Supplementary Information

Inactivation of the CRISPR-Cas9 ribonucleoprotein complex by AcrIIC2

Thavalingam et al.

Supplementary Figure 1: Limited α -chymotrypsin proteolysis.

(A) Limited proteolysis of Nme1Cas9 with and without $AcrIIC2_{Nme}$. (B) Nme1Cas9-sgRNA with and without DNA. (C) Nme1Cas9-AcrIIC2_{Nme}-sgRNA with and without DNA.

Supplementary Figure 2: Characterization of the competition of AcrIIC2_{Nme} over sgRNA binding to Nme1Cas9 by isothermal titration calorimetry (ITC).

ITC measurement for the binding affinities of Nme1Cas9 toward AcrIIC2_{Nme} (A) and sgRNA (B). ITC measurements for the binding affinities of (Nme1Cas9-AcrIIC2_{Nme}) for sgRNA. The molar ratios of Nme1Cas9 over AcrIIC2_{Nme} were set to 1:2 (C), 1:10 (D) and 1:20 (E). All ITC measurements were repeated three times with one representative experiment shown.

Supplementary Figure 3: Nme1Cas9-sgRNA complex formation is blocked by higher AcrIIC2_{Nme} concentrations.

(A) AcrIIC2_{Nme}, sgRNA and Nme1Cas9 were mixed together with the molar ratio of 2:1:1, 3:1:1 or 10:1:1. The small peak indicated by the black arrow is the Nme1Cas9-sgRNA complex. No Nme1Cas9-sgRNA complex is observed when a 10-fold excess of AcrIIC2_{Nme} is present. (B) Competitive cleavage assays with various molar ratios of anti-CRISPR reveals that AcrIIC2_{Nme} and sgRNA compete for the binding site of Nme1Cas9. Linear plasmid DNA was used as the substrate. The molar ratio of the Nme1Cas9 and AcrIIC2_{Nme} are shown above the gel. The molar ratio of Nme1Cas9 and sgRNA is 1:1.1. (i) AcrIIC2_{Nme} was mixed with Nme1Cas9 and incubated for 15 min to form the AcrIIC2_{Nme}-NmeCas9 complex before addition of sgRNA. (ii) The AcrIIC2_{Nme}, sgRNA and Nme1Cas9 were added simultaneously. Nme1Cas9 and sgRNA were added at a ratio of 1:1.1 with a molar ratio of 2 to 40-fold excess of AcrIIC2_{Nme}, as noted above the gel.

Supplementary Figure 4:. Structure of AcrIIC2_{Nme}-Nme1Cas9 complex treated by α -chymotrypsin before crystallization.

(A) Stereo image of the electron density of PBD 6JDJ. Cartoon representation (B) and surface representation (C) of AcrIIC2_{Nme}-Nme1Cas9 complex.

Supplementary Figure 5: Gel filtration experiments to assess the ability of AcrIIC2_{Nme} mutants to interact with Nme1Cas9.

First, Nme1Cas9 incubated with AcrIIC2_{*Nme*} mutant protein was purified by gel filtration (blue line) to get the preformed Nme1Cas9-AcrIIC2_{*Nme*} complex. Fractions of the left peak (blue) contain the Nme1Cas9-AcrIIC2_{*Nme*} complex. To test whether the sgRNA replaces the AcrIIC2_{*Nme*} mutant bound to Nme1Cas9, sgRNA was added to the preformed Nme1Cas9-AcrIIC2_{*Nme*} the complex followed by gel filtration (red line). Fractions indicated with yellow or cyan stars were analyzed on SDS-PAGE gel (left panel) and Urea-PAGE gel (right panel). The component of the peak indicated with the yellow star is Nme1Cas9-sgRNA complex, and that with the cyan star is the free sgRNA. (A) AcrIIC2_{*Nme*} E24A mutant, (B) AcrIIC2_{*Nme*} D108A mutant and (C) AcrIIC2_{*Nme*} E17A/E24A mutant.

