The impact of hypocrisy on opinion formation Supporting information 1

Michael T. Gastner^{1,2*}, Károly Takács^{2,3}, Máté Gulyás^{2,4}, Zsuzsanna Szvetelszky², Beáta Oborny^{4,5}

- ¹ Division of Science, Yale-NUS College, Singapore
- ² MTA TK "Lendület" Research Center for Educational and Network Studies (RECENS), Hungarian Academy of Sciences, Budapest, Hungary
- ³ The Institute for Analytical Sociology (IAS), Linköping University, Norrköping, Sweden
- ⁴ Department of Plant Taxonomy, Ecology and Theoretical Biology, Biological Institute, Loránd Eötvös University (ELTE), Budapest, Hungary
- ⁵ GINOP Sustainable Ecosystems Group, Centre for Ecological Research, Hungarian Academy of Sciences, Tihany, Hungary

Appendix: derivation of equations 5 and 6

In the CVM, the state of the system can be characterized by the abundance of both types of hypocrites $(\rho_{Rb} \text{ and } \rho_{Br})$ and red frank individuals (ρ_{Rr}) . In one update, these variables change by at most $\pm 1/N$, where N is the number of individuals in the group. Suppose the previous state is $(\rho_{Rb}, \rho_{Br}, \rho_{Rr})$. There are eight possible events that cause a change from $(\rho_{Rb}, \rho_{Br}, \rho_{Rr})$. We list these events in Table S1.1 together with the corresponding transition rates. The rates are those of the CVM on a complete graph with self-links (i.e., we include a link from each node to itself). If we exclude the self-link, the transition rate c will have to be replaced by $c\frac{N}{N-1}$. Keeping the factor $\frac{N}{N-1}$ throughout the calculation would complicate the mathematical expressions without additional insight into the model. The "correction factor" $\frac{N}{N-1}$ is close to 1 even for moderately small groups and goes to zero in the limit $N \to \infty$.

We can express the dynamics of the expected values $\overline{\rho_{Rb}}$, $\overline{\rho_{Br}}$ and $\overline{\rho_{Rr}}$ by rate equations. For example, ρ_{Rb} increases by $\frac{1}{N}$ because of event 7 in Table S1.1, whereas events 1, 2, and 6 decrease ρ_{Rb} by the same amount. None of the other events change ρ_{Rb} . Taking the rates of the corresponding events into account, $\overline{\rho_{Rb}}$ evolves according to the differential equation

$$\frac{d\overline{\rho_{Rb}}}{dt} = c\overline{\rho_{Bb}}\overline{\rho_R} - e\overline{\rho_{Rb}} - i\overline{\rho_{Rb}} - c\overline{\rho_{Rb}}\overline{\rho_B} . \tag{S1.1}$$

Similar arguments show that

$$\frac{d\overline{\rho_{Br}}}{dt} = c\overline{\rho_{Rr}}\overline{\rho_B} - e\overline{\rho_{Br}} - i\overline{\rho_{Br}} - c\overline{\rho_{Br}}\overline{\rho_R}$$
(S1.2)

and

$$\frac{d\overline{\rho_{Rr}}}{dt} = i\overline{\rho_{Rb}} + e\overline{\rho_{Br}} + c\overline{\rho_{Br}}\overline{\rho_R} - c\overline{\rho_{Rr}}\overline{\rho_B} . \tag{S1.3}$$

^{*} michael.gastner@yale-nus.edu.sg

Table S1.1. Transition rates in the CVM on a complete graph with self-links.

