1	Supplementary Information
2	
3	A Shape-Memory and Spiral Light-Emitting Device for Multisite Precise
4	Stimulation of Nerve Bundles
5	
6	Hao Zheng ^{1,4} , Zhitao Zhang ^{2,4} , Su Jiang ^{1,4} , Biao Yan ^{1,4} , Xiang Shi ² , Yuanting Xie ¹ ,
7	Xu Huang ¹ , Zeyang Yu ³ , Huizhu Liu ¹ , Shijun Weng ¹ , Arto Nurmikko ³ , Yuqiu Zhang ¹ ,
8	Huisheng Peng ^{2,5} , Wendong Xu ^{1,5} , Jiayi Zhang ^{1,5}
9	
10	¹ State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain
11	Science, Institutes of Brain Science, Department of Hand Surgery, National Clinical
12	Research Center for Aging and Medicine, Huashan Hospital, Fudan University,
13	Shanghai 200433, China.
14	
15	² State Key Laboratory of Molecular Engineering of Polymers, Department of
16	Macromolecular Science, and Laboratory of Advanced Materials, Fudan University,
17	Shanghai 200438, China.
18	
19	³ School of Engineering, Brown University, Providence, Rhode Island 02912, USA.
20	
21	⁴ These authors contributed equally: Hao Zheng, Zhitao Zhang, Su Jiang, Biao Yan
22	
23	⁵ These authors jointly supervised this work: Jiayi Zhang, Wendong Xu and Huisheng
24	Peng and; E-mail addresses: jiayizhang@fudan.edu.cn, wendongxu@fudan.edu.cn
25	and penghs@fudan.edu.cn.
26	
27	

Supplementary Figure 1. Characterization of mini-LED. (a) Power efficiency for one

34 by the value at the beginning of the test (t = 0). (**d-f**) Luminescence of one mini-LED upon

Supplementary Figure 3. Polyurethane fibers were fabricated into different shapes. (a)

Original shape of the fiber; (b) spiral-shaped fiber; (c) triangle-shaped fiber; (d) knot-shaped

- fiber; (e) squire-shaped fiber. Scale bar : 1 cm.

Supplementary Figure 4. MOSD fabrication. (a) Mini-LEDs with insulated copper wires
were attached to the fiber. (b) The fiber was twined and spiral shaped. (c) Restrained copper
wire. (d) MOSD with mini-LEDs on. (e) Light power driven by different voltages. Scale bars
are 500 μm (a-d).

61 Supplementary Figure 5. Temperature change of one LED. (a) Mini-LED was turned on

63 Thermometers. (b) Mini-LED was turned on from 2.3V to 3.5V (0.00003 mW - 33.1 mW) at

both 20 msec-on/1 sec-off and 1 sec-on/4 sec-off modes.

65

⁶² continuously at 2.5 V (0.0012 mW) and the temperature was measured by Optris Infrared

76 mini-LEDs were fabricated onto the same MOSD. Scale bar is 5 mm.

Supplementary Figure 8. Immunofluorescence images of transverse sciatic nerve in
Thy1-ChR2-EYFP mice. (a-b), Transverse section of sciatic nerve. Green, ChR2-EYFP. Blue,
DAPI. (c) Monte-Carlo simulation of LED light intensity distribution across and around the
mouse sciatic nerve on transverse section. (d) EMG areas stimulated by MOSD with different
voltages. Scale bars are 300 μm (a) and 100 μm (b).

Supplementary Figure 9. EMG responses of GN and TA muscles under electrical and
single-site optogenetic stimulation. (a) EMG area with single-site optogenetic stimulation (n
= 5 mice, 20 msec-on/ 2 sec-off). (b) EMG area with electrical stimulation (n = 3 mice, 0.2
msec-on/ 1 sec-off). Data are presented as mean ± s.e.m..