NmeCas9_Sumo_FCGCGGATCCATGGCTGCGTTTAAACCGAACNmeCas9_Sumo_RCCGCTCGAGTTAACGAACCGGCGGGCGTTAcrIIC2_Sumo_FCGCGGATCCATGTCTAAAAACAACATCTTCAcrIIC2_Sumo_RCCGCTCGAGCTAATCATCCCAACCTTCCAGsgRNA_FTCACTCTGCTATTTAACTTTACsgRNA_RCCCAAGCTTCGCAAATCGTTTCje_F1TTAAAAAATGACTCGAGTAAGGATCTCCAGCje R1GGATAAAAATGCTATGGCATAGCAAAGTG
NmeCas9_Sumo_RCCGCTCGAGTTAACGAACCGGCGGCGTTAcrIIC2_Sumo_FCGCGGATCCATGTCTAAAAACAACATCTTCAcrIIC2_Sumo_RCCGCTCGAGCTAATCATCCCAACCTTCCAGsgRNA_FTCACTCTGCTATTTAACTTTACsgRNA_RCCCAAGCTTCGCAAATCGTTTCje_F1TTAAAAAATGACTCGAGTAAGGATCTCCAGCje R1GGATAAAAATGCTATGGCATAGCAAAGTG
AcrIIC2_Sumo_FCGCGGATCCATGTCTAAAAACAACATCTTCAcrIIC2_Sumo_RCCGCTCGAGCTAATCATCCCAACCTTCCAGsgRNA_FTCACTCTGCTATTTAACTTTACsgRNA_RCCCAAGCTTCGCAAATCGTTTCje_F1TTAAAAAATGACTCGAGTAAGGATCTCCAGCje R1GGATAAAAATGCTATGGCATAGCAAAGTG
AcrIIC2_Sumo_RCCGCTCGAGCTAATCATCCCAACCTTCCAGsgRNA_FTCACTCTGCTATTTAACTTTACsgRNA_RCCCAAGCTTCGCAAATCGTTTCje_F1TTAAAAAATGACTCGAGTAAGGATCTCCAGCje R1GGATAAAAATGCTATGGCATAGCAAAGTG
sgRNA_FTCACTCTGCTATTTAACTTTACsgRNA_RCCCAAGCTTCGCAAATCGTTTCje_F1TTAAAAAATGACTCGAGTAAGGATCTCCAGCje R1GGATAAAAATGCTATGGCATAGCAAAGTG
sgRNA_RCCCAAGCTTCGCAAATCGTTTCje_F1TTAAAAAATGACTCGAGTAAGGATCTCCAGCje_R1GGATAAAAATGCTATGGCATAGCAAAGTG
Cje_F1TTAAAAAATGACTCGAGTAAGGATCTCCAGCje_R1GGATAAAAATGCTATGGCATAGCAAAGTG
Cje R1 GGATAAAAATGCTATGGCATAGCAAAGTG
Cie F2 ATGCCATAGCATTTTTATCCATAAGATTAGCGG
Cie R2 CTCTGAAAACGAAAAACCGCCTTGCAG
Cie F3 CGGTTTTTTCGTTTTCAGAGCAAGAGATTACG
Cje R3 TTCTTGCCATAGATCCTTTCTCCTCTTTAGATC
Cie F4 GAAAGGATCTATGGCAAGAATTTTGGCATTTG
CTTACTCGAGTCATTTTTTAAAATCTTCTCTTTGTCTAAAC
Cie Mu targeting F TCCATGTTGCTAAAAAGCAAGGATGGG
Cie Mu targeting R ACAACCCATCCTTGCTTTTAGCAACA
Nme1 F1 CTCGAGTAAGGATCTCCAGGCATC
Nme1 R1 GAGACCTGCCGTGGTCTCATG
CTGTTTCTCCATGAGACCACGGCAGGTCTCGTTGTAGCTCCCTTTCTCA
Nme1 F2 TTTCG
Nme1 R2 TTTGATGCCTGGCAGTAAACGATGCCCCTTAAAGCAG
Nme1 F3 AAGGGGCATCGTTTACTGCCAGGCATCAAATAAAACG
Nme1 R3 TTTGAAGGCAGCCATAGATCCTTTCTCCTCTTTAGATCTTTTGAATTC
Nme1 F4 GAGGAGAAAGGATCTATGGCTGCCTTCAAACCTAATTC
Nme1 R4 GTAATGATCTCCGTAGATTTCGGCGCAGGCTTCATC
Nme1 F5 GCCTGCGCCGAAATCTACGGAGATCATTACGGCAAGAAGAATACGG
Nme1 R5 TGACAGTCTCCATATGCCCTTGCCCGCTCATCTTCC
Nme1 F6 TGAGCGGGCAAGGGCATATGGAGACTGTCAAATCCGCCAAAC
- TTATTTGATGCCTGGAGATCCTTACTCGAGTTAACGGACAGGCGGGCG
Nme1 R6 TTTTTTC
Nme Mu targeting F TCCACATCTGGTTCCAGCTCTTCAATCAG
Nme Mu targeting R ACAACTGATTGAAGAGCTGGAACCAGATG
Hpa F1 ATTGGAAGTGGATAACTCGAGTAAGGATCTCCAG
CCAAGGTCGAGTCCAAGGATATAATGTAAGTTTTTATTTTCCATAGATC
Hpa R1 CTTTCTCCTCTTTAGATC
GATCTAAAGAGGAGAAAGGATCTATGGAAAATAAAAACTTACATTAT
Hpa F2 ATCCCTTGGACTCGACCTTGG
Hpa R2 AGATCCTTACTCGAGTTATCCACTTCCAATGTTACG
Hpa F3 GTTTTCAGAGCAAGAGATTACGCGCAGACCAAAACG
Hpa R3 GCTATGGCATAGCAAAGTGTGACG
Hpa Mu targeting F TCCACTGGTTTGCCGAAAACATCGGCTGG
Hpa Mu targeting R ACAACCAGCCGATGTTTTCGGCAAACCAG
pMCSG7 Gib F AACATTGGAAGTGGATAACGGATC
pMCSG7 Gib R GGCATTGGAAGTACAGGTTC
HpaCas9 HNH Gib F GAACCTGTACTTCCAATCCAATGCCCGTGAACTAGAAAAACGTC
GGATCCGTTATCCACTTCCAATGTTTTATAAATTACGTTCAATAAGCC
HpaCas9 HNH Gib R C

