Science Advances

advances.sciencemag.org/cgi/content/full/5/6/eaaw4640/DC1

Supplementary Materials for

Arginine methylation expands the regulatory mechanisms and extends the genomic landscape under E2F control

Alice Poppy Roworth, Simon Mark Carr, Geng Liu, Wojciech Barczak, Rebecca Louise Miller, Shonagh Munro, Alexander Kanapin, Anastasia Samsonova, Nicholas B. La Thangue*

*Corresponding author. Email: nick.lathangue@oncology.ox.ac.uk

Published 26 June 2019, *Sci. Adv.* **5**, eaaw4640 (2019) DOI: 10.1126/sciadv.aaw4640

The PDF file includes:

Fig. S1. Generation of stable, inducible cell lines expressing E2F1 methylation site mutants.

Fig. S2. Additional analysis of RNA-seq and rMATS datasets.

Fig. S3. GO biological process enrichment analysis on spliced E2F1 target genes from the RNA-seq data.

Fig. S4. Additional analysis of E2F1 RIP-seq datasets.

Fig. S5. Expression of E2F1 correlates with PRMT5 and MECOM V7 transcript expression in human cancer.

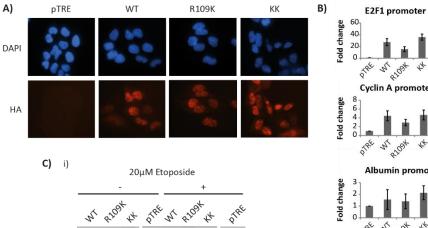
Legends for tables S1 to S6

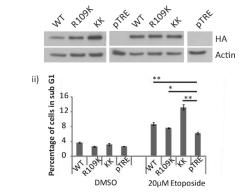
Other Supplementary Material for this manuscript includes the following:

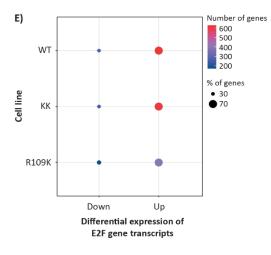
(available at advances.sciencemag.org/cgi/content/full/5/6/eaaw4640/DC1)

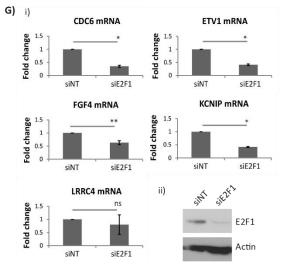
Table S1 (Microsoft Excel format). List of up- and down-regulated E2F1 target genes identified from the RNA-seq analysis for each cell line, corresponding to Fig. 1B.

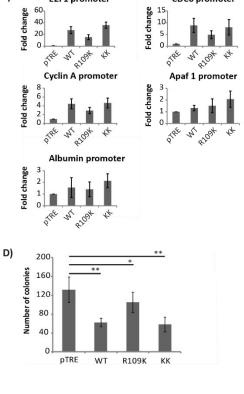
Table S2 (Microsoft Excel format). List of alternative splicing events in E2F1 target genes identified in the RNA-seq rMATS analysis corresponding to the heatmap (Fig. 2A).

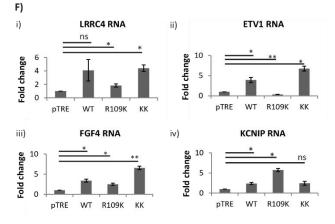

Table S3 (Microsoft Excel format). Differential expression of genes associated with RNA splicing, taken from the RNA-seq dataset (Fig. 1B).

