls.

Supporting FIG. S7. Diagnostic performance of AKR1B10 in AFP-negative or AFP-positive HCC. (A) Levels of AKR1B10 in AFP-negative and AFP-positive patients with HCC in training cohort. (B and C) ROC curve analyses of AKR1B10 in AFP-negative patients with HCC versus all controls or versus high-risk controls (CHB + LC) in training cohort. (D and E) ROC curve analyses of AKR1B10 in AFP-positive patients with HCC versus high-risk controls in training cohort. (F) Levels of AKR1B10 in AFP-negative and AFP-positive patients with HCC in validation cohort. (G and H) ROC curve analyses of AKR1B10 in AFP-negative and AFP-positive patients with HCC in validation cohort. (G and H) ROC curve analyses of AKR1B10 in AFP-negative patients with HCC versus all controls or versus high-risk controls in validation cohort. (I and J) ROC curve analyses of AKR1B10 in AFP-positive patients with HCC versus all controls in validation cohort. (I and J) ROC curve analyses of AKR1B10 in AFP-positive patients with HCC versus all controls or versus high-risk controls in validation cohort. (I and J) ROC curve analyses of AKR1B10 in AFP-positive patients with HCC versus all controls in validation cohort. (I and J) ROC curve analyses of AKR1B10 in AFP-positive patients with HCC versus all controls in validation cohort.

Supporting FIG. S8. Diagnostic performance of AKR1B10 in AFP-negative or AFP-positive patients with early HCC. (A) Levels of AKR1B10 in AFP-negative and AFP-positive patients with early HCC in training cohort. (B and C) ROC curve analyses of AKR1B10 in AFP-negative patients with early HCC versus all controls or versus high-risk controls (CHB + LC) in training cohort. (D and E) ROC curve analyses of AKR1B10 in AFP-positive patients with early HCC versus all controls or versus high-risk controls (F) Levels of AKR1B10 in AFP-negative and AFP-positive patients with early HCC versus all controls or versus high-risk controls in training cohort. (F) Levels of AKR1B10 in AFP-negative and AFP-positive patients with early HCC in validation cohort. (G and H) ROC curve analyses of AKR1B10 in AFP-negative patients with early HCC versus all controls or versus high-risk controls (CHB + LC) in validation cohort. (I and J) ROC curve analyses of AKR1B10 in AFP-positive patients with early HCC versus all controls or versus high-risk with early HCC versus all controls or versus high-risk controls (CHB + LC) in validation cohort. (I and J) ROC curve analyses of AKR1B10 in AFP-positive patients with early HCC versus all controls or versus high-risk controls (CHB + LC) in validation cohort. (I and J) ROC curve analyses of AKR1B10 in AFP-positive patients with early HCC versus all controls or versus high-risk controls (CHB + LC) in validation cohort. (I and J) ROC curve analyses of AKR1B10 in AFP-positive patients with early HCC versus all controls or versus high-risk controls in validation cohort.

Supporting FIG. S9. Stratified analysis of serum AKR1B10 levels with tumor size and stages. (A) Linear regression analyses of AKR1B10 levels and tumor size in training cohort. (B) Levels of AKR1B10 in patients with HCC with different tumor sizes in training cohort. (C) Positive rates of AKR1B10 in patients with HCC with tumor size ≤ 5 cm or > 5 cm in training cohort. (D) AKR1B10 levels in patients with HCC at different BCLC stages in training cohort. (E) Linear regression analyses of AKR1B10 levels and tumor size in validation cohort. (F) Levels of AKR1B10 in patients with HCC with different tumor sizes in validation cohort. (G) Positive rates of AKR1B10 in patients with HCC with different tumor size ≤ 5 cm or > 5 cm in validation cohort. (H) AKR1B10 in patients with HCC with HCC at different BCLC at different BCLC at different BCLC at different tumor size in validation cohort. (H) AKR1B10 levels in patients with HCC with tumor size ≤ 5 cm or > 5 cm in validation cohort. (H) AKR1B10 levels in patients with HCC with tumor size ≤ 5 cm or > 5 cm in validation cohort. (H) AKR1B10 levels in patients with HCC at different BCLC at different BCLC stages in validation cohort.

Supporting Tables

Supporting TABLE S1. Eligibility criteria for selection of the participants.

