
 

 

Predicting Response to Cancer Immunotherapy using  

Non-invasive Radiomic Biomarkers  

 

Supplementary Material 

 

S. Trebeschi ​1, 2, 3, *​, S.G. Drago ​1, 4​, N.J. Birkbak ​5​, I. Kurilova ​1, 2​, A.M. Cǎlin ​1, 6​, A. Delli Pizzi ​1, 7​, F. 

Lalezari ​1​, D.M.J. Lambregts ​1​, M. Rohaan ​8​, C. Parmar ​3​, K.J. Hartemink ​9​, C. Swanton ​5​, J.B.A.G. 

Haanen ​8​, C.U. Blank ​8​, E.F. Smit ​10​, R.G.H. Beets-Tan ​1, 2, &, +​, H.J.W.L. Aerts ​1, 3, &, + 

1 ​Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands. ​2 ​GROW School of Oncology and 

Developmental Biology, Maastricht, The Netherlands. ​3 ​Departments of Radiation Oncology and Radiology, Dana Farber 

Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA. ​4 ​Department of Radiology, 

Milano-Bicocca University, San Gerardo Hospital, Monza, Italy. ​5 ​The Francis Crick Institute & University College London, 

London, UK.​ 6 ​Affidea Romania, Cluj-Napoca, Romania. ​7 ​ITAB Institute of Advanced Biomedical Technologies, University G. 

d’Annunzio, Chieti, Italy.  ​8 ​Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands. ​9 

Department of Surgery, Netherlands Cancer Institute, Amsterdam. The Netherlands. ​10 ​Department of Thoracic Oncology, 

Netherlands Cancer Institute, Amsterdam, The Netherlands. (*) first author, (&) equally contributed (+) corresponding author 

S1. BASELINE CHARACTERISTICS 2 

S2.  RADIOGRAPHIC DIFFERENCES 3 

S3. BIOMARKER PERFORMANCE 4 

S4. ACQUISITION PROTOCOLS 5 

S5. LESION  DELINEATION 6 

S6. RADIOMICS FEATURE EXTRACTION PIPELINE 7 

S7. MACHINE LEARNING 8 

S8. CONTROL FOR OVERFITTING 11 

S9. Supplementary Figures 13 

  

1 



 

S1​.​ BASELINE CHARACTERISTICS 

 

Study cohort I baseline characteristics stratified per cancer-type. 

 All Melanoma NSCLC p-value 
(MEL vs NSCLC) 

Patients Characteristics 

Age [median, IQR] 63 (IQR 13) 62 (IQR 22) 63 (IQR 12) 0.60 
Gender (female) [N, %] 94 (46.3%) 38 (47.5%) 56 (45.5%) 0.06 

NSCLC Squamous [N, %] - - 29 (23.6%) - 
       Non Squamous - - 94 (76.4%) - 
Melanoma Cutaneous [N, %] - 72 (90.0%) - - 
       Non Cutaneous - 8 (10.0%) - - 

1y Survival [N, %]  139 (68.5%) 55 (68.8%) 88 (71.5%) 0.67 
1y Best Overall Response (CR, [N, %]) 10 (4.9%) 7 (8.8%) 3 (2.4%) 0.04 
        Partial Response [N, %] 54 (26.6%) 16 (20.0%) 38 (30.9%) 0.09 
        Stable Disease [N, %] 47 (23.2%) 23 (28.7%) 24 (19.5%) 0.13 
        Progressive Disease [N, %] 84 (41.4%) 30 (37.5%) 54 (43.9%) 0.37 

Past Treatments [N, %] 182 (89.7%) 60 (75.0%) 122 (99.2%) < 0.01 
        Chemotherapy 133 (65.5%) 11 (13.8%) 122 (99.2%) < 0.01 
        Radiotherapy 86 (42.4%) 37 (46.2%) 49 (39.8%) 0.37 
        Ipilimumab  55 (27.1%) 55 (68.8%) 0 < 0.01 
        Targeted Therapy 22 (10.8%) 20 (25.0%) 2 (1.6%) < 0.01 
Immunotherapy [N, %] 203 (100.0%) 80 (100.0%) 123 (100.0%) 1.00 
        Nivolumab 145 (71.5%) 22 (27.5%) 123 (100.0%) < 0.01 
        Pembrolizumab 58 (28.6%) 58 (72.5%) 0 < 0.01 

Exam Characteristics 

Interval between baseline CT scan and start of 
treatment  [days] 26.4 28.8 24.9 0.19 

