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Table S1 (Microsoft Excel format). List of up- and down-regulated E2F1 target genes identified
from the RNA-seq analysis for each cell line, corresponding to Fig. 1B.

Table S2 (Microsoft Excel format). List of alternative splicing events in E2F1 target genes
identified in the RNA-seq rMATS analysis corresponding to the heatmap (Fig. 2A).

Table S3 (Microsoft Excel format). Differential expression of genes associated with RNA
splicing, taken from the RNA-seq dataset (Fig. 1B).

Table S4 (Microsoft Excel format). List of RNAs identified in the anti-E2F1 RIP-seq analysis
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Fig. S1. Generation of stable, inducible cell lines expressing E2F1 methylation site
mutants. A) U20S stable cell lines were treated with 1pg/ml doxycycline for 24h to induce
expression of wild-type E2F1 (WT), E2F1 R109K, or E2F1 R111/R113K (KK) as indicated.
An empty vector cell line was included as a control (pTRE). E2F1 expression and
localisation was detected with an anti-HA antibody and nuclei were stained with DAPI.

B) U20S stable cell lines were treated as above to induce expression of WT E2F1, R109K,
or KK. An immunoprecipitation was performed using anti-HA antibody, and isolated
chromatin was analysed by QPCR using primers targeting the indicated promoters. n = 3. C)
U20S stable cell lines were treated with doxycycline as described above, then subsequently
exposed to etoposide for 48h as indicated. An immunoblot was performed to demonstrate
E2F1 expression (i). Cells were also prepared for flow cytometry analysis, and the average
percentage of cells in sub-G1 is displayed with standard error shown (ii). n = 3. D) 1000 cells
of each U20S stable cell line was plated and treated with doxycycline to induce E2F1
protein expression for 10 days. A colony formation assay was performed and the average
number of colonies per well is displayed with standard error. n = 3. E) Proportion of E2F1
target genes (containing E2F1 binding motifs in their proximal promoters [-900 to +100])
from the RNA-seq analysis on each cell line that were up- or down-regulated over 2-fold (p
adj value <0.01). The size of the dot reflects a percentage of the genes and the colour
corresponds to the raw numbers, as indicated in the figure. See also table S1 and fig. S2A.
F) Wild-type E2F1 (WT), R109K or KK protein expression was induced in the U20S stable
cell lines by addition of 1ug/ml doxycycline for 24h. RNA was then isolated from cells and
analysed by qRT-PCR using primers against target genes selected from the RNA-seq (i to
iv). n = 3. G) U20S cells were transfected with siRNA against E2F1 or non-targeting siRNA
(NT) for 72h. RNA was then isolated and gRT-PCR was performed with primers targeting the

indicated genes (i). An immunoblot is also included to show input protein levels (ii). n = 2.
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Fig. S2. Additional analysis of RNA-seq and rMATS datasets. A) Lists of upregulated
and downregulated genes from each cell line (wild type [WT], R109K, R111/113K [KK]) used

in the RNA-seq analysis (Fig. 1B) were utilised for GSA analysis using the piano package.



Enriched sets are represented as nodes and are coloured by significance (red indicating up-
regulation and blue indicating down-regulation). Nodes are connected based on the genes
they share by grey lines, with edge thickness correlating with the number of shared genes.
Only differentially expressed, known E2F1 target genes with adjusted P-value < 0.01 were
used in the GSA analysis. B) Magnitude of splicing changes observed in each cell line from
the RNA-seq for different AY ranges: strong (>50%), moderate (30-50%), weak (10-30%),
expressed as a percentage of the total events for each cell line. This bar chart is an

alternative representation of the data in Fig. 2C.
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Fig. S3. GO biological process enrichment analysis on spliced E2F1 target genes from
the RNA-seq data. GO biological process enrichment analysis was performed on the unique
genes in each cell line associated with statistically significant, non-overlapping alternative
splicing events (From Fig. 2A). The heatmap was generated using automatic clustering of
GO:BP terms, which were then manually assigned to broader functional groupings as

