CHEMISTRY A European Journal

Supporting Information

Isolation of Cyclic(Alkyl)(Amino) Carbene–Bismuthinidene Mediated by a Beryllium(0) Complex

Guocang Wang,^[a] Lucas A. Freeman,^[a] Diane A. Dickie,^[a] Réka Mokrai,^[b] Zoltán Benkő,^{*[b]} and Robert J. Gilliard, Jr.^{*[a]}

chem_201900458_sm_miscellaneous_information.pdf

WILEY-VCH

Table of Contents	Page
General Procedures	S3
Syntheses of compounds 1 to 3	S3-S4
NMR spectra for compounds 1 to 3	S5-S9
Electronic absorption spectrum of Et2CAAC in hexane	S9
Electronic absorption spectra of compounds 2 and 3 in hexane	S10
Crystal structures of compounds 1 to 3	S11-S12
Table S1. Data collection and structure refinement details for compounds 1 to 3	S13
Table S2. Selected bond lengths (Å) and angles (°) for 1-3 and $^{Et2}CAACBi(Ph)Cl_2$	S14
Computational Analysis	S15
References	S23

General Procedures: All manipulations were carried out under an atmosphere of purified nitrogen or argon using standard Schlenk techniques or in a MBRAUN LABmaster glovebox equipped with a -37 °C freezer. All reaction solvents (toluene and hexane) were distillated over sodium/benzophenone. Deuterated solvents were purchased from Acros Organics and Cambridge Isotope Laboratories and dried over sodium/benzophenone or Na/K alloy. Glassware was oven-dried at 190 °C overnight. The NMR spectra were recorded at the room temperature on a Bruker Echo 600 MHz (¹H: 600.13 MHz and ⁹Be: 64.476 MHz) and 800 MHz spectrometer (¹H: 800.13 MHz and ¹³C: 201.193 MHz). Proton and carbon chemical shifts are reported in ppm and are referenced using the residual proton and carbon signals of the deuterated solvent (¹H; C₆D₆, δ 7.16, Toluene- d_8 , δ 2.08; ¹³C; C₆D₆, δ 128.07, Toluene- d_8 , δ 20.43). ⁹Be NMR signals were referenced to beryllium chloride diethyl ether [BeCl₂(OEt₂) - δ 1.15 ppm].¹ Single crystal X-ray diffraction data were collected on a Bruker Kappa APEXII Duo system equipped with a fine-focus sealed tube (Mo K_a, $\lambda = 0.71073$ Å) and a graphite monochromator for **1-3**. The structures were solved and refined using the Bruker SHELXTL Software Package² within OLEX2.³ Elemental analyses were performed at Robertson Microlit Laboratories, Ledgewood, NJ, USA. [PhBiCl₂(THF)]_n and ^{Et2}CAACBi(Ph)Cl₂ were prepared using literature procedure.⁴⁻⁵ Note: CATUTION! Beryllium and its compounds are regarded as highly toxic and carcinogenic. Please adhere to protocols outlined in safety data sheets including using a respirator/mask and working in a well-ventilated fume hood.

Experimental Procedures

Synthesis of Et2CAACBeCl₂ (1). A suspension of BeCl₂(Et₂O)₂ (1.47 g, 6.45 mmol) in toluene (30 mL)

was added a solution of $^{\text{Et}_2}$ CAAC (1.91 g, 6.1 mmol) in toluene (30 mL) and stirred overnight at room temperature. The reaction mixture was filtered and the filtrate dried *in vacuo*. The resulting white solid was washed with hexane (20 mL) and recrystallized from toluene at -37 °C, affording $^{\text{Et}_2}$ CAACBeCl₂ as a colorless crystalline solid (2.30 g, 84.5% yield). Block-like single crystals suitable for X-ray diffraction studies were obtained from a saturated toluene solution at -37 °C. ⁹Be NMR (C₆D₆, 84.329 MHz): $\delta = 13.74$ (s). ¹H NMR (C₆D₆, 600.13 MHz): $\delta = 7.09$ (t, $J_{\text{HH}} = 7.7$ Hz, 1H, *CHpara*), 6.99 (d, $J_{\text{HH}} = 7.7$ Hz, 2H, *CHpara*), 2.73 (sept., $J_{\text{HH}} = 6.6$ Hz, 2H, *CH(CH₃)₂*), 2.07 (m,

2H, CH_2CH_3), 1.86 (m, 2H, CH_2CH_3), 1.51 (d, $J_{HH} = 6.6$ Hz, 6H, $CH(CH_3)_2$), 1.39 (s, 2H, CH_2), 1.33 (s, 2H, CH_2), 1.08 (d, $J_{HH} = 6.6$ Hz, 6H, $CH(CH_3)_2$), 0.87 (t, 6H, $J_{HH} = 7.4$ Hz, CH_2CH_3), 0.87 (s, 6H, $C(CH_3)_2$). ¹³C{¹H} NMR (C₆D₆, 201.193 MHz): $\delta = 241.8$ (Cq, carbene), 145.5 (Cq), 133.5 (Cq), 130.3 (CHpara), 128.3 (Cq), 125.6 (CHmeta), 82.3 (Cq), 63.7 (Cq), 41.4 (CH_2), 30.8 (CH_2CH_3), 29.2 ($CH(CH_3)_2$), 27.2 ($CH(CH_3)_2$), 24.8 (CH_3), 10.0 (CH_2CH_3). Compound **1** is not soluble in hexane but soluble in benzene and toluene.