Hepatocellular carcinoma

Inclusion criteria:

1. Age: ≥ 18 and ≤ 80 years, both male and female.

2. Diagnosed based on AFP serology and at least two imaging technologies (hepatic ultrasound, together with CT and/or MRI).

3. Confirmed histopathologically by two independent pathologists.

4. No preoperative chemotherapy, radiotherapy, transarterial chemoembolization, or ablation before collection of blood samples.

5. The subjects volunteer to sign the informed consent.

Exclusion criteria:

1. Patients with non-hepatocellular carcinoma (non-HCC).

2. Receiving any anticancer therapy before blood sample collection.

3. Pregnant or lactating women.

4. Those with clinical diagnosis of acute and chronic gastrointestinal diseases.

5. Those with fasting plasma glucose \geq 7.0 mmol/L or casual plasma glucose \geq 11.1 mmol/L.

6. Those with human immunodeficiency virus (HIV) infection or acquired immune deficiency syndrome (AIDS)-associated diseases.

7. Conditions that are considered not suitable for this study.

Healthy control

1. Age: ≥ 18 and ≤ 80 years, both male and female.

2. Serologically negative for hepatitis viruses (hepatitis B surface antigen [HBsAg], hepatitis B e antigen [HBeAg], anti-HBe, and anti-HBc).

3. No diabetes, no liver and gastrointestinal diseases, and no liver malignancies.

4. No history of other systematic malignancies.

Benign liver tumor

- 1. Age: ≥ 18 and ≤ 80 years, both male and female.
- 2. Hepatic hemangioma.
- 3. Focal nodular hyperplasia.
- 4. Hepatic adenoma.

Chronic hepatitis B

- 1. Age: ≥ 18 and ≤ 80 years, both male and female.
- 2. HBsAg-positive >6 months.
- 3. Serum HBV DNA > 105 copies/mL.
- 4. Persistent or intermittent elevation in AST or ALT levels.

Liver cirrhosis

- 1. Age: ≥ 18 and ≤ 80 years, both male and female.
- 2. With chronic hepatitis B infection history < 20 years.