97

98 Supplementary Figure 10. EMG responses of PM, Tr, EC, FC and ED muscles under 99 electrical and single-site optogenetic stimulation with different stimulation current. (a) EMG 100 area with single-site optogenetic stimulation (n = 7 mice, 20 msec-on/ 2 sec-off). (b) EMG 101 area with electrical stimulation (n = 3 mice, 0.2 msec-on/ 1 sec-off). Data are presented as 102 mean ± s.e.m. 103

Supplementary Figure 11. Distribution of selectivity indices and definition of selectivity threshold. (a) Example normalized myoelectric area and selectivity index under one illumination condition (the illumination condition from different mouse is 0.00003 mW - 20. 4 mW) for one mouse (6 trials, mouse #4 from Supplementary Figure 15 b). (b) Histogram of density distribution of selectivity indices of all mice under delivered with MOSD. Selectivity index was defined as (Area_{max} - Area_{second max}) / (Area_{max} + Area_{second max}) (See Methods for details). Threshold for selectivity index was 0.46 (mean + 2 s.d.) (1.31 mW). Distribution fitted with exponential function. (c) Summary of number of muscles and number of illumination conditions with selectivity indices above threshold for each mouse (0.00003 mW - 20.4 mW).

Supplementary Figure 12. Implanted MOSD for retinotopic activation. (a) Schematic
diagram of the wiring and electrophysiological recording of nerve fiber activation on V1 in
rat with intraocular AAV-hSyn-ChR2-mCherry injection. Three mini-LEDs were placed
around the optic nerve. MEA: multichannel electrode array, D: dorsal, V: ventral, N: nasal, T:

121	temporal. (b-c) Cross section of the optic nerve 1.5–2 mm from the eyeball. Green, CTB488.
122	Red, CTB555. Blue, DAPI. (b) CTB555 was intraocularly injected into the nasal retina, and
123	CTB488 was intraocularly injected into the temporal retina. (c) CTB555 was intraocularly
124	injected into the dorsal retina, and CTB488 was intraocularly injected into the ventral retina.
125	(d) ChR2 expression in the optic nerve. Red, ChR2-mCherry. Blue, DAPI. (e-g) ChR2
126	expression in retinal ganglion cells in the retina. Green, brn3a. Blue, DAPI. (h) The MOSD
127	implanted on the optic nerve. (i) Images of three mini-LEDs turned on individually at 0.0012
128	mW. (j) Monte-Carlo simulation of the LED light intensity distribution across and around the
129	rat optic nerve, indicated by the red circle. Note, an adult rat optic nerve has a diameter of 500
130	$\mu m,$ which is larger than that of the mice sciatic nerve (300 $\mu m).$ (k) Peristimulus time
131	histogram (PSTH, spike s ⁻¹) of V1 neurons stimulated with different light intensities (turned
132	on for 1 sec-on/4 sec-off at 0.18 mW) by mini-LED1-3 (0.00003 mW - 0.18 mW). (I) Local
133	field potential, power spectrum density, and PSTH of V1 neurons in response to MOSD
134	stimulation (turned on for 1 sec-on/4 sec-off at 0.18 mW). (m) Heatmap (upper) and Lowess
135	fitting (lower) of the firing ratio (firing rates with the MOSD turned on divided by those with
136	the MOSD turned off) at 0.00003 mW. (n) Lowess fitting of the MOSD-activated area (firing
137	ratio > 1) at 0.00003 mW and 0.0012 mW. (o) Overlap index of V1 activation area induced
138	by different mini-LEDs at 0.00003 mW and 0.0012 mW (n = 7 mice, Paired t test, $*P < 0.05$.).
139	Data are presented as mean \pm s.e.m. Scale bars are 100 μ m (b -g), 1 mm (h -i).