Supplementary Table 1. Primers used for construct generation

HpaCas9 REC∆BH Gib F	GAACCTGTACTTCCAATCCAATGCCGCTCGTCTGAAAAAAGC
	GGATCCGTTATCCACTTCCAATGTTTTAATGGTTTTCTTCTGTTTTTTA
HpaCas9 REC∆BH Gib R	С
HpaCas9 REC Gib F	GAACCTGTACTTCCAATCCAATGCCGCGCTTTCTCGCC
pMCSG7 mid Gib1 F	CTGATTCTGTGGATAACCGTATTACCGCC
pMCSG7 mid Gib2 R	CGGTAATACGGTTATCCACAGAATCAGG
HpaCas9 ∆HNH Gib1 R	GCGTATCATTACGATCTTTGTAAGATTTGCCAAC
HpaCas9 ΔHNH Gib2 F	ATCTTACAAAGATCGTAATGATACGCGCTACGTTGCTC
HpaCas9 ΔPID Gib F	GAACCTGTACTTCCAATCCAATGCCATGGAAAATAAAAAC
HpaCas9 ΔPID Gib R	GTTATCCACTTCCAATGTTTTAGGCTTGTGGACGATCCG
HpaCas9 ΔREC Gib1 R	TGTGGTAAGAAGTGAAACGCGACGTTGAGTTAATCGACG
HpaCas9 ΔREC Gib2 F	ACTCAACGTCGCGTTCACTTCTTACCACAGATTCCAGCTG
AcrIIC2_E17A_F	ACCCGACCATCATCCACGGTGCGGCGCGCGTGGTGAAAACGAT
AcrIIC2_E17A_R	ATCGTTTTCACCACGCGCCGCACCGTGGATGATGGTCGGGT
AcrIIC2_E17D_F	ACCCGACCATCATCCACGGTGACGCGCGTGGTGAAAACGATGA
AcrIIC2_E17D_R	TCATCGTTTTCACCACGCGCGTCACCGTGGATGATGGTCGGGT
AcrIIC2 E24A F	GCGCGTGGTGAAAACGATGCGTTCGTTGTTCACACCCGTTA
AcrIIC2_E24A_R	TAACGGGTGTGAACAACGAACGCATCGTTTTCACCACGCGC
AcrIIC2_E24D_F	AAGCGCGTGGTGAAAACGATGACTTCGTTGTTCACACCCGTTA
AcrIIC2_E24D_R	TAACGGGTGTGAACAACGAAGTCATCGTTTTCACCACGCGCTT
AcrIIC2_D108A_F	GTGATCGTATCGCGGCGGATGCGCTGATGCTGAACGAAGATGC
AcrIIC2_D108A_R	GCATCTTCGTTCAGCATCAGCGCATCCGCCGCGATACGATCAC
AcrIIC2_D108E_F	GTGATCGTATCGCGGCGGATGAACTGATGCTGAACGAAGATGC
AcrIIC2_D108E_R	GCATCTTCGTTCAGCATCAGTTCATCCGCCGCGATACGATCAC
AcrIIC2_N112A_F	CGGCGGATGATCTGATGCTGGCGGAAGATGCGGCTGATCTGGA