3. Liver biopsy indicates cirrhosis and liver function detection indicates compensated phase of liver cirrhosis.

4. If no biopsy available, diagnosis must be supported by two imaging technologies.

		Age	Gender	AFP	HBsAg-	C: 1 :	AST	ALT	TBIL	DT	Albumin	Tumor	Number	Tu	mor S	Size (o	cm)
Characteristics	n	(years)	(M/F)	(ng/mL)	Positive	Cirrhosis	(U/L)	(U/L)	(µmol/L)	PT (s)	(g/L)	Single	Multiple	≤2	2-5	5-10	> 10
Discover cohort—A	ACHXS	SM CSU															
НС	66	50.3 ± 13.1	45/21	9.7 ± 17.3	-	-	18.4 ± 6.3	19.5 ± 7.1	13.7 ± 6.0	-	46.3 ± 2.5	-	-	-	-	-	-
HCC	69	53.8 ± 11.1	58/11	436.7 ± 504.9	63	38	61.7 ± 49.9	44.3 ± 38.4	16.7 ± 7.9	13.0 ± 1.6	36.1 ± 4.0	28	41	3	11	35	20
Training cohort—	ACHXS	SM CSU															
HC	203	50.7 ± 11.0	128/75	9.1 ± 16.9	-	-	21.2 ± 7.1	20.4 ± 6.2	13.9 ± 5.6	-	47.6 ± 3.9	-	-	-	-	-	-
HCC	209	54.1 ± 12.0	186/23	400.2 ± 503.4	195	101	72.9 ± 66.5	49.9 ± 35.3	21.9 ± 20.1	13.7 ± 1.5	37.1 ± 5.1	111	98	9	61	78	61
BLT	57	47.7 ± 9.8	22/35	6.4 ± 8.1	26	6	29.0 ± 35.1	19.6 ± 20.1	12.7 ± 4.4	12.7 ± 1.1	46.3 ± 2.5	37	20	7	11	30	9
CHB	10	44.1 ± 12.9	5/5	53.9 ± 72.4	10	-	172.4 ± 214.3	270.1 ± 265.1	32.8 ± 31.3	11.9 ± 1.4	41.6 ± 5.3	-	-	-	-	-	-
LC	40	54.5 ± 9.8	32/17	123.4 ± 295.4	33	40	125.9 ± 162.4	111.4 ± 188.8	30.8 ± 20.2	13.7 ± 2.3	35.5 ± 6.3	-	-	-	-	-	-
Validation cohort																	
ACHXSM CSU																	
HC	75	49.6 ± 10.4	47/28	13.3 ± 24.7	-	-	20.1 ± 5.5	18.7 ± 7.4	14.2 ± 5.8	-	48.1 ± 3.4	-	-	-	-	-	-
HCC	71	52.8 ± 11.2	60/11	390.8 ± 501.9	59	38	56.7 ± 43.1	49.8 ± 36.5	22.4 ± 24.8	13.2 ± 1.5	39.3 ± 4.8	45	26	2	25	28	16
BLT	20	54.7 ± 12.8	11/9	11.5 ± 16.8	7	2	35.5 ± 44.6	24.2 ± 25.5	15.1 ± 6.6	12.7 ± 1.0	40.2 ± 4.7	6	14	0	7	11	2
LC	10	55.6 ± 13.6	7/3	115.9 ± 124.8	7	10	117.3 ± 120.5	94.2 ± 92.7	29.1 ± 17.0	12.7 ± 1.2	41.1 ± 4.9	-	-	-	-	-	-
НРРН																	
HC	63	51.2 ± 12.3	36/27	12.3 ± 21.4	-	-	22.3 ± 4.9	20.6 ± 6.1	13.7 ± 4.6	-	47.2 ± 3.1	-	-	-	-	-	-
HCC	64	54.4 ± 9.9	54/10	386.7 ± 493.7	60	30	65.1 ± 50.9	68.7 ± 52.1	28.7 ± 32.4	13.5 ± 1.7	37.2 ± 4.9	37	27	0	21	29	14
BLT	18	52.2 ± 11.7	7/11	10.7 ± 14.8	5	1	46.4 ± 49.1	39.7 ± 33.7	11.4 ± 3.4	12.3 ± 0.9	40.2 ± 2.6	5	13	0	4	9	5
CHB	9	40.3 ± 14.5	6/3	76.9 ± 182.1	6	-	251.6 ± 248.5	372.4 ± 179.3	31.8 ± 35.7	12.5 ± 1.2	43.2 ± 6.8	-	-	-	-	-	-
LC	13	54.9 ± 10.9	7/6	148.0 ± 263.8	8	13	129.0 ± 223.7	114.7 ± 247.9	22.5 ± 14.1	12.0 ± 1.6	37.8 ± 6.3	-	-	-	-	-	-
FAH NUSM																	

Supporting TABLE 2. Characteristics of the subjects enrolled in each cohort.

HC	70	52.9 ± 9.7	38/32	13.4 ± 22.5	-	-	19.1 ± 7.3	21.4 ± 5.2	12.3 ± 2.6	-	45.8 ± 4.9	-	-	-	-	-	-
HCC	69	53.3 ± 11.3	57/12	397.7 ± 514.5	63	33	75.6 ± 69.7	57.0 ± 43.5	22.1 ± 25.9	13.3 ± 2.2	36.8 ± 5.9	43	26	4	22	23	20
BLT	12	59.2 ± 17.7	5/7	11.8 ± 15.6	3	0	38.0 ± 29.5	36.9 ± 16.7	14.3 ± 5.3	13.6 ± 1.3	39.2 ± 7.0	3	9	0	8	3	1
CHB	13	41.0 ± 13.9	8/5	87.9 ± 224.9	9	-	232.7 ± 236.6	456.7 ± 466.5	35.5 ± 32.2	12.0 ± 1.6	41.8 ± 5.1	-	-	-	-	-	-
LC	15	55.7 ± 10.4	9/6	133.7 ± 315.1	10	15	123.2 ± 89.0	108.5 ± 126.9	36.1 ± 18.0	12.7 ± 2.3	36.8 ± 6.0	-	-	-	-	-	-

-, Not Available (NA).

Abbreviations: ACHXSM CSU, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University; ALT, alanine aminotransferase; AST, aspartate transaminase; FAH NUSM, First Affiliated Hospital, Nanhua University School of Medicine; HPPH, Hunan Provincial People's Hospital; PT, prothrombin time; TBIL, total bilirubin. Data are presented as the mean ± SD.