142 Supplementary Figure 13. Topographic projection between optic nerve and lateral 143 geniculate nucleus (LGN). (a, b) Intraocular injection of fluorescent dyes at different 144 positions of the retina. CTB488 (green) and CTB555 (red) were intraocularly injected in a 145 nasal-temporal or dorsal-ventral manner (700 nl per site, left eye). (c, d, e, f) Cross sections of 146 optic nerve at 1 mm or 3 mm from the eye ball. Red, CTB555. Green, CTB488. Blue, DAPI. 147 (g, h) Retinal axons in dorsal lateral geniculate nucleus (dLGN) and ventral lateral geniculate 148 nucleus (vLGN). Red, CTB555. Green, CTB488. M, medial; L, lateral; D, dorsal; V, ventral. 149 (i) Monte-Carlo simulation of light intensity distribution across and around the rat optic nerve 150 on transverse section. Scale bars are 100 µm (c-f), 200 µm (g-h).

151

Supplementary Figure 14. Inhibition of responses to drifting gratings in V1 neurons using
AP4, AP5 and NBQX. (a) Image of multichannel electrode array (MEA). (b) Schematics of
the electrophysiology recordings with introvitreous injection of glutamertergic antagonist
cocktail (left). Light responses in V1 before the injection and after injection 30 min (right).
Shade area indicated the presentation of drifting gratings to the contralateral eye. Scale bar is
500 μm (a).

159

162 **Supplementary Figure 15.** Associated learning in freely moving rats implanted with 163 MOSD. (a) Intraocular injection of AAV-hSyn-ChR2-mCherry (left). Schematic of the 164 training chamber (right). (b) Image of the MOSD firmly implanted onto a rat's optic nerve. (c) 165 Head-mounted flexible printed circuit adapter on the skull of the rat. (d) A 166 postimplant-surgery rat wearing the head-mounted MOSD. (e) The immunohistochemistry 167 from rat optic nerve with MOSD implanted over 3 weeks. (f) Behavioral training scheme.

168	After 3 min of habituation, each rat went through 10 training trials. In each 1-min trial, the
169	mini-LED was turned on for 2 sec at 0.18 mW. The animal was allowed to lick water for 5
170	sec (0.05 mL water), followed by a 53-sec interval. (g) The ratio of successful water-licking
171	trials to all trials in each training day. Data are represented as mean \pm s.e.m. (n = 5 rats, 0.18
172	mW, LED1: 20 msec-on/ 20 msec-off, LED2: 500 msec-on/ 500 msec-off; One way repeated
173	measures ANOVA with Tukey post hoc, $**P < 0.01$). (h) Schematics of 2-choice Y maze.
174	The rats were cued with different mini-LEDs (0.18 mW, 20 msec-on/20 msec-off for
175	mini-LED1 and 500 msec-on/500 msec-off for mini-LED2 for 10 sec) and rewarded with
176	sucrose pellets if they chose the correct arm. (i) The response of rats in Y maze with distinct
177	mini-LEDs (n = 5 rats, 0.18 mW, 2 sec, two way repeated measures ANOVA with Tukey post
178	hoc). Data are represented as mean \pm s.e.m.; ** $P < 0.01$, *** $P < 0.001$. Scale bars are 1 mm
179	(b), 200 μm (e).

184 Supplementary Figure 16. Miniaturized stimulation headstage for MOSD. (a) MOSD and

- 185 the miniaturized stimulation headstage. (b) A mouse implanted with MOSD and connected to
- 186 the stimulation headstage. Scale bar is 1 cm (a).

Quantity	Symbol	Value	Unit	Source
Diameter of Sciatic Nerve	d	0.3	mm	Measured in this manuscript
Refractive Index of Sciatic Nerve	n _{Sciatic} Nerve	1.40	n.a.	Yaroslavsky, 2002 ⁴⁷
Absorption Coefficient	μ _a	0.5	mm ⁻¹	Yaroslavsky, 2002 ⁴⁷
Reduced Scattering Coefficient	μ _s '	1.56	mm ⁻¹	Jacques, 2013 ⁴⁶
Anisotropy	g	0.90	n.a.	Jacques, 2013 ⁴⁶

190 Supplementary Table 1. Parameters of optical properties for mice sciatic nerve and

C7 nerve.