Interval between start of treatment and follow-up 
CT scan [days] 69.3 77.9 63.9 < 0.01 

Lesion Count 

All lesions [N lesions, N patients, median] 1055 (203 pts, 3/pt) 483 (80 pts, 4/pt) 572 (123 pts, 3/pt) - 
        Pulmonary 359 (129 pts, 2/pt) 85 (34 pts,1.5/pt) 274 (95 pts, 2/pt) < 0.01 
        Hepatic 212 (42 pts, 2/pt) 135 (23 pts, 2/pt) 77 (19 pts, 2/pt) 0.03 
        Lymph Nodes 312 (116 pts, 2/pt) 130 (47 pts, 2/pt) 182 (69 pts, 2/pt) 0.82 
        Adrenal gland 58 (40 pts, 1/pt) 26 (17 pts, 1/pt) 32 (23 pts, 1/pt) 0.79 
        Subcutaneous 96 (27 pts, 2/pt) 91 (25 pts, 2/pt) 4 (2 pts, 2/pt) < 0.01 
        Splenic 18 (8 pts, 1/pt) 15 (6 pts, 1/pt) 3 (2pts, 1.5/pt) 0.08 

Per Lesion Response Outcomes 

Responding [N, %] 351 (33.3 %) 195 (40.4 %) 156 (27.3 %) < 0.01 
        Pulmonary 112 (31.2 %) 41 (48.2 %) 71 (25.9 %) < 0.01 
        Hepatic 66 (31.1 %) 49 (36.3 %) 17 (22.1 %) 0.04 
        Lymph Nodes 105 (33.7 %) 49 (37.7 %) 56 (30.8 %) 0.25 
        Others 68 (39.5 %) 56 (42.1 %) 12 (30.8 %) 0.26 

Stable [N, %] 395 (37.4 %) 176 (36.4 %) 219 (38.3 %) 0.53 
        Pulmonary 128 (35.7 %) 32 (37.6 %) 96 (35.0 %) 0.75 
        Hepatic 85 (40.1 %) 59 (43.7 %) 26 (33.8 %) 0.20 
        Lymph Nodes 130 (41.7 %) 50 (38.5 %) 80 (44.0 %) 0.39 
        Others 50 (30.2 %) 35 (26.3 %) 17 (43.6 %) 0.07 

Progressive [N, %] 309 (29.3 %) 112 (23.2 %) 197 (34.4 %) < 0.01 
        Pulmonary 119 (33.1 %) 12 (14.1 %) 107 (39.1 %) < 0.01 
        Hepatic 61 (28.8 %) 27 (20.0 %) 34 (44.2 %) 0.17 
        Lymph Nodes 77 (24.7 %) 31 (23.8 %) 46 (25.3 %) 0.87 
        Others 52 (30.2 %) 42 (31.6 %) 10 (25.6 %) 0.59 
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S2​.  ​RADIOGRAPHIC DIFFERENCES 
 

Summary of radiographic differences in different metastatic locations: adrenal (A), hepatic (H), lymph 
nodes (LN), pulmonary (P), subcutaneous (SUBq) and spleen lesions (S). Reference (​ref​) to Figure 
3A is given, along with with feature settings of filter, class, feature name, binning (B) and resampling 
(R). Association with response are shown by means of mixed model ​p-values.​ Significance after FDR 
is marked in bold. Failure of model convergence is reported as N/A. 
 

 Radiographic Feature  Difference Responding vs Progressive (​p​) 

ref B R Filter Class Feature  All A H LN P Sq S 

f_01 1 1.0 LoG.5.0mm FirstOrder Minimum  0.31 < 0.01 0.28 0.26 0.09 0.33 < 0.01 
f_02 5 3.0 LoG.2.5.mm GLCM Homogeneity1  0.47 0.80 0.52 0.02 0.43 1.00 0.80 
f_03 5 3.0 - GLCM Homogeneity1  0.44 0.84 0.91 0.25 0.67 0.64 0.84 
f_04 25 5.0 Wavelet.HHH GLCM Homogeneity1  0.73 0.92 0.42 0.12 0.04 0.44 0.92 
f_05 1 1.0 Wavelet.HLH GLSZM ZoneEntropy  < 0.01 0.99 < 0.01 0.73 0.13 0.52 0.99 

f_06 5 3.0 Square FirstOrder Entropy  0.22 N/A 0.16 < 0.01 0.59 0.72 N/A 
f_07 5 3.0 LoG.5.0mm GLCM DifferenceEntropy  0.43 0.95 0.24 0.17 0.26 0.97 0.95 
f_08 5 3.0 SquareRoot GLRLM LowGrayLevRunEm.  0.88 0.76 0.01 0.37 0.53 0.90 0.76 
f_09 25 5.0 - Shape SurfaceVolumeRatio  0.01 0.90 0.01 0.01 0.97 0.54 0.90 
f_10 25 5.0 Wavelet.LLL GLCM MaximumProbability  0.14 0.93 0.02 0.56 0.43 0.37 0.93 
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S3. BIOMARKER PERFORMANCE 
 