Characteristics		Age	Gender	AFP	HBsAg-	Cirrhosis	AST	ALT	TBIL	PT (s)	Albumin	Main Excluded Reasons
	n	(years)	(M/F)	(ng/mL)	Positive		(U/L)	(U/L)	(µmol/L)	11(5)	(g/L)	Main Excluded Reasons
												ICC, other tumor history, anticancer therapy before
ACHXSM CSU	33	56.7 ± 10.7	19/14	127.5 ± 225.8	18	12	46.6 ± 44.7	52.1 ± 140.3	21.5 ± 37.7	13.6 ± 1.4	36.9 ± 5.2	blood collection, severe gastrointestinal diseases
												ICC, other tumor history, severe gastrointestinal
НРРН	7	55.0 ± 13.6	3/4	123.0 ± 150.2	3	2	33.3 ± 15.1	30.6 ± 19.5	27.8 ± 37.1	12.8 ± 1.0	37.8 ± 3.2	diseases
												ICC, other tumor history, anticancer therapy before
FAH NUSM	8	60.4 ± 12.6	6/2	153.7 ± 204.5	4	4	41.8 ± 22.8	35.5 ± 19.8	36.5 ± 58.7	13.2 ± 1.3	37.9 ± 2.9	blood collection

Supporting TABLE 3. Information of the excluded patients in each center.

Abbreviations: ACHXSM CSU, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University; ALT, alanine aminotransferase; AST, aspartate aminotransferase; FAH NUSM, First Affiliated Hospital, Nanhua University School of Medicine; HPPH, Hunan Provincial People's Hospital; ICC, intrahepatic cholangiocarcinoma; PT, prothrombin time; TBIL, total bilirubin. Data are presented as the mean ± SD.

Variable		Training	<u>cohort (n = 209)</u>	Validatio	n Cohort (n = 204)	P Value
		no.	Percentage (%)	no.	Percentage (%)	
Gender						
	Female	23	11.00	33	16.18	0.125
	Male	186	89.00	171	83.82	0.125
Age (years)	luie	100	07.00	171	05.02	
	≤ 55	108	51.67	117	57.35	0.247
	≥ 55 > 55	108	48.33	87		0.247
	> 33	101	48.33	87	42.65	
HBsAg	т.,•	1.4	(70	22	10.70	0 1 4 1
	Vegative	14	6.70	22	10.78	0.141
	ositive	195	93.30	182	89.22	
AFP (ng/mL)						
	<u>≤</u> 20	73	34.93	66	32.35	0.580
	> 20	136	65.07	138	67.65	
ALT (U/L)						
1	<u>≤</u> 40	102	48.80	114	55.88	0.150
>	- 40	107	51.20	90	44.12	
AST (U/L)						
<	<u>≤</u> 40	80	38.28	96	47.06	0.071
	→ 40	129	61.72	108	52.94	
Cirrhosis						
	No	108	51.67	103	50.49	0.810
	les l	100	48.33	101	49.51	0.010
Tumor size (rang		101	40.55	101	77.51	
	≤ 5	71	33.49	71	34.80	0.859
	≥ 5 > 5					0.839
	> 3	138	66.51	133	65.20	
Tumor number			50.11	105	(1.05	0.004
	Single	111	53.11	125	61.27	0.094
	Aultiple	98	46.89	79	38.73	
Vascular invasion						
	No	144	68.90	128	62.75	0.743
Ϊ	les	65	31.10	62	30.39	
Ν	Aissing			14	6.86	
Child-Pugh class	ification					
A	A	161	77.03	160	78.43	0.733
E	3 + C	48	22.97	44	21.57	
Tumor differentia	ation					
	-II	111	49.76	117	57.35	0.807
	II-IV	69	36.36	69	33.82	
	Aissing	29	13.88	18	8.82	
BCLC stage	inssing	2)	15.00	10	0.02	
-) + A	79	37.80	75	36.76	0.828
						0.020
	B + C + D	130	62.20	129	63.24	
TNM stage		07	41.17	00	45.10	0.144
	-II	86	41.15	92	45.10	0.144
	II-IV	123	58.85	98	48.04	
Ν	Aissing			14	6.86	

Supporting TABLE 4. Clinicopathological characteristics of patients with HCC in training and validation cohorts.