Mouse sci	iatic nerve	Light intensity [mW mm ⁻²]		
Voltage (V)	light Power	At the	Middle	Far end
	(mW)	mini-LED		
2.3	0.00003	0.0013	0.00059	0.00020
2.4	0.00007	0.0031	0.0014	0.00046
2.5	0.0012	0.052	0.023	0.0079
2.6	0.026	1.14	0.51	0.17
2.7	0.18	7.99	3.58	1.21
2.8	0.57	24.9	11.2	3.78
2.9	1.31	57.2	25.6	8.67
3	4.55	198.1	88.8	30.0
3.1	7.67	334.4	149.8	50.7
3.2	13.3	579.6	259.7	87.9
3.3	20.4	889.0	398.3	134.8
2.45	0.3	13.1	5.86	1.98

194 Supplementary Table 2. Monte Carlo simulation of light intensities at the mini-LED

195 light-emitting surface, middle and far end of the cross section of the mice sciatic nerve.

Mouse C7		Light intensity [mW mm ⁻²]			
Voltage (V)	light Power (mW)	At the mini-LED	Middle	Far end	
2.3	0.00003	0.0013	0.00089	0.00039	
2.4	0.00007	0.0030	0.0021	0.00092	
2.5	0.0012	0.05	0.035	0.015	
2.6	0.026	1.14	0.77	0.34	
2.7	0.18	7.99	5.41	2.40	
2.8	0.57	24.9	16.9	7.49	
2.9	1.31	57.2	38.7	17.2	
3	4.55	198.1	134.2	59.5	
3.1	7.67	334.4	226.6	100.5	
3.2	13.3	579.6	392.6	174.2	
3.3	20.4	889.0	602.2	267.2	
2.45	0.3	13.1	8.86	3.93	

198 Supplementary Table 3. Monte Carlo simulation of light intensities at the mini-LED

199 light-emitting surface, middle and far end of the cross section of the mice C7 nerve.

Quantity	Symbol	Value	Unit	Source
Diameter of Optic Nerve	d	0.5	mm	Hughes, 1977 ⁴⁴
Refractive Index of Optic Nerve	n _{Optic} Nerve	1.40	n.a.	Yaroslavsky, 2002 ⁴⁷
Absorption Coefficient	μ _a	0.5	mm ⁻¹	Yaroslavsky, 2002 ⁴⁷
Reduced Scattering Coefficient	μs'	2.59	mm ⁻¹	Jacques, 2013 ⁴⁶
Anisotropy	g	0.90	n.a.	Jacques, 2013 ⁴⁶

200 Supplementary Table 4. Parameters of optical properties for rat optic nerve.

Det ent		Light intensity [mW mm ⁻²]		
	lic herve		NC 141.	F ₁ , 1
voltage (v)	light Power	At the mini-LED	Middle	Far end
	(mW)			
2.3	0.00003	0.0014	0.00025	0.000047
2.4	0.00007	0.0032	0.00058	0.00011
2.5	0.0012	0.06	0.0099	0.0019
2.6	0.026	1.21	0.22	0.041
2.7	0.18	8.47	1.51	0.29
2.8	0.57	26.4	4.72	0.89
2.9	1.31	60.6	10.8	2.05
3	4.55	209.9	37.5	7.09
3.1	7.67	354.3	63.3	12.0
3.2	13.3	614.0	109.7	20.7
3.3	20.4	941.8	168.3	31.8
2.45	0.3	13.9	2.48	0.47

202 Supplementary Table 5. Monte Carlo simulation of light intensities at the mini-LED

203 light-emitting surface, middle and far end of the cross section of the rat optic nerve.