Synthesis of Be(^{Et2}CAAC)₂ (2). A suspension of ^{Et2}CAACBeCl₂ (1.556 g, 3.95 mmol) in toluene (30 mL)

was added to one equivalent of ^{EI2}CAAC (1.24 g, 3.95 mmol) in toluene (30 mL) was added to one equivalent of ^{EI2}CAAC (1.24 g, 3.95 mmol) and KC₈ (1.18 g, 8.7 mmol) and was stirred for 5 h at room temperature. The suspension was filtered over a pad of Celite and the pad was washed with toluene until the filtrate became colorless. The purple filtrate was reduced *in vacuo*. Compound **2** was isolated as a purple solid after filtration (1.99 g, 79% yield). Purple single crystals suitable for X-ray diffraction studies were obtained from a saturated toluene solution at -37 °C. ¹H NMR (C₆D₆, 600.13 MHz): δ = 7.18 (t, *J*_{HH} = 9.6 Hz, 2H, *CHpara*), 7.12 (d, *J*_{HH} = 9.6 Hz, 4H, *CHpara*), 3.40 (sept., *J*_{HH} = 6.8 Hz, 4H, *CH*(*CH*₃)₂), 1.77 (br s, 4H, *CH*₂), 1.55 (d, *J*_{HH} = 6.8 Hz, 12H, *CH*(*CH*₃)₂),

1.30 (s, 4H, CH_2CH_3), 1.22 (d, $J_{HH} = 6.8$ Hz, 12H, $CH(CH_3)_2$), 1.22 (s, 12H, $C(CH_3)_2$), 0.93 (t, 12H, $J_{HH} = 7.1$ Hz, CH_2CH_3), 0.88 (br s, 4H, CH_2CH_3). ¹³C{¹H} NMR (C₆D₆, 201.193 MHz): $\delta = 190.8$ (Cq, carbene), 150.1 (Cq), 139.9 (Cq), 128.3 (CHpara), 127.5 (Cq), 125.8 (CHmeta), 69.7 (Cq), 54.9 (Cq),

46.7 (*CH*₂), 36.3 (*CH*₂*CH*₃), 30.5 (*CH*₃), 28.5 (*CH*(*CH*₃)₂), 25.8 (*CH*(*CH*₃)₂), 11.4 (*CH*₂*CH*₃). UV-vis: λ_{max} : 576 nm. Compound **2** is soluble in hexane, diethyl ether, benzene and toluene.

Synthesis of Et2CAACBiPh (3). To a purple solution of Be(Et2CAAC)₂ (322 mg, 0.506 mmol) in toluene (10 mL) was added a yellow suspension of ^{Et2}CAACBi(Ph)Cl₂ (339 mg, 0.506 mmol) in toluene (5 mL) or a solution PhBiCl₂(THF) (217 mg, 0.506 mmol) in THF (2 mL) at -37 °C. The reaction mixture was stirred at -37 °C for 30 min. The black solid was filtered off at -37 °C to give a dark-red solution. The solvent was removed and the red residue was extracted with hexane (3 mL) at 0 °C. Dark red crystals suitable for Xray diffraction studies were obtained from a saturated hexanes solution at -37 °C (30.0 mg, 10% yield). In some cases, a crop of colorless Et2CAAC crystals were isolated first and the solution was transferred back to the freezer before isolating 3. m.p.: decomposed at 100 °C. UV-vis: λ_{max} : 516 nm. ¹H NMR (Toluene- d_8 , 800.13 MHz, 3 273 K): $\delta = 8.91$ (d, J = 8Hz, 2H), 7.20-7.10 (m, 6H), 3.11 (br s, 2H, $CH(CH_3)_2$), 1.75 (br s, 2H, *CH*₂*CH*₃), 1.63 (br s, 2H, *CH*₂*CH*₃), 1.52 (br s, 2H, *CH*₂), 1.24 (d, 6H, *CH*(*CH*₃)₂), 1.07 (br s, 12H, $CH(CH_3)_2$ and $C(CH_3)_2$), 1.0 (br t, 6H, CH_2CH_3). ¹³C{¹H} NMR (Toluene- d_8 , 201.193 MHz, 273 K): $\delta = 190$ (*Cq*, *carbene*). Compound **3** is highly soluble in hexane, benzene and toluene. It is stable for weeks in the solid-state but not in solution, decomposing to form free ligand and bismuth metal. However,

it may be handled at low temperature. Due to the thermal instability of **3** in solution, even at 0 °C, it is currently impossible to acquire pure NMR data. Therefore, ¹H and ¹³C data contain free ^{Et2}CAAC. For ¹H NMR, a sample was prepared at -37 °C using pure crystals of compound **3**, and the data were collected immediately at 0 °C (Figure S6). Due to the time required for ¹³C NMR, the peaks were assigned by essentially running the reaction in the NMR tube and immediately collecting the data (Figure S7). Anal. Calcd. for C₂₈H₄₀BiN crystals: C, 56.09; H, 6.72; N, 2.34%. Found: C, 56.97; H, 6.71; N, 2.33%.