depicted to the bottom of the heatmap (Function).
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Fig. S4. Additional analysis of E2F1 RIP-seq datasets. A) U20S cells (i) and HCT116
cells (ii) were transfected for 96h with 25nM non-targeting (SiNT) or p100/TSN specific
siRNA, prior to lysis in RIP buffer. Cell extracts were immunoprecipitated with E2F1 antibody
and co-immunoprecipitating RNA was reverse transcribed prior to QPCR analysis with
primers against U5 (i) and U6 (ii) ShRNAs as indicated. Input protein levels were determined
by immunoblot. B) U20S cells were transfected with HA-tagged wild-type E2F1, E2F1
L132E, E2F1 R166H, or empty vector (pcDNA) for 48h as indicated. Expression and
localisation of E2F1 was detected by indirect immunofluorescence using an anti-HA
antibody, whilst nuclei were stained with DAPI. C and D) Schematic diagrams representing
the exon structure for each of the indicated genes: P3H2 (C), and SPG21 (D). All annotated
alternative transcripts expressed from each gene are also displayed, with transcription
initiation sites highlighted by black arrows. Mining of the RIP-seq data for peaks which span
exon boundaries identified a number of reads that permitted specific transcript variants to be
identified. These exon spanning reads are indicated on the diagrams with red arrows. E)
Sashimi plots of RNA-seq data for the MECOM and SENP7 gene are displayed to
demonstrate that transcript variants observed in the RIP-seq (Figs. 4 and 5) could also be
observed in the RNA-seq data (Fig. 2). The genomic coordinates for the highlighted regions
of the gene, and a schematic of the splicing events occurring, are shown at the bottom of
each graph. Exons are labelled as per the numbering system used in Fig. 4A (SENP7) and
Fig. 5A (MECOM). The main panel shows the count of RNA-seq reads that span the exon
junctions in this region of the gene (taken from the WT E2F1 expressing cells). F) U20S
cells were treated with 5uM PRMTS5 inhibitor (P5 inh) as indicated, prior to RNA extraction
and gRT-PCR analysis with primers recognising total p73 or CDC6 transcripts as indicated
(). Input protein levels are also displayed (ii). n = 4. G) As above, though the experiment
was performed in HCT116 cells. Input protein levels are the same as those displayed in Fig.

4E.n = 3.



Figure S5 Total
E2F1 PRMTS MECOM V7 MECOM MECOM V3
expression expression expression expression expression

Normal
tissue

Cervix

Cervical and
endocervical
cancer

Normal
tissue

Colon

Colon
adenocarcinoma

Normal
tissue

Ovary

Ovarian serous
cystadenocarcinoma

a2 Q3 ssf Jaa soff Jso asf Ji3 soff Jso

log2 log2 log2 log2 log2
(horm_count+1) (norm_count+1l) (norm_count+l) (norm_count+l) (norm_count+1)

Fig. S5. Expression of E2F1 correlates with PRMT5 and MECOM V7 transcript

expression in human cancer. Heatmap representation of expression levels for E2F1,

PRMT5, and MECOM V7 transcripts in human cancers (cervical, colon and ovarian cancer)

compared to normal tissue, generated using Xena Browser. Data from The Cancer Genome



Atlas and Genotype-Tissue Expression projects were used to display expression levels from
cancer tissue or healthy tissue respectively. Each line on the heatmap represents a single
patient sample, and each column represents the expression level of a particular gene (E2F1,
PRMT5, MECOM) or transcript (MECOM V7). High expression levels are indicated with
darker red colouring, whilst low expression levels are indicated with darker blue colouring.
Cancer tissue generally displayed higher expression of E2F1 compared to normal tissue,
which correlated with higher expression of PRMT5 and MECOM, particularly the MECOM V7
transcript. Other MECOM transcripts did not correlate with E2F1 expression, as exemplified

by MECOM V3. FPKM; Fragments Per Kilobase of transcript per Million mapped reads.



Table S1. List of up- and down-regulated E2F1 target genes identified from the RNA-

seq analysis for each cell line, corresponding to Fig. 1B.

Table S2. List of alternative splicing events in E2F1 target genes identified in the RNA-

seq rMATS analysis corresponding to the heatmap (Fig. 2A).

Table S3. Differential expression of genes associated with RNA splicing, taken from

the RNA-seq dataset (Fig. 1B).

Table S4. List of RNAs identified in the anti-E2F1 RIP-seq analysis (Fig. 4).

Table S5. List of overlapping E2F target genes between RIP-seq dataset (Fig. 4) and

splicing analysis (Fig. 2A).

Table S6. List of E2F1 RIP-seq reads that span exon junctions.
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