204

Figures	Voltge	Device	Power	Pulse width
Fig. 2g	2.5V	mini-LED	0.0012 mW	Continuously-on
	2.3 V - 3.5		0.00002	20 msec-on/ 2 sec-off 1
F1g. 2j	V	mini-LED	0.00003 mw - 33.1 mw	sec-on/ 4 sec-off
Fig. 3e	2.6V	mini-LED	0.026 mW	20 msec-on/ 2 sec-off
Fig. 3f	3.3V	mini-LED	20. 4 mW	20 msec-on/ 2 sec-off
Fig. 3g	2.9 - 3.3V	mini-LED	1.31mW - 20. 4 mW	20 msec-on/ 2 sec-off
Fig. 3h	3V	mini-LED	4.55 mW	20 msec-on/ 2 sec-off
Fig. 4d	3.3 V	mini-LED	20.4 mW	20 msec-on/ 2 sec-off
Fig. 4g	3.3 V	mini-LED	81. 6mW	20 msec-on/ 2 sec-off
Fig. 5i	3.3 V	mini-LED	20. 4 mW	20 msec-on/ 2 sec-off
Fig. 5j	2.3 V - 3.3 V	mini-LED	0.00003 mW - 20. 4 mW	20 msec-on/ 2 sec-off
Fig. 5k-p	2.6 V - 3.2 V	mini-LED	0.026mW – 13.30 mW	20 msec-on/ 2 sec-off
Fig. 6c	3.3 V	mini-LED	20. 4 mW	20 msec-on/ 2 sec-off
Fig. 6d	2.9 - 3.3 V	mini-LED	1.31mW - 20. 4 mW	20 msec-on/ 2 sec-off
Fig. 6f	3.3 V	mini-LED	81. 6 mW	20 msec-on/ 2 sec-off
Fig. 7k	3.3 V	mini-LED	81. 6 mW	20 msec-on/ 2 sec-off
Supplementa ry Figure 5a	2.5 V	mini-LED	0.0012 mW	4 hour
Supplementa ry Figure 5b	2.3-3.5V	mini-LED	0.00003 mW -33.1 mW	20 msec-on/ 2 sec-off 1 sec-on/ 4 sec-off
Supplementa ry Figure 9a	2.6 - 3.3 V	mini-LED	0.026 mW- 20. 4 mW	20 msec-on/ 2 sec-off
Supplementa ry Figure 10a	2.6 - 3.3 V	mini-LED	0.026 mW- 20. 4 mW	20 msec-on/ 2 sec-off
Supplementa ry Figure 11a	2.9V	mini-LED	1.31mW	20-msec-on/20-msec-off for mini-LED1 and 500-msec-on/500-msec-off for mini-LED2 for 10 sec
Supplementa ry Figure 11b, c	2.3 V - 3.3 V	mini-LED	0.00003 mW - 20. 4 mW	20 msec-on/ 2 sec-off
Supplementa	2.3 V - 2.7	mini-LED	0.00003 mW - 0.18 mW	1 sec-on/ 4 sec-off

ry Figure 12k	V			
Supplementa ry Figure 121	2.7 V	mini-LED	0.18 mW	1 sec-on/ 4 sec-off
Supplementa ry Figure 12m	2.3 V	mini-LED	0.00003 mW	1 sec-on/ 4 sec-off
Supplementa ry Figure 12n	2.3-2.5V	mini-LED	0.00003 mW and 0.0012 mW	1 sec-on/ 4 sec-off
Supplementa ry Figure 120	2.4 V and 2.5 V	mini-LED	0.00003 mW and 0.0012 mW	1 sec-on/ 4 sec-off
Supplementa ry Figure 15f, g	2.7 V	mini-LED	0.18 mW	LED1: 2 sec-on/ 60 sec-off
Supplementa ry Figure 15h, i	2.7V	mini-LED	0.18 mW	20-msec-on/20-msec-off for mini-LED1 and 500-msec-on/500-msec-off for mini-LED2 for 10 sec