Prediction performance of the chosen machine learning classifier on independent validation set. Size 
of both discovery and validation sets are reported in terms of number of patients (Pts), number of 
positive samples i.e. non-responding lesions (N+), and number of negative samples (N-).  
 

 
Cancer 

 
Organ 

Discovery Set  Test Set   
AUC 

 
p 

Pts N+ N-  Pts N+ N- 

NSCLC - 81 135 266  42 62 109  0.75 < 0.001 

 Lung 61 61 124  34 46 43  0.80 < 0.001 

 Lung (primary) 29 10 21  16 4 12  0.79 0.05 
 Lung (metastases) 43 51 102  25 42 31  0.83 < 0.001 
 Lymph Nodes 47 37 88  22 9 48  0.78 < 0.01 
 Liver 16 30 38  3 4 5  0.75 0.14 
 Adrenal 15 6 13  8 3 10  0.70 0.18 
 Spleen 2 0 3  0 0 0  N/A 
 Subcutaneous 1 1 0  1 0 3  N/A 

Melanoma - 52 77 274  28 35 97  0.55 0.20 
 Lung 22 6 51  12 6 22  0.55 0.37 
 Lymph Nodes 25 14 56  22 17 43  0.64 0.05 
 Liver 16 20 88  7 7 20  0.55 0.35 
 Adrenal 12 10 8  5 4 4  0.58 0.43 
 Spleen 4 1 12  2 1 1  N/A 
 Subcutaneous 21 26 59  4 0 7  N/A 

All - 133 212 540  70 97 206  0.66 < 0.001 
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S4. ACQUISITION PROTOCOLS 

Immunotherapy Dataset.​ ​The CT scans were performed by either covering the chest (n=86) or 

covering the chest and abdomen (n=117) using multi-slice CT equipment (Toshiba Aquilion CX, 

Minato, Tokyo, Japan; Siemens Somatom Sensation Open, Erlangen, Germany) with a tube voltage 

of 120 kVp, slice thickness of 1 mm, and in-plane resolution of 0.75 x 0.75 mm. The bolus injection 

was performed at 3 ml/s (Omnipaque 300, GE Healthcare, Chicago, Illinois, US) not pre-warmed, with 

a total amount based on the patient weight + 40 cc (minimum of 90 cc and  maximum of 130 cc) 

followed by a saline flush of 30 cc. The chest CT examinations were performed 40 seconds after 

contrast injection, whereas the chest and abdomen examinations were performed at 70 seconds.  

Genomics Dataset.​ ​Contrast-enhanced CT scans were acquired 60 days within diagnosis, as part of 

the Thoracic Oncology Program protocol, of the L. Lee Moffitt Cancer Center (Tampa, Florida, USA). 

Gene expression of 60,607 probes was measured on a custom Rosetta/Merk Affymetrix 2.0 

microarray chipset  (HuRSTA_2a520709.CDF, GEO accession number GPL15048) by the Moffitt. 

The University of South Florida IRB institutional review board approved and waived the informed 

consent requirement (IRB#16069); data were collected and handled in accordance with the Health 

Insurance Portability and Accountability Act. Informed consent for gene expression collection was 

written and oral. For acquisition of imaging and clinical data USF IRB approved protocol 

(IRB#108426) provided a waiver of informed consent. 