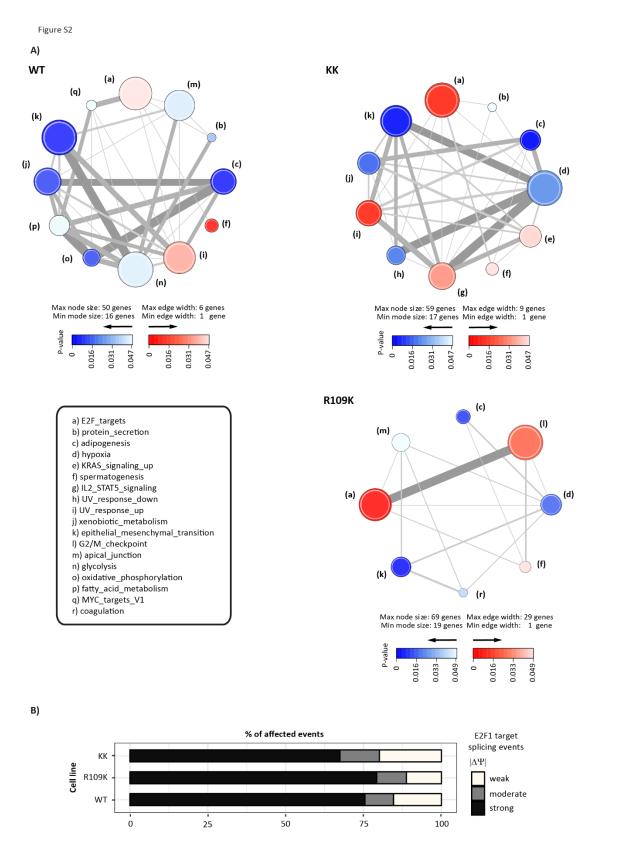

Table S4 (Microsoft Excel format). List of RNAs identified in the anti-E2F1 RIP-seq analysis (Fig. 4).


Table S5 (Microsoft Excel format). List of overlapping E2F target genes between RIP-seq dataset (Fig. 4) and splicing analysis (Fig. 2A).


Table S6 (Microsoft Excel format). List of E2F1 RIP-seq reads that span exon junctions.







CDC6 promoter

Fig. S1. Generation of stable, inducible cell lines expressing E2F1 methylation site

mutants. A) U2OS stable cell lines were treated with 1µg/ml doxycycline for 24h to induce expression of wild-type E2F1 (WT), E2F1 R109K, or E2F1 R111/R113K (KK) as indicated. An empty vector cell line was included as a control (pTRE). E2F1 expression and localisation was detected with an anti-HA antibody and nuclei were stained with DAPI. B) U2OS stable cell lines were treated as above to induce expression of WT E2F1, R109K, or KK. An immunoprecipitation was performed using anti-HA antibody, and isolated chromatin was analysed by QPCR using primers targeting the indicated promoters. n = 3. C) U2OS stable cell lines were treated with doxycycline as described above, then subsequently exposed to etoposide for 48h as indicated. An immunoblot was performed to demonstrate E2F1 expression (i). Cells were also prepared for flow cytometry analysis, and the average percentage of cells in sub-G1 is displayed with standard error shown (ii). n = 3. D) 1000 cells of each U2OS stable cell line was plated and treated with doxycycline to induce E2F1 protein expression for 10 days. A colony formation assay was performed and the average number of colonies per well is displayed with standard error. n = 3. E) Proportion of E2F1 target genes (containing E2F1 binding motifs in their proximal promoters [-900 to +100]) from the RNA-seq analysis on each cell line that were up- or down-regulated over 2-fold (p adj value <0.01). The size of the dot reflects a percentage of the genes and the colour corresponds to the raw numbers, as indicated in the figure. See also table S1 and fig. S2A. F) Wild-type E2F1 (WT), R109K or KK protein expression was induced in the U2OS stable cell lines by addition of 1µg/ml doxycycline for 24h. RNA was then isolated from cells and analysed by qRT-PCR using primers against target genes selected from the RNA-seq (i to iv). n = 3. G) U2OS cells were transfected with siRNA against E2F1 or non-targeting siRNA (NT) for 72h. RNA was then isolated and qRT-PCR was performed with primers targeting the indicated genes (i). An immunoblot is also included to show input protein levels (ii). n = 2.

Fig. S2. Additional analysis of RNA-seq and rMATS datasets. A) Lists of upregulated and downregulated genes from each cell line (wild type [WT], R109K, R111/113K [KK]) used in the RNA-seq analysis (Fig. 1B) were utilised for GSA analysis using the piano package.

Enriched sets are represented as nodes and are coloured by significance (red indicating upregulation and blue indicating down-regulation). Nodes are connected based on the genes they share by grey lines, with edge thickness correlating with the number of shared genes. Only differentially expressed, known E2F1 target genes with adjusted P-value < 0.01 were used in the GSA analysis. B) Magnitude of splicing changes observed in each cell line from the RNA-seq for different $\Delta\Psi$ ranges: strong (>50%), moderate (30-50%), weak (10-30%), expressed as a percentage of the total events for each cell line. This bar chart is an alternative representation of the data in Fig. 2C. Figure S3