207 Supplementary Table 6. Stimulation parameters used in the manuscript.

Figures		P value	n	Statistical analysis
Fig. 3g	ТА	0.012	8 (mice)	Paired t test
	GN	0.025	8 (mice)	Wilcoxon Signed Rank Test
Fig. 3h	ES	0.069	3 (mice)	Paired t test
	SS	0.917	5 (mice)	Paired t test
Fig. 4d		< 0.001	5 (mice)	Paired t test
Fig. 4g	ES		3 (mice)	
	SS		5 (mice)	
Fig. 5k Col	Col 1 vs	0.001	4 (trials)	Friedman's ANOVA on Ranks with
	Col 4 0.001	0.001		Tukey post hoc
	Col 1 vs	0.024		Friedman's ANOVA on Ranks with
	Col 5	0.034		Tukey post hoc
	Col 1 vs	0.451		Friedman's ANOVA on Ranks with
	Col 2	0.431		Tukey post hoc
	Col 1 vs			Friedman's ANOVA on Ranks with
	Col 3	0.754		Tukey post hoc
	Col 3 vs	0.065		Friedman's ANOVA on Ranks with

	Col 4			Tukey post hoc
	Col 3 vs	0.451		Friedman's ANOVA on Ranks with
	Col 5	0.451		Tukey post hoc
	Col 3 vs			Friedman's ANOVA on Ranks with
	Col 2	0.989		Tukey post hoc
-	Col 2 vs	0.100		Friedman's ANOVA on Ranks with
	Col 4	0.199		Tukey post hoc
	Col 2 vs	0.754		Friedman's ANOVA on Ranks with
	Col 5	0.734		Tukey post hoc
	Col 5 vs	0.975		Friedman's ANOVA on Ranks with
	Col 4	0.875		Tukey post hoc
Fig. 51	Col 2 vs	0.001	4 (trials)	Friedman's ANOVA on Ranks with
	Col 4	0.001		Tukey post hoc
	Col 2 vs	0.119		Friedman's ANOVA on Ranks with
	Col 5	0.110		Tukey post hoc
	Col 2 vs	0.100		Friedman's ANOVA on Ranks with
	Col 1	0.199		Tukey post hoc
	Col 2 vs	0.754		Friedman's ANOVA on Ranks with
	Col 3	0.734		Tukey post hoc
	Col 3 vs	0.065		Friedman's ANOVA on Ranks with
	Col 4	0.063		Tukey post hoc
	Col 3 vs	0.754		Friedman's ANOVA on Ranks with
	Col 5	0.754		Tukey post hoc
	Col 3 vs	0.975		Friedman's ANOVA on Ranks with
	Col 1	0.873		Tukey post hoc
	Col 1 vs	0.451		Friedman's ANOVA on Ranks with
	Col 4	0.431		Tukey post hoc
	Col 1 vs	0.000		Friedman's ANOVA on Ranks with
	Col 5	0.999		Tukey post hoc
	Col 5 vs	0.605		Friedman's ANOVA on Ranks with
	Col 4	0.005		Tukey post hoc
Fig. 5m	Col 3 vs.	<0.001	4 (trials)	One way ANOVA with Tukey post hoc
	Col 4	<0.001		
	Col 3 vs.	<0.001		One way ANOVA with Tukey post hoc
	Col 2	-0.001		
	Col 3 vs.	<0.001		One way ANOVA with Tukey post hoc
	Col 5	-0.001		
	Col 3 vs.	<0.001		One way ANOVA with Tukey post hoc
	Col 1	-0.001		
	Col 1 vs. <0.001		One way ANOVA with Tukey post hoc	
	Col 4	<0.001		
	Col 1 vs.	0.001		One way ANOVA with Tukey post hoc
	Col 2	0.001		