	1 0 1		
	Event	New state	Transition rate
			racc
1	An Rb individual externalizes	$\left(\rho_{Rb} - \frac{1}{N}, \rho_{Br}, \rho_{Rr}\right)$	$eN\rho_{Rb}$
2	An Rb individual internalizes	$\left(\rho_{Rb}-\frac{1}{N},\rho_{Br},\rho_{Rr}+\frac{1}{N}\right)$	$iN\rho_{Rb}$
3	A Br individual externalizes	$\left(\rho_{Rb},\rho_{Br}-\frac{1}{N},\rho_{Rr}+\frac{1}{N}\right)$	$eN\rho_{Br}$
4	A Br individual internalizes	$\left(\rho_{Rb},\rho_{Br}-\frac{1}{N},\rho_{Rr}\right)$	$iN\rho_{Br}$
5	An Rr individual copies a B	$\left(\rho_{Rb},\rho_{Br}+\frac{1}{N},\rho_{Rr}-\frac{1}{N}\right)$	$cN\rho_{Rr}\rho_B$
	individual		
6	An Rb individual copies a B	$\left(\rho_{Rb}-\frac{1}{N},\rho_{Br},\rho_{Rr}\right)$	$cN\rho_{Rb} ho_B$
	individual		
7	A Bb individual copies an R	$\left(ho_{Rb}+rac{1}{N}, ho_{Br}, ho_{Rr} ight)$	$cN\rho_{Bb}\rho_R$
	individual		
8	A Br individual copies an R	$\left(\rho_{Rb},\rho_{Br}-\frac{1}{N},\rho_{Rr}+\frac{1}{N}\right)$	$cN\rho_{Br}\rho_{R}$
	individual		

We can express the right-hand sides of Eqs S1.1–S1.3 in terms of only ρ_{Rb} , ρ_{Br} and ρ_{Rr} by using the identities $\rho_R = \rho_{Rb} + \rho_{Rr}$, $\rho_B = 1 - \rho_{Rb} - \rho_{Rr}$ and $\rho_{Bb} = 1 - \rho_{Rb} - \rho_{Br} - \rho_{Rr}$. The result is the following set of equations:

$$\frac{d\overline{\rho_{Rb}}}{dt} = c\left(\overline{\rho_{Rb}} + \overline{\rho_{Rr}}\right)\left(1 - \overline{\rho_{Br}} - \overline{\rho_{Rr}}\right) - (c + e + i), \overline{\rho_{Rb}},\tag{S1.4}$$

$$\frac{d\overline{\rho_{Rb}}}{dt} = c\left(\overline{\rho_{Rb}} + \overline{\rho_{Rr}}\right)\left(1 - \overline{\rho_{Br}} - \overline{\rho_{Rr}}\right) - \left(c + e + i\right), \overline{\rho_{Rb}},$$

$$\frac{d\overline{\rho_{Br}}}{dt} = c\left(\overline{\rho_{Br}} + \overline{\rho_{Rr}}\right)\left(1 - \overline{\rho_{Rb}} - \overline{\rho_{Rr}}\right) - \left(c + e + i\right)\overline{\rho_{Br}},$$

$$\frac{d\overline{\rho_{Rr}}}{dt} = c\left(\overline{\rho_{Rb}} + \overline{\rho_{Rr}}\right)\left(\overline{\rho_{Br}} + \overline{\rho_{Rr}}\right) - c\overline{\rho_{Rr}} + e\overline{\rho_{Br}} + i\overline{\rho_{Rb}}.$$
(S1.4)
$$\frac{d\overline{\rho_{Rr}}}{dt} = c\left(\overline{\rho_{Rb}} + \overline{\rho_{Rr}}\right)\left(\overline{\rho_{Br}} + \overline{\rho_{Rr}}\right) - c\overline{\rho_{Rr}} + e\overline{\rho_{Br}} + i\overline{\rho_{Rb}}.$$
(S1.6)

$$\frac{d\overline{\rho_{Rr}}}{dt} = c\left(\overline{\rho_{Rb}} + \overline{\rho_{Rr}}\right)\left(\overline{\rho_{Br}} + \overline{\rho_{Rr}}\right) - c\overline{\rho_{Rr}} + e\overline{\rho_{Br}} + i\overline{\rho_{Rb}}.$$
(S1.6)

We obtain the evolution of the difference $\overline{D} = \overline{\rho_{Rb}} - \overline{\rho_{Br}}$ by subtracting Eq S1.5 from S1.4,

$$\frac{d\overline{D}}{dt} = -(e+i)\overline{D},\tag{S1.7}$$

which explains Eq 6 in the main text. We can also infer the shape of the attractor (black curve in Fig 3) by setting the derivatives on the left-hand side of Eqs S1.4-S1.6 equal to zero. It follows that the attractor is given by Eq 5.