Chemotherapy Dataset. ​The CT scans were performed covering the chest and abdomen (n=39) 

using multi-slice CT equipment​ (Toshiba Aquilion CX, Minato, Tokyo, Japan; Siemens Somatom 

Sensation Open, Erlangen, Germany) with a tube voltage of 120 kVp, slice thickness of 1 mm, and 

in-plane resolution of 0.75 x 0.75 mm. Specific of the scanning protocols were identical to the 

immunotherapy dataset.  
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S5. LESION  DELINEATION 

The inclusion criteria were: availability of CE-CT BL and FU and, presence of measurable target 

lesions at baseline. Measurable lesions were defined as any tumor lesions (primary or metastatic 

lesions) whose entire border could be identified on both BL and FU scans, as our radiomic feature 

extraction pipeline requires segmented region of interest to extract features 

Lesions that disappeared in the FU were flagged as complete response. Lesions that could not be 

accurately discriminated from surrounding tissues (e.g. lung nodule within atelectasis), with ill-defined 

borders (e.g. lung lesions adjacent to atelectasis) and lesions which could not be tracked down from 

other adjacent tumour lesions at baseline or follow-up CTs (e.g. confluent metastases) were not 

delineated and excluded. Lesions poorly visualized because of the presence of imaging artefacts 

(e.g. scattering, motion or breathing artefacts) were excluded as well. 
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S6. RADIOMICS FEATURE EXTRACTION PIPELINE 

To reduce the influence of outlier intensity values in the image, the volume was clipped between 

-1000 HU and 3000 HU. Radiomic features were extracted from original images as well as from 

different image transformations including five Laplacian of Gaussian filters (σ = 1.0, 2.5, 5.0, 7.5, 10.0 

mm), eight wavelets decompositions, and four non-linearities (exponential, square, square root and 

logarithm). We also repeated the extraction over three different scales, each defined by a set of 

radiomic parameters: (1) a fine scale with 1 mm isotropic resolution and 1HU bin width, (2) a medium 

scale  with 3 mm isotropic resolution and bin width of 5HU and (3) coarse scale with 5 mm isotropic 

resolution and bin width of 25 HU. In this way, the algorithm can choose the best radiomic extraction 

parameters and/or their combination. Features which resulted in invalid values for more than one 

lesion were dropped. 
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S7. MACHINE LEARNING  

Dataset Preparation​ ​The entire dataset was divided into train, validation and test set based on 

patient identification numbers (​pid​). Patients whose pid was divisible by three were assigned to the 

train set, those whose (​pid - 1​) was divisible by three were assigned to the validation set, and those 

whose (​pid - 2​) was divisible by three were assigned to the test set. 

Classifier Pool ​The first group is composed by three linear classifiers based on logistic regression 

(LR) models ​37​, each differentiated by a different feature selection method: (1) ​unsupervised ​resulting 

from PCA, (2) ​supervised ​resulting from wrapper feature selection (WFS), or (3) no feature selection. 

Similarly, we defined a second group of non-linear classifiers based on random forests (RF) ​38​. 

Finally, we generated two additional classifiers via genetic evolution (GEN-1 and GEN-2) ​39​. Each 

classifier was trained using 2-fold cross validation and optimized via sequential model based 

optimization ​40,41 

Training Strategy​ Each classifier is trained on the training set using a 2-fold cross validation 

procedure. To prevent the model from learning to recognize patients rather than the actual 

lesion-wise classification task, we enforced cross validation at a patient level, avoiding the distribution 

of lesions of the same patient across different folds. Once trained, the model is evaluated in on the 

test set to check for under- or overfitting, and model selection.  

Classifier Optimization​ Each classifier comes with a set of tunable parameters, i.e. 

hyperparameters. We made use of a machine learning procedure, a.k.a. ​sequential model based 

optimization​ (SMBO), to tune the hyperparameters of each classifier. SMBO procedure is an iterative 

procedure, where at each iteration the performance is modelled as a function ​f​ of the 

hyperparameters. The search of the optimal hyperparameters is achieved via optimization of a 

criterion on ​f​.​ ​We chose the commonly used ​Expected Improvement ​(EI) defined as 

 

8 

https://paperpile.com/c/dcxHoP/fIaer
https://paperpile.com/c/dcxHoP/11Rfd
https://paperpile.com/c/dcxHoP/4ZOaC
https://paperpile.com/c/dcxHoP/Rq2g9+43Ar7


 

which represents the expectation under some model ​M​ ​of ​f ​that ​f(x) ​will negatively exceed some 

threshold​ ​t​. ​Parzen estimators were used to approximate the function​ ​f​. 

Hyperparameter Space ​Logistic regressions had only one tunable hyperparameter representing the 

weight of the ​L​2​ regularization coefficient. Random forests had four hyperparameters: the max depth 

of the trees (​d​), the minimum number of samples in each leaf (​mL​), the minimum number of samples 

(​mS​) ​ ​and minimum Gini impurity in each split (​G​). The hyperparameters of the genetic classifiers 

depend on the specific search result. Finally, wrapper feature selectors had one hyperparameter ​k​, 

indicating the number of top-performant features selected. For each classifier, we selected the set of 

hyperparameters resulting in the highest AUC.  