	Col 1 vs. Col 5	0.141		One way ANOVA with Tukey post hoc
	Col 5 vs. Col 4	0.007		One way ANOVA with Tukey post hoc
	Col 5 vs. Col 2	0.122		One way ANOVA with Tukey post hoc
	Col 2 vs. Col 4	0.566		One way ANOVA with Tukey post hoc
Fig. 5n	Col 4 vs. Col 5	< 0.001	4 (trials)	One way ANOVA with Tukey post hoc
	Col 4 vs. Col 2	<0.001		One way ANOVA with Tukey post hoc
	Col 4 vs. Col 1	< 0.001		One way ANOVA with Tukey post hoc
	Col 4 vs. Col 3	< 0.001		One way ANOVA with Tukey post hoc
	Col 3 vs. Col 5	<0.001		One way ANOVA with Tukey post hoc
	Col 3 vs. Col 2	<0.001		One way ANOVA with Tukey post hoc
	Col 3 vs. Col 1	0.88		One way ANOVA with Tukey post hoc
	Col 1 vs. Col 5	<0.001		One way ANOVA with Tukey post hoc
	Col 1 vs. Col 2	< 0.001		One way ANOVA with Tukey post hoc
	Col 2 vs. Col 5	0.096		One way ANOVA with Tukey post hoc
Fig. 50	Col 5 vs Col 3	0.007	4 (trials)	Friedman's ANOVA on Ranks with Tukey post hoc
	Col 5 vs Col 1	0.034		Friedman's ANOVA on Ranks with Tukey post hoc
	Col 5 vs Col 4	0.451		Friedman's ANOVA on Ranks with Tukey post hoc
	Col 5 vs Col 2	0.989		Friedman's ANOVA on Ranks with Tukey post hoc
	Col 2 vs Col 3	0.034		Friedman's ANOVA on Ranks with Tukey post hoc
	Col 2 vs Col 1	0.118		Friedman's ANOVA on Ranks with Tukey post hoc
	Col 2 vs Col 4	0.754		Friedman's ANOVA on Ranks with Tukey post hoc
	Col 4 vs Col 3	0.451		Friedman's ANOVA on Ranks with Tukey post hoc

	Col 4 vs	0.754		Friedman's ANOVA on Ranks with
	Col 1			Tukey post hoc
	Col 1 vs	0.000		Friedman's ANOVA on Ranks with
	Col 3	0.989		Tukey post hoc
Fig. 5p	Col 5 vs		4 (trials)	Friedman's ANOVA on Ranks with
	Col 1	0.005		Tukey post hoc
	Col 5 vs	0.102		Friedman's ANOVA on Ranks with
	Col 3	0.102		Tukey post hoc
	Col 5 vs	0.110		Friedman's ANOVA on Ranks with
	Col 4	0.118		Tukey post hoc
	Col 5 vs			Friedman's ANOVA on Ranks with
	Col 2	0.719		Tukey post hoc
	Col 2 vs			Friedman's ANOVA on Ranks with
	Col 1	0.175		Tukey post hoc
	Col 2 vs			Friedman's ANOVA on Ranks with
	Col 3	0.754		Tukey post hoc
	Col 2 vs			Friedman's ANOVA on Ranks with
	Col 4	0.788		Tukey post hoc
	Col 4 vs			Friedman's ANOVA on Ranks with
	Col 1	0.819		Tukey post hoc
	Col 4 vs			Friedman's ANOVA on Ranks with
	Col 3	1		Tukey post hoc
	Col 3 vs			Friedman's ANOVA on Ranks with
	Col 1	0.848		Tukey post hoc
Fig. 6d	Col 2 vs	< 0.001	14 (mice)	Friedman's RM ANOVA on Ranks with
shoulder	Col 1			Tukey post hoc
adduction				
	Col 2 vs	0.227		Friedman's RM ANOVA on Ranks with
	Col 4			Tukey post hoc
	Col 2 vs	0.552		Friedman's RM ANOVA on Ranks with
	Col 3			Tukey post hoc
	Col 3 vs	0.001		Friedman's RM ANOVA on Ranks with
	Col 1			Tukey post hoc
	Col 3 vs	0.936		Friedman's RM ANOVA on Ranks with
	Col 4			Tukey post hoc
	Col 4 vs	0.011		Friedman's RM ANOVA on Ranks with
	Col 1			Tukey post hoc
Fig. 6d	Col 2 vs	< 0.001	14 (mice)	Friedman's RM ANOVA on Ranks with
elbow	Col 1			Tukey post hoc
extension				Jr
	Col 2 vs	< 0.001		Friedman's RM ANOVA on Ranks with
	Col 3			Tukey post hoc
	Col 2 vs	0.001		Friedman's RM ANOVA on Ranks with
	Col 4			Tukey post hoc