Figure S1.¹H NMR spectrum (600.13 MHz, C₆D₆, 298 K) of complex **1**.

Figure S2.¹³C $\{^{1}H\}$ NMR spectrum (201.193 MHz, C₆D₆, 298 K) of complex 1.

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

Figure S5.¹³C $\{^{1}H\}$ NMR spectrum (201.193 MHz, C₆D₆, 298 K) of complex 2.

Figure S6. ¹H NMR spectrum (800.13 MHz, Toluene- d_8 , 273 K) of complex 3.

Figure S6a. ¹H NMR spectrum (800.13 MHz, Toluene- d_8 , 273 K) of complex **3** (expanded to show selected peaks).

ti (ppm)

Figure S6b. ¹H NMR spectrum (800.13 MHz, 273 K, Toluene- d_8) of complex **3** showing decomposition to pure free ^{Et2}CAAC over time.

Figure S7. ¹³C NMR spectrum (201.193MHz, Toluene- d_8 , 273 K) of the reaction of **2** with PhBiCl₂(THF) in Toluene- d_8 .

Figure S8. Normalized electronic absorption spectrum of free ^{Et2}CAAC in hexane. $\lambda = 329$ nm.

WILEY-VCH

Figure S9. Normalized electronic absorption spectrum of compound 2 in hexane. $\lambda = 576$ nm.

Figure S10. Normalized electronic absorption spectrum of compound 3 in hexane. Transition A, $\lambda = 324$ nm. Transition B, $\lambda = 516$ nm.

Figure S11. X-ray crystal structure of [Be(^{Et2}CAAC)Cl2] (1). Ellipsoids represent 50% probability and all hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°) in Table S2

Figure S12. X-ray crystal structure of $[Be(^{Et2}CAAC)_2]$ (2). Only one of the two chemically identical but crystallographically distinct molecules in the asymmetric unit is shown. Ellipsoids represent 50% probability and all hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°) in Table S2

Figure S13. X-ray crystal structure of [(^{Et2}CAAC)BiPh] (1). Ellipsoids represent 50% probability and all hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°) in Table S2.

Figure S14. A) Front view and (B) side view of a space-filling model of crystal structure of compound **3**. Carbon atoms, partially masked, are in grey, all hydrogens are in white and bismuth atom is presented as purple spheres.

Table S1. Data collection and structure refinement details for compounds 1 to	o 3 .
---	--------------

	1	2	3
Formula	C ₂₂ H ₃₅ BeCl ₂ N	C44H70BeN2	C ₂₈ H ₄₀ BiN
FW (g/mol)	393.42	636.03	599.59
Temp (K)	100(2)	100(2)	100(2)
λ (Å)	0.71073	0.71073	0.71073
Size (mm)	0.123x0.149x0.219	0.070x0.090x0.230	0.108x0.140x0.343
Crystal habit	colorless rod	purple rod	red rod
Crystal system	triclinic	triclinic	triclinic
Space group	P -1	P -1	P -1
a (Å)	9.639(5)	9.5312(15)	8.3680(8)
b(Å)	9.657(5)	11.986(2)	10.6800(10)
c (Å)	13.988(7)	17.614(3)	14.7724(13)
α (°)	92.742(13)	84.676(5)	81.317(2)
β (°)	108.132(13)	84.916(5)	83.500(2)
γ (°)	113.597(12)	76.034(4)	82.605(2)
Volume (Å ³)	1111.5(10)	1939.8(6)	1288.3(2)
Ζ	2	2	2
Density (g/cm ³)	1.175	1.089	1.546
μ (mm ⁻¹)	0.298	0.061	6.857
θ range (°)	1.56 - 26.37	1.16 - 25.38	1.40 - 29.61
Index ranges	-12≤h≤12 -12≤k≤12 -17≤l≤17	-11≤h≤11 -14≤k≤14 -20≤1≤21	-11≤h≤11 -14≤k≤14 -20≤l≤20
Reflns collected	19908	26660	26485
Independent reflns	4532[R(int)=0.1016]	7119[R(int)=0.1083]	7250[R(int)=0.0325]
Data / restraints / parameters	4532 / 0 / 243	7119 / 0 / 443	7250 / 0 / 279
$GOF \text{ on } F^2$	1.007	1.059	1.036
R_1 (I>2 σ (I))	0.0461	0.0873	0.0205
wR ₂ (all data)	0.1200	0.2978	0.0428