WT	ХX	R109K		Function	WT	ХK	R109K	
			organelle organisation cellular component organization or biosynthesis					DNA replication
			cellular component organization					mitochondrion organization centriole assembly
			histone H3-T6 phosphorylation					cellular protein metabolic process
			transcription factor catabolic process					regulation of biosynthetic process
			protein modification process cellular protein modification process					phosphate containing compound metabolic process
			regulation of RNA polymerase II sequence specific DNA binding					regulation of cell size regulation of macromolecule metabolic process
			regulation of autophagosome assembly					regulation of developmental growth
			nucleobase containing compound biosynthetic process					regulation of macromolecule biosynthetic process
			organic cyclic compound biosynthetic process negative regulation of proteosomal protein catabolic process					DNA recombination
			negative regulation of cellular protein catabolic process					phosphorylation
			negative regulation of metabolic process					mRNA processing protein deacylation
			negative regulation of proteolysis involved in cellular protein catabolic process					protein localization
			heterocycle biosynthetic process negative regulation of cellular process					regulation of RNA splicing
_	_		aromatic compound biosynthetic process					regulation of DNA biosynthetic process macromolecule deacylation
			NAD metabolic process					positive regulation of cell growth
			ER to golgi vesicle transport					chromosome organization
			negative regulation of protein autoubiquitination					regulation of G2/M transition of mitotic cell cycle
			golgi vesicle budding regulation of nuclear division					regulation of cellular amide metabolic process
			macromolecule modification					positive regulation of hydrolase activity peptidyl-amino acid modification
			peptidyl-serine autophosphorylation					microtubule severing
			regulation of receptor activity organonitrogen compound metabolic process					positive regulation of DNA biosynthetic process
			negative regulation of biological process					mRNA metabolic process
			regulation of organelle organization					intracellular protein transport guanosine-containing compound biosynthetic process
			peptidyl-serine modification					activation of GTPase activity
			positive regulation of mismatch repair					microtubule organizing centre organization
			regulation of mismatch repair peptidyl-serine phosphorylation					regulation of RNA metabolic process
_			regulation of cell cycle					cellular response to stress
_			heterocycle metabolic process					protein deacetylation establishment of protein localization to organelle
			organic cyclic compound metabolic process					protein localization to organelle
			regulation of cell cycle process					DNA metabolic process
_			cellular nitrogen compound biosynthetic process positive regulation of molecular function					regulation of intracellular signal transduction
-			macromolecule metabolic process					positive regulation of nitrogen compound metabolic proc cytoskeleton organization
			regulation of mitotic cell cycle					regulation of signalling
			regulation of molecular function					positive regulation of catalytic activity
			cellular response to DNA damage stimulus					intracellular transport
-			microtubule based process protein sumoylation					microtubule cytoskeleton organization
_			DNA repair					cellular protein localization regulation of catalytic activity
			establishment of localization in cell					cellular macromolecule localization
			regulation of nucleobase-containing compound metabolic process					histone deacetylation
-			cellular localization regulation of cell communication					cellular metabolic process
_			phosphorous metabolic process					cellular component biogenesis cellular component assembly
			regulation of muscle cell differentiation					cellular aromatic compound metabolic process
			regulation of cellular process					nucleobase-containing compound metabolic process
			cell cycle checkpoint					cellular nitrogen compound metabolic process
			SNARE complex disassembly viral life cycle					cellular macromolecue metabolic process nucleic acid metabolic process
			growth plate cartilage chondrocyte growth					cell cycle process
			cellular developmental process					cell cycle
			regulation of plasma membrane bounded cell projection organization					metabolic process
			regulation of cell projection organization regulation of hydrolase activity					nitrogen compound metabolic process
			RNA processing					primary metabolic process organic substance metabolic process
			GTP biosynthetic process					biosynthetic process
			chondrocyte differentiation involved in endochondral bone morphogenesis					organic substance biosynthetic process
			positive regulation of cell growth					mitotic cell cycle
_			regulation of signal transduction positive regulation of developmental growth					mitotic cell cycle process
			regulation of cellular macromolecule biosynthetic process					gene expression
			intra-golgi vesicle mediated transport					regulation of cellular component organization RNA metabolic process
			histone modification					macromolecule biosynthetic process
_			positive regulation of telomere maintenance via telomere lengthening regulation of nitrogen compound metabolic process					cellular macromolecule biosynthetic process
_			regulation of cell cycle G2/M phase transition					regulation of cellular metabolic process
_			petidyl-lysine modification					positive regulation of cellular metabolic process positive regulation of macromolecule metabolic process
			positive regulation of cell migration involved in sprouting angiogenesis					positive regulation of matabolic process
			DNA damage induced protein phosphorylation					regulation of metabolic process
			regulation of translation					regulation of cell development
			microtubule-based movement regulation of primary metabolic process					regulation of mitotic cell cycle phase transition
			regulation of primary metabolic process regulation of extent of cell growth					macromolecular complex subunit organization
			macromolecular complex assembly					regulation of cell cycle phase transition cellular biosynthetic process
			regulation of ATPase activity					establishment of organelle localization
			regulation of cellular biosynthetic process					organelle assembly
			histone H3 deacetylation					positive regulation of cellular process
			purine ribonucleoside biosynthetic process purine nucleoside biosynthetic process					plasma membrane bounded cell projection assembly cell projection assembly
			microtubule bundle formation					cilium organization