Model Selection​ Once completed, the optimization procedure results in a set of eight trained 

classifiers. We selected the final classifier by comparing their performance on the validation set. The 

classifier that achieved the highest AUC score was selected as candidate solution. The following 

table summarizes in details the results for each classifier on the discovery set. 

 
Classifier 

 
Feature Selection 

Train AUC  
Val. 
AUC 

 
diff 

Mean SD 

Logistic Regression none 0.62 0.01 0.59 0.03 

Logistic Regression Unsupervised (PCA) 0.62 0.01 0.59 0.03 

Logistic Regression Supervised (WFS) 0.62 0.01 0.58 0.04 

Random Forest none 0.64 0.02 0.61 0.03 

Random Forest Unsupervised (PCA) 0.48 0.03 0.54 0.06 

Random Forest Supervised (WFS) 0.62 0.01 0.62 0.00 

Genetic Evolution 1 0.64 0.01 0.60 0.04 

Genetic Evolution 2 0.55 0.11 0.55 0.00 

 

All algorithms, except for wrapper random forests and the second genetic evolution classifier, 

reported a certain degree of overfitting quantified by a lower accuracy on the validation set w.r.t the 

one reported on the training set. During training, all algorithms perform similarly between the two folds 

of cross validation, except second genetic evolution classifier which showed higher variance. Our 
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choice of using wrapper random forests as candidate classifier was motivated by the fact that this 

configuration reached the highest performance with the least amount of overfitting. 
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S8. CONTROL FOR OVERFITTING 

When analysing high dimensional data, overfitting problems might hamper the validity of results. In              

the context of standard inferential statistics, overfitting is present in the form of type-I error (i.e. false                 

positives). When quantifying radiographic differences between responding and progressive lesions,          

we made use of standard inferential statistics. To control for overfitting, we applied dimensionality              

reduction followed by false discovery rate (FDR) adjustment of the p-values. To ensure unbiased              

dimensionality reduction, we applied an unsupervised method which aims to reduce information            

redundancy — often found in radiomics data. With this method, we selected the top 10 features that                 

minimize redundancy without using the outcome variable in any way. The selection is made purely               

based on the feature values, and not on the correlation of the features with outcome, from where the                  

overfitting may originate. In addition, multiple testing correction has been applied on the top 10               

features, which further minimizes the probability of overfit and fits our analysis to more common               

robust analysis made in previous studies.  

In the second part of the analysis, we use made use of machine learning. Overfitting in machine                 

learning happens when complex models will start to adapt their parameters so closely to the training                

data that the trained model will not be able to generalize on unseen data. To control for overfitting in                   

our machine learning pipeline, we employed standard control methods applied in computer science             

research for artificial intelligence. These methods are fundamentally based on the split of the dataset               

into three independent sets: training, tuning, and independent testing. Each split has a specific              

function within the whole analysis. The training set is used by the model to learn the relation between                  

radiomics features and outcome, and fit its parameters accordingly (e.g. leaves splits for random              

forests). Aside from employing a splitting procedure of the dataset with a training set for learning                

model parameters, we also apply additional cross-validation within the training set to early detect and               

discard model parameters that could potentially lead to over-fit. These combined checks in fact result               

in a machine learning model which selects and uses only 68 features out of a total of 5865. Larger                   

models (using >100 features) were over-fitting already in cross-validation and therefore discarded by             

the training procedure. Once the training procedure is over, the parameters of the candidate model               
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are frozen. That is, the model parameters remain completely unchanged when testing the             

performance on the independent test set.  

In summary, to control for over-fitting, we applied data splitting between training, tuning, and              

independent test set. Model parameters have been fitted only on the training set using              

cross-validation for early detection of model configuration prone to overfit. Tuning is used during              

training, aside from the training set, as an additional check for overfitting. Finally, the performance of                

the candidate model have been evaluated uniquely on the independent test set consisting of unseen               

data.  
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S9. Supplementary Figures 

 

 

 

Figure 1. (A)​ Heatmap of the radiographic differences in different metastatic locations. Values 

express the ​normalized means difference​, where higher values represent higher expression in 

responding lesions. Significance after FDR is marked by •. Full feature names are reported in S2. ​(B) 

Overall survival predicted according to volume ​(C)​ Comparison of lesion radiomic predictive 

performance between immunotherapy and chemotherapy cohorts ​(D) ​Association of the biomarker as 

found by the gene enrichment analysis.  
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