Table S2. Selected bond lengths (Å) and bond angles (°) for compounds 1-3 and ^{Et2}CAACBi(Ph)Cl₂

	1	2	3	Et ² CAACBi(Ph)Cl ₂
Bi1-C1			2.199(2)	2.4566(15)
Bi1-C23			2.278(2)	2.2732(16)
C1-Be1	1.794(3)	1.660(5)		
Cl1-Be1	1.896(3)			
Cl2-Be1	1.923(3)			
N1-C1	1.306(3)	1.391(6)	1.334(3)	1.304(2)
N1-C11	1.463(3)	1.428(6)	1.452(2)	1.466(2)
N1-C4	1.544(3)	1.503(6)	1.516(3)	1.552(2)
C1-C2	1.523(3)	1.534(7)	1.519(3)	1.532(2)
C2-C3	1.546(3)	1.561(7)	1.540(3)	1.554(2)
C3-C4	1.519(3)	1.529(7)	1.532(3)	1.523(2)
C1-Bi1-C23			99.60(8)	92.95(5)
N1-C1-Bi1			119.65(14)	118.81(11)
C2-C1-Bi1			130.77(14)	129.66(10)
N1-C1-Be1	128.17(19	125.3(3)		
C2-C1-Be1	122.43(17	127.5(4)		
C1-N1-C11	124.60(17	118.4(4)	120.45(17)	123.54(13)
C1-N1-C4	114.71(17	116.8(4)	115.43(16)	113.40(13)
C11-N1-C4	120.52(15	124.6(4)	124.08(16)	123.05(12)
N1-C1-C2	109.40(17	107.0(4)	109.53(17)	110.43(13)

Computational details

The computations were carried out with the Gaussian 09 program package.⁶ All structures were optimised using the ω B97XD functional. The all valence cc-pVDZ basis set was applied for H, C and N while for Bi the cc-pVDZ-PP basis sets were used, which include pseudopotentials for the simulation of relativistic effects. The basis sets with pseudo potentials were obtained from the EMSL Basis Set Library.⁷ At each of the optimised structures vibrational analysis was performed to check that the stationary point located is a minimum of the potential energy hypersurface. To investigate the convergence of the basis set on the optimised geometries optimalization and each of the optimized structures vibrational analysis have been performed with the larger cc-pVTZ(-PP) basis set using the ω B97XD functional, and the difference was found to be negligible. For visualisation of the molecules the Molden program was used.^{8,9} The Wiberg Bond Indices and NPA charges were calculated with the NBO program version 3.1.¹⁰ The AIM analysis was obtained with the Multiwfn code.¹¹ The molecular orbitals were plotted with Avogadro program.¹²

Table S3. Bond lengths (d, Å), Wiberg bond indices (WBI, –), electron density at the bond critical point (ρ , a.u.) and ellipcticity (ϵ , –) of selected bonds for **3M** and reference molecules at ω B97XD/cc-pVTZ(-PP) level. Partial NPA charges (q, e) of selected atoms at ω B97XD/cc-pVTZ(-PP) level.

		3M		H ₂ C=BiMe	BiMe ₃	
	Bi-C _{carbene}	N-C _{carbene}	Bi–Me	Bi=C	Bi–C	
d	2.183	1.334	2.286	2.050	2.262	
WBI	1.28	1.28	0.87	1.84	0.87	
ρ	0.107	0.334	0.094	0.136	0.099	
3	0.282	0.051	0.044	0.282	0.011	
q(Bi)		0.434		0.890	1.066	

Table S4. The resonance structures and the weight of the structures (%) at ωB97XD/cc-pVTZ(-PP) level

TOPO matrix for the leading resonance structure:

Atom 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 C 0 1 2. C 3. N 4. C 5. C 6. C 7. C 8. C 9 Bi 0 0 0 0 0 0 0 10. C 0 11. C 0 0 0 0 1 0 0 0 0

WILEY-VCH

SUPPORTING INFORMATION

12. C 0 0 0 0 0 0 0 0 13. H 1 0 0 0 0 0 0 0 0 14. H 1 0 0 0 0 0 0 0 0 0 15. H 0 0 0 0 0 1 0 0 0 0 0 0 0 0 16. H 0 0 0 0 0 0 0 0 0 17. H 0 0 0 0 0 0 0 0 0 0 0 18. H 0 0 0 0 0 19. H 0 0 0 0 0 0 1 0 0 0 20. H 0 0 0 0 0 0 0 0 0 21. H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22. H 0 0 0 0 0 0 0 0 0 23. H 0 0 0 0 0 0 0 0 0 0 24. H 0 0 0 0 0 0 0 0 0 0 0 25. H 0 0 0 0 0 26. H 0 0 0 0 0 0 0 27. H 0 0 0 0 1 28. H 0 0 0 0 0 0 0 1 0 0 29. H 0 0 0 0 0 0 0 0 0 30. H 0 0 0 0 0 0 0 0 0 0 0 31. H 0 0 0 0 0 0 0 0 0 0 0 32. H 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Atom 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1.	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3.	Ν	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5.	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6.	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.	С	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
8.	С	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0
9.	Bi	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10.	С	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
11.	С	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0
12.	С	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
13.	Н	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.	Н	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15.	Н	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16.	Н	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17.	Н	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18.	Η	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19.	Н	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20.	Н	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21.	Н	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22.	Н	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23.	Η	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24.	Η	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25.	Η	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
26.	Н	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