Function

Cellular Stress Response
Transcriptional regulation
Cytoskeleton
ER, golgi, cell membranes
Other

Cell Cycle Growth Protein transport Nucleotide Metabolism Development/differentiation

Fig. S3. GO biological process enrichment analysis on spliced E2F1 target genes from

the RNA-seq data. GO biological process enrichment analysis was performed on the unique genes in each cell line associated with statistically significant, non-overlapping alternative splicing events (From Fig. 2A). The heatmap was generated using automatic clustering of GO:BP terms, which were then manually assigned to broader functional groupings as depicted to the bottom of the heatmap (Function).

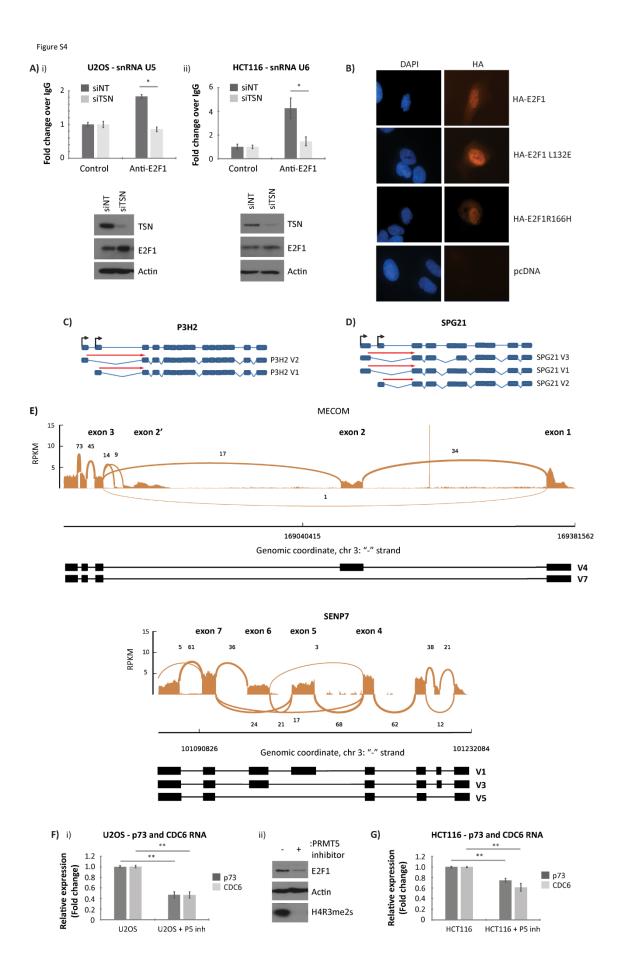


Fig. S4. Additional analysis of E2F1 RIP-seq datasets. A) U2OS cells (i) and HCT116 cells (ii) were transfected for 96h with 25nM non-targeting (siNT) or p100/TSN specific siRNA, prior to lysis in RIP buffer. Cell extracts were immunoprecipitated with E2F1 antibody and co-immunoprecipitating RNA was reverse transcribed prior to QPCR analysis with primers against U5 (i) and U6 (ii) snRNAs as indicated. Input protein levels were determined by immunoblot. B) U2OS cells were transfected with HA-tagged wild-type E2F1, E2F1 L132E, E2F1 R166H, or empty vector (pcDNA) for 48h as indicated. Expression and localisation of E2F1 was detected by indirect immunofluorescence using an anti-HA antibody, whilst nuclei were stained with DAPI. C and D) Schematic diagrams representing the exon structure for each of the indicated genes: P3H2 (C), and SPG21 (D). All annotated alternative transcripts expressed from each gene are also displayed, with transcription initiation sites highlighted by black arrows. Mining of the RIP-seg data for peaks which span exon boundaries identified a number of reads that permitted specific transcript variants to be identified. These exon spanning reads are indicated on the diagrams with red arrows. E) Sashimi plots of RNA-seq data for the MECOM and SENP7 gene are displayed to demonstrate that transcript variants observed in the RIP-seq (Figs. 4 and 5) could also be observed in the RNA-seq data (Fig. 2). The genomic coordinates for the highlighted regions of the gene, and a schematic of the splicing events occurring, are shown at the bottom of each graph. Exons are labelled as per the numbering system used in Fig. 4A (SENP7) and Fig. 5A (MECOM). The main panel shows the count of RNA-seq reads that span the exon junctions in this region of the gene (taken from the WT E2F1 expressing cells). F) U2OS cells were treated with 5µM PRMT5 inhibitor (P5 inh) as indicated, prior to RNA extraction and qRT-PCR analysis with primers recognising total p73 or CDC6 transcripts as indicated (i). Input protein levels are also displayed (ii). n = 4. G) As above, though the experiment was performed in HCT116 cells. Input protein levels are the same as those displayed in Fig. 4E. n = 3.

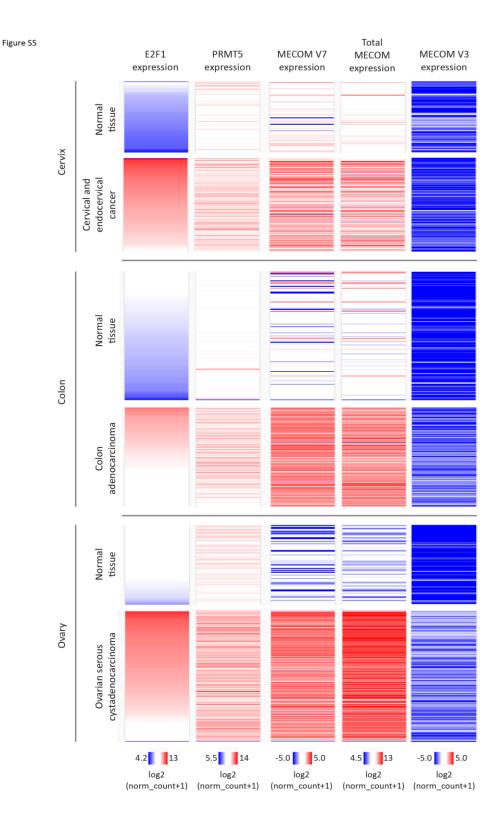


Fig. S5. Expression of E2F1 correlates with PRMT5 and MECOM V7 transcript expression in human cancer. Heatmap representation of expression levels for E2F1, PRMT5, and MECOM V7 transcripts in human cancers (cervical, colon and ovarian cancer) compared to normal tissue, generated using Xena Browser. Data from The Cancer Genome

Atlas and Genotype-Tissue Expression projects were used to display expression levels from cancer tissue or healthy tissue respectively. Each line on the heatmap represents a single patient sample, and each column represents the expression level of a particular gene (E2F1, PRMT5, MECOM) or transcript (MECOM V7). High expression levels are indicated with darker red colouring, whilst low expression levels are indicated with darker blue colouring. Cancer tissue generally displayed higher expression of E2F1 compared to normal tissue, which correlated with higher expression of PRMT5 and MECOM, particularly the MECOM V7 transcript. Other MECOM transcripts did not correlate with E2F1 expression, as exemplified by MECOM V3. FPKM; Fragments Per Kilobase of transcript per Million mapped reads.

Table S1. List of up- and down-regulated E2F1 target genes identified from the RNAseq analysis for each cell line, corresponding to Fig. 1B.

Table S2. List of alternative splicing events in E2F1 target genes identified in the RNAseq rMATS analysis corresponding to the heatmap (Fig. 2A).

Table S3. Differential expression of genes associated with RNA splicing, taken fromthe RNA-seq dataset (Fig. 1B).

Table S4. List of RNAs identified in the anti-E2F1 RIP-seq analysis (Fig. 4).

Table S5. List of overlapping E2F target genes between RIP-seq dataset (Fig. 4) and splicing analysis (Fig. 2A).

Table S6. List of E2F1 RIP-seq reads that span exon junctions.