		Trai	ining Cohort				Vali	dation Coho	rt	
Serum AKR1B10 (pg/mL)	НС	НСС	BLT	СНВ	LC	НС	НСС	BLT	СНВ	LC
	(n = 203) (%)	(n = 209) (%)	(n = 57) (%)	(n = 10) (%)	(n = 40) (%)	(n = 208) (%)	(n = 204) (%)	(n = 50) (%)	(n = 22) (%)	(n = 38) (%)
0~268	198 (97.54)	57 (27.27)	57 (100)	10 (100)	31 (77.50)	201 (96.63)	65 (31.86)	48 (96.00)	19 (86.36)	27 (71.05)
269~500	5 (2.46)	35 (16.75)	0	0	3 (7.50)	7 (3.37)	28 (13.73)	2 (4.00)	3 (13.64)	4 (10.53)
501~750	0	12 (5.74)	0	0	2 (5.00)	0	14 (6.86)	0	0	3 (7.89)
751~1000	0	19 (9.09)	0	0	1 (2.50)	0	15 (7.35)	0	0	2 (5.26)
1001~1500	0	16 (7.66)	0	0	1 (2.50)	0	18 (8.82)	0	0	0
1501~2000	0	13 (6.22)	0	0	1 (2.50)	0	20 (9.80)	0	0	2 (5.26)
2001~3000	0	16 (7.66)	0	0	1 (2.50)	0	9 (4.41)	0	0	0
3001~6000	0	23 (11.00)	0	0	0	0	25 (12.25)	0	0	0
> 6000	0	18 (8.61)	0	0	0	0	10 (4.90)	0	0	0

Supporting TABLE 5. Distribution of serum AKR	B10 concentrations of HCC and controls in training and validation cohorts.
---	--

Variable		Training Col	nort (n = 209)		Validation Co	ohort (n = 204)	
Variable		Negative	Positive	P value	Negative	Positive	P value
		57	152		65	139	
Gender							
	Female	5	18	0.528	13	20	0.311
	Male	52	134		52	119	
Age (years)							
	≤ 55	35	73	0.085	39	78	0.601
	> 55	22	79		26	61	
HBsAg							
	Negative	2	12	0.359	11	11	0.053
	Positive	55	140		54	128	
AFP (ng/mL)							
	≤ 20	26	47	0.047	34	32	0.001
	> 20	31	105		31	107	
ALT (U/L)							
	\leq 40	36	66	0.011	45	69	0.009
		21	86		20	70	
AST (U/L)							
	\leq 40	36	44	0.001	41	55	0.002
	> 40	21	108		24	84	
Cirrhosis	-						
	No	27	81	0.446	39	64	0.063
	Yes	30	71		26	75	
Tumor size (r			, -				
(-	≤ 5	28	42	0.003	31	43	0.020
	> 5	29	110	01000	34	96	0.020
Tumor numbe		_,	110		5.	20	
i unior munio	Single	31	80	0.821	45	80	0.111
	Multiple	26	72	0.021	20	59	0.111
Vascular inva	-	20	, 2		20	55	
vascular mva	No	38	106	0.669	44	84	0.098
	Yes	19	46	5.007	14	48	0.070
	Missing	17	01		7	48 7	
Child-Pugh cl	-				/	/	
Cinic-1 ugil C	A	41	120	0.283	53	107	0.461
	A B + C	16	32	0.205	53 12	32	0.701
Tumor differe		10	22		12	32	
i amoi umett	I-II	27	84	0.268	45	76	0.047
	III-IV	27	84 47	0.200	43 16	53	0.047
	Missing	8	21		4	10	
BCLC stage	MISSING	0	21		т	10	
DULU Stage	0 + A	31	48	0.002	28	47	0.201
	0 + A B + C + D	26	48 104	0.002	28 37	47 92	0.201
TNM stage		20	104		51	72	
i mivi stage	I-II	22	64	0.646	25	67	0.206
	III-IIV	35	88	0.040	25 35	63	0.200
		33	00				
	Missing				5	9	

Supporting TABLE 6. Association between AKR1B10 and clinicopathological data of HCC in training and validation cohorts. Serum AKR1B10 Cutoff: 267.9 pg/mL.