27. H	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28. H	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29. H	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30. H	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31. H	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32. H	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Res	onance
RS V	Weight(%)Added(Removed)
1*(0)	
$1^{*}(2)$	42.44
$2^{*}(2)$	20.58 N 3-C 4, (C 4-B1 9), (N 3), B1 9
3 (2)	1.81 (C 2- N 3), N 3- C 4, (C 4-Bi 9), C 2
4	1.70 N 3-C 4, C 4-C 5, (C 4-B1 9), (C 4-B1 9), (C 4-B1 9), (C 5, C 11) (N 2) P_{1}^{2} 0 P_{2}^{2} 0
5	(C 5-C 11), (N 3), B1 9, B1 9
3	(C 4-Bi 9) (N 3) Bi 9 Bi 9
6	150 N 3-C 4 (C 4-C 5) (N 3) C 5
7	1.48 (C 2-N 3) N 3-C 4, N 3-C 4, (C 4-Bi 9).
	(C 4-Bi 9), (N 3), Bi 9, Bi 9
8	1.34 C 4- C 5, (C 4-Bi 9), (C 5- C 11), Bi 9
9 (2)	1.20 (C 1-C 5), C 4-C 5, (C 4-Bi 9), C 1
10	1.20 (C 1-C 5), C 4-C 5, (C 4-Bi 9), Bi 9
11 (2)	1.12 C 4- C 5, (C 4-Bi 9), (C 5- C 11), C 11
12	1.12 C 4- C 5, (C 4-Bi 9), (C 5- C 12), Bi 9
13	1.00 C 4- C 5, (C 4-Bi 9), (C 5- C 12), C 12
14	0.97 (C 2-N 3), N 3-C 4, (C 4-Bi 9), Bi 9
15	0.86 N 3-C 4, (C 4-Bi 9), Bi 9-C 10, (C 10-H 31),
	(N 3), H 31
16	0.85 N 3-C 4, (C 4-Bi 9), Bi 9-C 10, (C 10-H 32),
	(N 3), H 32
17	0.66 C 1-C 2, (C 1-H 14), (C 2-C 6), C 6
18	0.60 (C 4-Bi 9), C 4-C 11, (C 11-H 24), H 24
19	0.56 (C 4-Bi 9), Bi 9- C 10, (C 10- H 32), H 32
20	0.52 C 1-C 5, (C 1-H 13), (C 4-C 5), H 13
21	0.52 C 2-C 6, (C 2-C 7), (C 6-H 17), C 7
22	0.51 C 1-C 5, (C 1-H 13), (C 4-C 5), C 4
23	0.48 C 1-C 2, (C 1-H 14), (C 2-C 6), H 14
24	0.43 N 3-C 8, (C 8-H 29), (N 3), H 29
25	0.42 (N 3-C 4), C 4-Bi 9, (Bi 9-C 10), N 3
26	0.39 (N 3-C 4), (N 3-C 8), N 3, C 8
27	0.38 (C 2-C 6), C 2-C 7, (C 7-H 18), C 6
28	0.37 N 3-C 8, (C 8-H 28), (N 3), H 28
29	0.35 (C 4-C 5), C 4-Bi 9, C 5, (Bi 9)
30	0.34 N 3-C 8, (C 4-Bi 9), (C 8-H 29), (N 3),
	B1 9, H 29
31	0.33 (C 1-C 2), C 2-C 6, (C 6-H 15), C 1
32	0.33 C 2- N 3, (C 2- C 7), (N 3- C 4), C 4
33	0.32 (C 1-C 2), C 2-C 7, (C 7-H 20), H 20
34	0.32 (C 1-C 2), C 2-N 3, (N 3-C 8), C 8