	Col 4 vs	0.912		Friedman's RM ANOVA on Ranks with
	Col 1			Tukey post hoc
	Col 4 vs	0.999		Friedman's RM ANOVA on Ranks with
	Col 3			Tukey post hoc
	Col 3 vs	0.956		Friedman's RM ANOVA on Ranks with
	Col 1			Tukey post hoc
Fig. 6d	Col 3 vs.	< 0.001	7 (mice)	One way RM ANOVA with Tukey post
wrist	Col 4			hoc
extension				
	Col 3 vs.	< 0.001		One way RM ANOVA with Tukey post
	Col 1			hoc
	Col 3 vs.	< 0.001		One way RM ANOVA with Tukey post
	Col 2			hoc
	Col 2 vs.	0.372		One way RM ANOVA with Tukey post
	Col 4			hoc
	Col 2 vs.	1		One way RM ANOVA with Tukey post
	Col 1			hoc
	Col 1 vs.	0.378		One way RM ANOVA with Tukey post
	Col 4			hoc
Fig. 6d	Col 4 vs	< 0.001	12 (mice)	Friedman's RM ANOVA on Ranks with
wrist	Col 3			Tukey post hoc
flexion				
	Col 4 vs	0.045		Friedman's RM ANOVA on Ranks with
	col 1			Tukey post hoc
	Col 4 vs	0.685		Friedman's RM ANOVA on Ranks with
	Col 2			Tukey post hoc
	Col 2 vs	0.001		Friedman's RM ANOVA on Ranks with
	Col 3			Tukey post hoc
	Col 2 vs	0.436		Friedman's RM ANOVA on Ranks with
	Col 1			Tukey post hoc
	Col 1 vs	0.119		Friedman's RM ANOVA on Ranks with
	Col 3			Tukey post hoc
Fig. 6d	Col 4 vs	< 0.001	10 (mice)	Friedman's RM ANOVA on Ranks with
finger	Col 3			Tukey post hoc
extension				
	Col 4 vs	0.003		Friedman's RM ANOVA on Ranks with
	Col 1			Tukey post hoc
	Col 4 vs	0.046		Friedman's RM ANOVA on Ranks with
	Col 2			Tukey post hoc
	Col 2 vs	0.307		Friedman's RM ANOVA on Ranks with
	Col 3			Tukey post hoc
	Col 2 vs	0.822		Friedman's RM ANOVA on Ranks with
	Col 1			Tukey post hoc
	Col 1 vs	0.822		Friedman's RM ANOVA on Ranks with

	Col 3			Tukey post hoc
Fig. 6e	ES		5 (mice)	/
Fig. 6f	SS		3 (mice)	/
Fig. 7d		0.115	Implant:	Unpaired t test
			4 (mice) ;	
			No Implant	
			6 (mice)	
Fig. 7f		0.642	Implant:	Unpaired t test
			4 (mice) ;	
			No Implant:	
			6 (mice)	
Fig. S9	SS		5 (mice)	
	ES		3 (mice)	
Fig. S10	SS		7 (mice)	
	ES		3 (mice)	
Fig. S12o		0.033	7 (rats)	Paired t test
Fig. S15g	Col 1 vs	0.008	5 (rats)	One way repeated measures ANOVA
	Col 3			with Tukey post hoc
Fig. S15i	Led1	0.001	5 (rats)	Two way repeated measures ANOVA
				with Tukey post hoc
	Led2	< 0.001	5 (rats)	Two way repeated measures ANOVA
				with Tukey post hoc

210 Supplementary Table 7. Summary for statistical details in the manuscript.