				Training	g Cohort						Validation	Cohort		
	Sensitivity	Specificity	PPV	NPV	Positive	Negative	AUC (95%CI)	Sensitivity	Specificity	PPV	NPV	Positive	Negative	AUC (95%CI)
	(%)	(%)	(%)	(%)	LR	LR		(%)	(%)	(%)	(%)	LR	LR	
HCC vs. HC														
AKR1B10	71.3%	96.1%	94.9%	76.5%	18.29	0.30	0.892 (0.858-0.920)	72.5%	94.2%	92.5%	77.8%	12.58	0.29	0.850 (0.811-0.883)
AFP	65.1%	91.6%	91.3%	72.2%	7.76	0.37	0.838 (0.799-0.873)	73.5%	78.8%	77.3%	75.2%	3.48	0.34	0.814 (0.773-0.850)
AKR1B10 + AFP	79.0%	95.0%	96.5%	81.7%	15.71	0.22	0.935 (0.907-0.957)	74.0%	98.6%	98.1%	79.5%	51.32	0.26	0.910 (0.878-0.936)
Early-stage HCC	vs. HC													
AKR1B10	70.9%	83.7%	62.9%	88.1%	4.36	0.35	0.806 (0.755-0.851)	68.0%	94.2%	81.0%	89.1%	11.79	0.34	0.826 (0.776-0.868)
AFP	59.5%	83.3%	58.0%	84.1%	3.55	0.49	0.744 (0.689-0.794)	65.3%	83.7%	59.0%	87.0%	4.00	0.41	0.757 (0.703-0.806)
AKR1B10 + AFP	76.0%	87.2%	69.8%	90.3%	5.93	0.28	0.866 (0.821-0.904)	70.7%	90.9%	73.6%	89.6%	7.74	0.32	0.838 (0.790-0.879)
HCC vs. BLT														
AKR1B10	68.0%	91.83	75.0%	88.8%	8.32	0.35	0.796 (0.744-0.841)	71.1%	98.0%	99.3%	45.4%	35.54	0.30	0.885 (0.839-0.922)
AFP	65.3%	74.04	47.6%	85.6%	2.52	0.47	0.697 (0.640-0.750)	64.2%	96.0%	98.5%	39.7%	16.05	0.37	0.841 (0.790-0.884)
AKR1B10 + AFP	70.7%	97.60	91.4%	90.2%	29.40	0.30	0.872 (0.827-0.908)	88.7%	98.0%	99.5%	68.1%	44.36	0.12	0.956 (0.922-0.977)
Early-stage HCC	vs. BLT													
AKR1B10	60.7%	96.4%	96.0%	64.0%	17.32	0.41	0.833 (0.760-0.892)	69.3%	90.0%	91.2%	66.2%	6.93	0.34	0.836 (0.759-0.896)
AFP	75.9%	71.9%	78.9%	68.3%	2.71	0.33	0.79 1(0.713-0.856)	48.0%	96.0%	94.7%	55.2%	12.00	0.54	0.757 (0.672-0.829)
AKR1B10 + AFP	75.9%	98.3%	98.4%	74.7%	43.29	0.24	0.892 (0.827-0.939)	77.3%	94.0%	95.1%	73.4%	12.89	0.24	0.903 (0.838-0.949)

Supporting TABLE 7. Parameters of AKR1B10 in differentiating HCC from HC, BLT, CHB, or LC controls.