35	0.31 C 2-C 6, (C 2-C 7), (C 6-H 17), H 17
36	0.31 (C 4-C 5), C 5-C 12, (C 12-H 21), H 21
37	0.31 (C 1-C 2), C 2-C 6, (C 6-H 15), H 15
38	0.31 N 3-C 8, (C 4-Bi 9), (C 8-H 28), (N 3),
	Bi 9, H 28
39	0.31 N 3-C 4, (C 4-Bi 9), (C 4-Bi 9), (Bi 9-C 10),
	(N 3), Bi 9, Bi 9, C 10
40	0.30 (C 4-C 5), C 5-C 11, (C 11-H 24), C 4
41	0.30 (C 4-C 5), C 5-C 12, (C 12-H 21), C 4
42	0.30 (C 1-C 2), C 2-N 3, (N 3-C 8), C 1
43	0.30 (C 1-C 2), C 2-C 7, (C 7-H 20), C 1
44	0.29 C 1-C 2, (C 1-H 13), (C 2-N 3), N 3-C 4,
	(C 4-Bi 9), Bi 9
45	0.28 C 2-C 6, (C 2-C 7), N 3-C 4, (C 4-Bi 9),
	(C 6-H 17), (N 3), C 7, Bi 9
46	0.28 C 1-C 2, (C 1-H 14), (C 2-C 6), N 3-C 4,
	(C 4-Bi 9), (N 3), Bi 9, H 14
47	0.28 (C 2-C 6), C 2-C 7, N 3-C 4, (C 4-Bi 9),
	(C 7-H18), (N 3), C 6, Bi 9
48	0.26 N 3-C 4, (C 4-Bi 9), (C 5-C 11), C 5-C 12,
	(C12-H23), (N3), Bi9, C11
49	0.26 (N 3-C 8), (C 4-Bi 9), C 8, Bi 9
50	0.26 C 1-C 2, (C 1-H 14), (C 2-C 6), N 3-C 4,
	(C 4-Bi 9), (N 3), C 6, Bi 9
51	0.25 (C 2-C 6), C 2-C 7, (C 7-H 18), H 18
52	0.23 (C 2-N 3), N 3-C 4, N 3-C 8, (C 4-B ₁ 9),
50	(C 8-H 28), C 2, (N 3), B1 9
53	0.23 (C 2-N 3), C 2-C 7, N 3-C 4, (C 4-B1 9),
51	(C / - H I9), BI 9
54	0.23 N 3-C 4, (C 4-BI 9), C 5-C II, (C 5-C I2),
55	$(C \Pi - \Pi 23), (N 3), DI 9, \Pi 23$
55	$(C \land B; 0) C \land (N \land 3) B; 0$
56	(C + DI), C I, (I), DI) 0.22 N 3-C 4 (C 4-Bi 0) C 5-C 11 (C 5-C 12)
50	$(C 11_{-} H 25) (N 3) Bi 9 C 12$
57	$(C \Pi^2 \Pi^2 2), (\Pi^2 3), D^2 3, C^2 12$ 0.22 (C 1-C 2) C 2-N 3 N 3-C 4 (N 3-C 8)
51	(C 4-Bi 9) (N 3) C 8 Bi 9
58	(C + Bi), (R), C , Bi) 0.22 (C 2-N 3) N 3-C 4 N 3-C 4 (C 4-Bi 9)
20	(C 4-Bi 9) C 2 (N 3) Bi 9
59	0.22 (C 2-N 3) N 3-C 4 N 3-C 8 (C 4-Bi 9)
C J	(C 8-H 29), C 2, (N 3), Bi 9
60	0.21 (C 2-N 3), C 2-C 6, N 3-C 4, (C 4-Bi 9),
	(C 6- H 16), Bi 9
61	0.21 (N 3-C 4), N 3-C 8, (C 8-H 27), C 4
62	0.21 (C 2-N 3), N 3-C 8, (C 8-H 28), C 2
63	0.21 (C 2-N 3), C 2-C 7, (C 7-H 19), N 3
64	0.21 C 2-C 6, (C 2-C 7), N 3-C 4, (C 4-Bi 9),
	(C 6-H17), (N 3), Bi 9, H17
65	0.20 C 1-C 5, (C 1-H 13), N 3-C 4, (C 4-C 5),