AcrIIC2_N112A_R	TCCAGATCAGCCGCATCTTCCGCCAGCATCAGATCATCCGCCG
Nme1Cas9_R62A_F	GTGATAGCCTGGCTATGGCAGCGCGCTTAGCGCGCTCTGTA
Nme1Cas9_R62A_R	TACAGAGCGCGCTAAGCGCGCTGCCATAGCCAGGCTATCAC
Nme1Cas9_R62K_F	GTGATAGCCTGGCTATGGCAAAACGCTTAGCGCGCTCTGTACG
Nme1Cas9_R62K_R	CGTACAGAGCGCGCTAAGCGTTTTGCCATAGCCAGGCTATCAC
Nme1Cas9_R66A_F	CTATGGCACGTCGCTTAGCGGCGTCTGTACGTCGTCTGACTCG
Nme1Cas9_R66A_R	CGAGTCAGACGACGTACAGACGCCGCTAAGCGACGTGCCATAG
Nme1Cas9-R69A-F	CGCTTAGCGCGCTCTGTAGCGCGTCTGACTCGTCGTCGCGC
Nme1Cas9-R69A-R	GCGCGACGACGAGTCAGACGCGCTACAGAGCGCGCTAAGCG
Nme1Cas9_R70A_F	GCTTAGCGCGCTCTGTACGTGCGCTGACTCGTCGTCGCGCGCA
Nme1Cas9_R70A_R	TGCGCGCGACGACGAGTCAGCGCACGTACAGAGCGCGCTAAGC
Nme1Cas9_R69A_R70A_F	GTCGCTTAGCGCGCTCTGTAGCGGCGCTGACTCGTCGCGCGCA
Nme1Cas9_R69A_R70A_R	TGCGCGCGACGACGAGTCAGCGCCGCTACAGAGCGCGCTAAGCGAC
Nme1Cas9_R73A_F	GCTCTGTACGTCGTCTGACTGCGCGCGCGCGCGCGCCGCTCTGCT
Nme1Cas9_R73A_R	AGCAGACGGTGCGCGCGACGCGCAGTCAGACGACGTACAGAGC
Nme1Cas9_R74A_F	CTGTACGTCGTCTGACTCGTGCGCGCGCGCGCGCGCGCGC
Nme1Cas9_R74A_R	CGCAGCAGACGGTGCGCGCGCGCGCACGAGTCAGACGACGTACAG
Nme1Cas9_R74K_F	CTGTACGTCGTCTGACTCGTAAACGCGCGCACCGTCTGCTGCG
Nme1Cas9_R74K_R	CGCAGCAGACGGTGCGCGCGTTTACGAGTCAGACGACGTACAG
Cje_sgRNA	GUUUUAGUCCCUGAAAAGGGACUAAAAUAAAGAGUUUGCGGGACUC
	UGCGGGGUUACAAUCCCCUAAAACCGCUUUUUU
Nme_sgRNA	GUUGUAGCUCCCUUUCUCAUUUCGGAAACGAAAUGAGAACCGU
	UGCUACAAUAAGGCCGUCUGAAAAGAUGUGCCGCAACGCUCUGCCCC
-	

Hpa	_sgRNA	

UUAAAGCUUCUGCUUUAAGGGGCAUCGUUUA GUUGUAGCUCCCUUUUUCAUUUCGCAGAAAUGCGAAAUGAAAAACG UUGUUACAAUAAGAGAAAAGAUUUCUCGCAAAGCUCUGUCCCUUGA AAUGUAAGUUUCAAGGGACAUCUUUU