HCC vs. CHB

AKR1B10	73.2%	90.0%	99.4%	13.8%	7.32	0.30	0.869 (0.817-0.911)	67.6%	95.5%	99.3%	24.1%	14.88	0.34	0.848 (0.795-0.892)
AFP	38.3%	90.0%	98.8%	6.5%	3.83	0.69	0.661 (0.595-0.724)	67.6%	77.3%	96.5%	20.5%	2.98	0.42	0.716 (0.652-0.774)
AKR1B10 + AFP	77.5%	90.0%	99.4%	16.1%	7.75	0.25	0.904 (0.857-0.940)	72.1%	90.9%	98.7%	26.0%	7.93	0.31	0.878 (0.828-0.918)
Early-stage HCC v	s. CHB													
AKR1B10	62.0%	90.0%	98.0%	23.1%	6.20	0.42	0.792 (0.693-0.871)	62.7%	81.8%	92.2%	39.1%	3.45	0.46	0.824 (0.733-0.894)
AFP	26.6%	90.0%	95.5%	13.4%	2.66	0.82	0.542 (0.433-0.648)	66.7%	77.3%	90.9%	40.5%	2.93	0.43	0.679 (0.577-0.771)
AKR1B10 + AFP	62.0%	90.0%	98.0%	23.1%	6.20	0.42	0.828 (0.733-0.900)	64.0%	90.9%	96.0%	42.6%	7.04	0.40	0.822 (0.731-0.892)
HCC vs. LC														
AKR1B10	72.7%	83.0%	94.4%	43.6%	4.28	0.33	0.828 (0.776-0.871)	65.7%	78.6%	88.4%	32.0%	3.07	0.44	0.762 (0.704-0.814)
AFP	61.1%	79.3%	92.1%	34.1%	2.95	0.49	0.721 (0.663-0.775)	68.1%	59.5%	89.1%	27.8%	1.68	0.54	0.662 (0.599-0.721)
AKR1B10 + AFP	79.9%	83.0%	94.9%	51.2%	4.71	0.24	0.873 (0.826-0.911)	77.0%	73.8%	93.5%	39.7%	2.94	0.31	0.812 (0.758-0.859)
Early-stage HCC v	s. LC													
AKR1B10	60.8%	83.0%	84.2%	58.7%	3.58	0.47	0.743 (0.660-0.816)	61.3%	78.6%	83.6%	53.2%	2.86	0.49	0.724 (0.633-0.802)
AFP	46.6%	79.2%	76.6%	49.4%	2.20	0.69	0.605 (0.516-0.689)	66.7%	59.5%	74.6%	50.0%	1.65	0.56	0.612 (0.517-0.700)
AKR1B10 + AFP	84.8%	66.0%	78.8%	74.5%	2.50	0.23	0.798 (0.719-0.863)	60.0%	78.6%	83.3%	52.4%	2.80	0.51	0.730 (0.640-0.807)

Abbreviations: AFP, alpha-fetoprotein; AKR1B10, aldo-keto reductase family 1 member B10; AUC, area under the curve; BLT, benign liver tumor; CHB, chronic hepatitis B virus; HCC, hepatocellular carcinoma; HC, healthy control; LR, likelihood ratio; NPV, negative predictive value; PPV, positive predictive value.

				Trainin	ng Cohort						Validation	Cohort		
	Sensitivity	Specificity	PPV	NPV	Positive	Negative	AUC (95%CI)	Sensitivity	Specificity	PPV	NPV	Positive	Negative	AUC (95%CI)
	(%)	(%)	(%)	(%)	LR	LR		(%)	(%)	(%)	(%)	LR	LR	× ,
HCC with cirrho	sis vs. LC													
AKR1B10	70.3%	83.0%	88.7%	59.5%	4.14	0.36	0.813 (0.742-0.871)	71.3%	78.6%	88.9%	53.2%	3.33	0.37	0.782 (0.705-0.846)
AFP	62.4%	77.4%	84.0%	51.9%	2.75	0.49	0.729 (0.652-0.798)	79.2%	59.5%	82.5%	54.3%	1.96	0.35	0.711 (0.630-0.784)
AKR1B10 + AFP	76.2%	83.0%	89.5%	64.7%	4.49	0.29	0.859 (0.794-0.910)	86.1%	73.8%	88.8%	68.9%	3.29	0.19	0.848 (0.773-0.902)
Early-stage HCC	c with cirrho	sis vs. LC												
AKR1B10	59.5%	83.0%	71.0%	74.6%	3.50	0.49	0.721 (0.616-0.810)	67.5%	78.6%	75.0%	71.7%	3.15	0.41	0.724 (0.614-0.817)
AFP	51.4%	79.2%	63.0%	70.0%	2.47	0.61	0.650 (0.542-0.748)	70.0%	59.5%	62.2%	67.6%	1.73	0.50	0.617 (0.503-0.722)
AKR1B10 + AFP	81.1%	66.0%	62.5%	83.3%	2.39	0.29	0.776 (0.676-0.857)	62.5%	83.3%	78.1%	70.0%	3.75	0.45	0.720 (0.610-0.813)
HCC without cir	rhosis vs. LC	2												
AKR1B10	75.0%	83.0%	90.0%	62.0%	4.42	0.30	0.841 (0.776-0.894)	60.2%	78.6%	87.3%	44.6%	2.81	0.51	0.742 (0.663-0.811)
AFP	63.0%	79.2%	86.1%	51.2%	3.03	0.47	0.714 (0.638-0.782)	33.0%	95.2%	94.4%	36.7%	6.93	0.70	0.613 (0.529-0.693)
AKR1B10 + AFP	83.3%	83.0%	90.9%	71.0%	4.91	0.20	0.886 (0.826-0.930)	59.2%	83.3%	89.7%	45.5%	3.55	0.49	0.777 (0.701-0.842)
Early-stage HCC	without cir	rhosis vs. LC												
AKR1B10	69.0%	77.4%	70.7%	75.9%	3.50	0.40	0.764 (0.666-0.845)	71.4%	66.7%	64.1%	73.7%	2.14	0.43	0.723 (0.609-0.819)
AFP	33.3%	88.7%	70.0%	62.7%	2.94	0.75	0.566 (0.460-0.667)	62.9%	59.5%	56.4%	65.8%	1.55	0.62	0.606 (0.488-0.715)
AKR1B10 + AFP	88.1%	66.0%	67.3%	87.5%	2.59	0.18	0.817 (0.725-0.889)	71.4%	64.3%	62.5%	73.0%	2.00	0.44	0.751 (0.639-0.843)