(C 4-Bi 9), (N 3), Bi 9, H 13

66	0.20 (C 1-C 2), C 1-C 5, N 3-C 4, (C 4-Bi 9),
	(C 5-C12), C 2, (N 3), Bi 9
67	0.18 C 1-C 5, (C 1-H 14), N 3-C 4, (C 4-Bi 9),
	(C 5-C11), (N 3), Bi 9, C11
68	0.18 (C 2-N 3), N 3-C 8, (C 8-H 29), C 2
69	0.18 N 3-C 4, (N 3-C 8), (C 4-C 5), C 8
70	0.18 (C 2-N 3), C 2-C 6, (C 6-H 16), N 3
71	0.18 C 2-N 3, (C 2-C 7), (C 4-Bi 9), (N 3),
	C 7, Bi 9
72	0.16 N 3-C 4, (C 4-C 5), (C 4-Bi 9), C 5-C 11,
	(C 11- H 24), (N 3), Bi 9, H 24
73	0.16 (C 1-C 5), N 3-C 4, (C 4-Bi 9), C 5-C 12,
	(C12-H22), C1, (N3), Bi9
74	0.15 (C 1-C 5), N 3-C 4, (C 4-Bi 9), C 5-C 11,
	(C11-H26), C1, (N3), Bi9
75	0.15 (C 1-C 2), C 2-C 6, N 3-C 4, (C 4-Bi 9),
	(C 6-H 15), (N 3), Bi 9, H 15
76	0.15 N 3-C 4, (C 4-C 5), (C 4-Bi 9), C 5-C 12,
	(C 12- H 21), (N 3), Bi 9, H 21
77	0.15 (C 2-C 6), C 2-C 7, N 3-C 4, (C 4-Bi 9),
	(C 7-H18), (N 3), Bi 9, H18
78	0.14 C 1-C 2, (C 1-C 5), (C 2-C 7), N 3-C 4,
	(C 4-Bi 9), (N 3), C 5, Bi 9
79	0.14 (C 1-C 2), C 2-C 6, N 3-C 4, (C 4-Bi 9),
	(C 6-H 15), C 1, (N 3), Bi 9
80	0.14 (C 1-C 2), C 2-C 7, N 3-C 4, (C 4-Bi 9),
	(C 7-H 20), (N 3), B1 9, H 20
81	0.14 (C 1-C 2), C 2-C 7, N 3-C 4, (C 4-B1 9),
	(C 7-H 20), C 1, (N 3), Bi 9
82	0.12 (C 1-C 2), C 2-N 3, N 3-C 4, (N 3-C 8),
	(C 4-B1 9), C 1, (N 3), B1 9
83	0.12 N 3-C 4, (C 4-C 5), (C 4-Bi 9), (C 5-C 12),
	(N 3), C 5, B1 9, C 12
84	0.11 C 1-C 2, (C 1-C 5), (C 2-C 7), C 7
85-147	0.39
10	0.00 * Total * [* = reference structure]
	. J

Total energies and Cartesian coordinates at the wB97XD /cc-pVTZ(-PP) level

3M

HF= -662.5777581 C -2.8943072183 -0.3037345707 -0.0438082373 N -1.4998634242 -0.7904461462 -0.0774598538 C -0.5472134938 0.1429160888 -0.0714137988 C -1.2113884647 1.5122042283 -0.0514879716 C -2.6935436721 1.1874941928 -0.3366799467 C -1.1889794239 -2.1917807589 0.0162063352 Bi 1.5565142415 -0.4335810022 0.0047322937 C 2.5136639933 1.6419082979 -0.0111274920 C -1.0323727629 2.1487121266 1.3346196439 C -0.6646919135 2.4572133690 -1.1212862128 C -3.5105682146 -0.5624336145 1.3322514225 C -3.7348088717 -0.9709185776 -1.1304689403 H-3.3675410292 1.8078219847 0.2528418957 H -2.9074699245 1.3777393260 -1.3886655812 H -3.5660457031 -1.6313010413 1.5430597522 H-4.5242390294-0.16259605001.3686177926 H -2.9266003897 -0.0901400711 2.1202847905 H -3.2481703035 -0.8782624425 -2.1011507216 H -4.7084101449 -0.4834352781 -1.1868555976 H -3.9100160798 -2.0277425661 -0.9279380586 H -1.2678102805 3.3672351013 -1.1500755803 H 0.3638225977 2.7396153586 -0.9152545752 H -0.6984499216 1.9895311720 -2.1053693118 H -1.5633999588 3.1018369989 1.3759907604 H-1.4174284156 1.5053005083 2.1247365202 H 0.0205126463 2.3302065262 1.5411158833 H -2.0980579031 -2.7855573596 0.0056709082 H -0.5594646870 -2.4955561419 -0.8264514164 H -0.6388469728 -2.3986640067 0.9410398619 H 3.5597794671 1.4732059159 0.2441870781 H 2.4668732925 2.0987455160 -0.9966138459 H 2.0845847762 2.3128780576 0.7294392321

H₂C=BiMe

HF= -293.8772688 C 1.1493124644 1.5240647300 0.0000024812 Bi 0.1057518010 -0.2404574551 -0.0000330502 C -1.9535817142 0.7038839523 0.0000675195 H 0.6670187639 2.4943910101 -0.0017697057 H 2.2327142247 1.5353631978 0.0026866106 H -1.8516966968 1.7819329794 -0.0985918031 H -2.4638087850 0.4664509635 0.9318284371 H -2.5360114749 0.3121385546 -0.8318303810

BiMe₃

HF= -334.4473998 C 1.8510303039 -0.4015075700 0.9182605769 Bi 0.0006540419 -0.0008649014 -0.3194109682 C -0.5781691063 1.8064456266 0.9115203357 C -1.2783333292 -1.3978348146 0.9159131680 H -1.0235589196 -2.4316710276 0.6893918736 H -1.1027389856 -1.2042305386 1.9723438191 H -2.3299116581 -1.2330556043 0.6873027560 H -1.6168602186 2.0668505398 0.7157150159 H -0.4545643062 1.5758164511 1.9678622808 H 0.0566399131 2.6506521977 0.6481521412 H 2.2334688896 -1.3974268189 0.7016428340 H 2.6178006809 0.3336468638 0.6800431433 H 1.5982719219 -0.3314147081 1.9744920087

Total energies and Cartesian coordinates at the $\omega B97XD$ /cc-pVDZ(-PP) level 3M

HF=-662.4366108 Bi 1.5638851720 -0.4350159673 0.0046186238 C -0.5508158147 0.1456631223 -0.0788042576 C -1.2217489818 1.5181978216 -0.0566819303 C -2.7080210768 1.1874242144 -0.3359208256 C -2.9047791219 -0.3078536130 -0.0376816840 N -1.5072356300 -0.7952928538 -0.0905163150 C -1.1896930352 -2.1979109594 0.0002901071 C 2.5155251042 1.6568480129 0.0005677887 C -1.0380905861 2.1593547534 1.3303211851 C -0.6770811638 2.4600833986 -1.1360907496 C -3.4994416393 -0.5659243849 1.3522280155 C -3.7623664733 -0.9777071010 -1.1146454358 H -3.3903293842 1.8129429543 0.2573050741 H -2.9287968138 1.3750246892 -1.3972665100 H -3.5447804101 -1.6440480206 1.5712808574 H -4.5248453607 -0.1697653513 1.4060509787 H -2.8999880203 -0.0835090488 2.1367136526 H -3.2828468891 -0.8907267883 -2.1008919381 H -4.7444260198 -0.4832346283 -1.1624032449 H -3.9419480454 -2.0431293671 -0.9050678240 H -1.2822756517 3.3810347888 -1.1665604346 H 0.3632279645 2.7432155258 -0.9353361147 H -0.7166804997 1.9852887213 -2.1279163725 H-1.5705101902 3.1234617779 1.3722460961 H -1.4275408280 1.5141473405 2.1309804991 H 0.0253148568 2.3397852052 1.5386423714 H -2.1036911903 -2.8024426794 -0.0169437257 H -0.5490917553 -2.4980187897 -0.8488733268 H -0.6357693416 -2.4092359513 0.9343926023 H 3.5680792835 1.4981951825 0.2847268810

H 2.4914112926 2.1170411142 -0.9977294943 H 2.0627439606 2.3382970319 0.7354250995

H₂C=BiMe

HF= -293.8374006 Bi -0.1083749260 -0.2414133820 0.0000000613 H -0.6489865425 2.5182875680 -0.0000233199 H -2.2380218562 1.5597835830 0.0000077455 C -1.1416892963 1.5385724195 0.0000065082 C 1.9688391843 0.6975171885 0.0000065802 H 2.5223796213 0.3737694999 -0.8942443509 H 1.8753460178 1.7929086915 -0.0014326867 H 2.5215022772 0.3760236868 0.8956089931 **BiMe**₃

HF= -334.3892899

C -1.8544504926 0.4341247164 0.9224692609 Bi -0.0002261958 0.0004982406 -0.3216934227 C 1.3057035862 1.3853128149 0.9221868496 C 0.5504589746 -1.8233577544 0.9194051343 H 1.0692794864 2.4343198665 0.6884440854 H 1.1234861877 1.1990949055 1.9909263953 H 2.3661112633 1.1986312987 0.6953764445 H 1.5893810463 -2.1177638062 0.7078052772 H 0.4496776500 -1.5834546267 1.9882715768 H -0.1167949525 -2.6618602398 0.6687570899 H -2.2322669324 1.4419875299 0.6936686150 H -2.6390964492 -0.3020061557 0.6916508676 H -1.6012754577 0.3732185793 1.9912862464

References

- 1. H. Nöth, D. Schlosser, Eur. J. Inorg. Chem. 2003, 2245, 2254.
- 2. G. M. Sheldrick, SHELXT Integrated space-group and crystal structure Determination. Acta Crystallogr. Sect. A: Found. Adv. 2015, 71, 3-8.
- 3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* (2009). **42**, 339-341.
- 4. W. Clegg, R. J. Errington, G. A. Fisher, R. J. Flynn, N. C. Norman, *J. Chem. Soc., Dalton Trans.*, **1993**, 0, 637-641.
- 5. G. Wang, L. A. Freeman, D. A. Dickie, R. Mokrai, Z. Benkő, R. J. Gilliard, *Inorg. Chem.*, 2018, 57,11687–11695.
- Gaussian 09, Revision E. 01. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2013**.
- 7. https://bse.pnl.gov/bse/portal
- 8. G. Schaftenaar, E. Vlieg, G. Vriend,"Molden 2.0: quantum chemistry meets proteins", J Comput. Aided Mol. Des. **2017**, *31*, 789.
- 9. G. Schaftenaar, J. H. Noordik, "Molden: a pre- and post-processing program for molecular and electronic structures", J. Comput.-Aided Mol. Design, **2000**, *14*, 123-134.
- 10. NBO Version 3.1 by E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold.
- 11. T. Lu, F. Chen. J. Comput. Chem. 2012, 33, 580-592.
- 12. https://avogadro.cc/