Supporting TABLE 8. Parameters of AKR1B10 in differentiating HCC with or without cirrhosis from LC.

Abbreviations: AFP, alpha-fetoprotein; AKR1B10, aldo-keto reductase family 1 member B10; AUC, area under the curve; HCC, hepatocellular carcinoma; HC, healthy control; LC, liver cirrhosis; LR, likelihood ratio; NPV, negative predictive value; PPV, positive predictive value.

	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	Positive LR	Negative LR	AUC (95%CI)
Total HCC vs. total HC + BLT + CHB + LC							
AKR1B10	73.2%	91.0%	84.7%	83.4%	8.14	0.29	0.869 (0.848-0.888)
AFP	65.8%	86.1%	76.1%	78.7%	4.71	0.40	0.803 (0.779-0.825)
AKR1B10 + AFP	78.4%	94.7%	90.9%	86.6%	14.67	0.23	0.920 (0.903-0.934)
Fotal early HCC vs. total HC + BLT + CHB + L	.C						
AKR1B10	65.9%	91.0%	64.0%	91.6%	7.32	0.37	0.819 (0.792-0.844)
AFP	58.4%	85.8%	50.0%	89.4%	4.11	0.49	0.749 (0.719-0.777)
AKR1B10 + AFP	71.7%	88.7%	60.8%	92.8%	6.37	0.32	0.857 (0.833-0.880)
Fotal HCC vs. total HC							
AKR1B10	72.8%	93.1%	91.4%	77.2%	10.53	0.29	0.876 (0.853-0.896)
AFP	65.6%	88.7%	85.4%	71.8%	5.79	0.39	0.817 (0.792-0.841)
AKR1B10 + AFP	79.3%	97.1%	96.0%	82.2%	23.63	0.21	0.930 (0.912-0.945)
fotal early HCC vs. total HC							
AKR1B10	64.2%	92.2%	75.0%	87.6%	8.27	0.39	0.802 (0.769-0.832)
AFP	50.3%	88.5%	61.3%	83.1%	4.36	0.56	0.725 (0.689-0.759)
AKR1B10 + AFP	72.3%	92.2%	77.2%	90.2%	9.31	0.30	0.867 (0.839-0.892)
Fotal HCC vs. total CHB + LC							
AKR1B10	65.6%	86.6%	94.9%	39.9%	4.90	0.40	0.810 (0.760-0.840)
AFP	65.6%	67.7%	88.5%	34.1%	2.03	0.51	0.692 (0.654-0.729)
AKR1B10 + AFP	78.4%	81.1%	94.0%	49.8%	4.15	0.27	0.857 (0.828-0.884)
fotal early HCC vs. total CHB + LC							
AKR1B10	56.6%	86.6%	85.2%	59.5%	4.23	0.50	0.747 (0.694-0.795)
AFP	56.1%	70.1%	71.9%	53.9%	1.87	0.63	0.629 (0.571-0.684)
AKR1B10 + AFP	65.9%	81.1%	82.6%	63.6%	3.49	0.42	0.779 (0.728-0.825)

Supporting TABLE 9. Differentiating parameters of AKR1B10 from poo	ooled all patients with HCC and controls.
--	---

Abbreviations: AFP, alpha-fetoprotein; AKR1B10, aldo-keto reductase family 1 member B10; AUC, area under the curve; BLT, benign liver tumor; CHB, chronic hepatitis B virus; HCC, hepatocellular carcinoma; HC, healthy control; LC, liver cirrhosis; LR, likelihood ratio; NPV, negative predictive value; PPV, positive predictive value.