1 Materials and methods

2	Preparation of NS1 proteins. Cell culture supernatants of Vero cells infected
3	with the four viruses (DENV1 Hawaii, DENV2 16681, DENV3 H87, and DENV4
4	H241) were harvested after 5 d and inactivated by UV irradiation. To purify the
5	soluble form of NS1 proteins (for each of the dengue serotypes) in the supernatant
6	from each cell culture, we employed immunoaffinity chromatography columns in
7	accordance with the manufacturer's instructions. This involved the use of anti-NS1
8	monoclonal antibody D8-1 (flavivirus group-specific against NS1 proteins generated
9	in our lab)(1), which had been immobilized onto a HiTrap TM NHS-activated HP
10	column (GE Healthcare, Uppsala, Sweden). The column was equilibrated using five
11	volumes of PBS before viral cell culture supernatants were passed over the
12	immunoaffinity column to wash out unbound proteins using ten volumes of PBS.
13	Bound NS1 was eluted using glycine solution (pH 2.8) before being buffered to
14	neutral pH. The purified DENV NS1 proteins were then detected using commassie
15	blue stained SDS-PAGE and Western blot analysis (in which mAb D8-1 was the
16	primary antibody). The concentrations of NS1 proteins were measured using a Pierce
17	BCA protein assay kit (Thermo Fisher Scientific, Illinois, USA).

18 Generation and characterization of serotype-specific mAbs against

19	DENV1-4 NS1. All experiments were performed using BALB/c mice purchased from
20	the National Laboratory Animal Center and maintained at the Institute of Preventative
21	Medicine's animal housing facility. All Animals were cared for in compliance with the
22	Guideline for the Care and Use of Laboratory Animals (2010, Taiwan, R.O.C.) and
23	experiments were reviewed and approved by the Institutional Animal Care and Use
24	Committee or Panel of Institute of Preventive Medicine (IACUC no. AN-104-12,
25	AN-105-05). For the first inoculation, four-week-old BALB/c mice were i.p.
26	immunized with 15 μg of immunoaffinity-purified NS1 proteins in complete Freund's
27	adjuvant. The mice were then administered subsequent immunization boosts against
28	their respective serotypes using 15 μ g of NS1 proteins in incomplete Freund's
29	adjuvant. DENV antisera were obtained from the mice after consecutive challenges.
30	Briefly, the spleens of immunized mice were removed and splenocytes were fused
31	with NSI/1-Ab4-1 myeloma cells to generate hybridoma cells, which were selected in
32	accordance with the standard procedures outlined by Kohler and Milstein (1975)(2).
33	The fused cells were washed twice with RPMI and then mixed with 1 ml 50% (w/v)
34	PEG 1500 (Roche, Penzberg, Germany) (which was gradually added over a period of
35	1 min under gentle stirring) in a 15 ml conical tube. The mixture was then diluted
36	twice through the slow (1 min) addition of 1 ml RPMI, followed by the slow addition

37	(2 min) of 8 ml serum-free RPMI. The mixture was subsequently centrifuged at 400g
38	for 5 min. The fused cell pellet was re-suspended in RPMI supplemented with 20%
39	FBS, HAT medium (Life technologies, Burlington, ONT Canada) and HFCS solution
40	(Roche, Mannhein, Germany), and finally, the resuspension mixture was distributed in
41	96-well plates (200 μ l per well). Hybridoma cell lines that secreted specific antibodies
42	against NS1 were identified via indirect ELISA (using purified DENV NS1 as the
43	coating antigen for each serotype). Single clone cells were generated by limiting
44	dilution. Western blotting analysis of lysates from C6/36 cells infected with DENVs
45	was performed to determine (a) the specificity of anti-NS1 mAbs and (b) whether the
46	epitopes recognized by the antibodies were conformational or linear. The mAbs were
47	isotyped using a commercial mouse monoclonal antibody isotyping kit (IsoStrip ^{TM} ,
48	Roche, Mannheim, Germany). The hybridoma cells were i.p. injected into
49	pristane-primed BALB/c mice to induce ascitic fluid production. The mAbs were then
50	purified from ascitic fluids using a protein G-sepharose column (HiTrap protein G,
51	GE Healthcare, Uppsala, Sweden) in accordance with the manufacturer's instructions.
52	HRP conjugation. To conjugate mAbs with HRP (Innova Biosciences, Cambridge,
53	UK), 100 μg of HRP and a 20 μl aliquot of modifier reagent were mixed with 200 μl
54	of 1 mg/ml mAb. After incubating the mixture for 3 h at room temperature (20~25°C),

55	the reaction was stopped using a 20 μl aliquot of quencher. Following incubation for
56	an additional 30 min at room temperature, 260 μl of glycerol was added, and the final
57	solution was stored at -20°C. The final concentration of mAb-HRP was 400 μ g/ml.
58	Development of Dengue-type NS1 ELISA. The development of Dengue-type
59	NS1 ELISA involved selecting several serotype-specific and highly reactive mAbs
60	based on the characteristics of anti-NS1 mAbs. Our objective was to determine (1) the
61	sensitivity and specificity of each combination by testing HRP conjugated
62	serotype-specific antibodies via pairing with serotype-cross-reactive mAb53-1.1 in a
63	sandwich capture ELISA format, and (2) whether serotype-specific mAbs and
64	serotype-cross-reactive mAb should be used as capture or detection antibodies. The
65	tests were conducted using (a) serotype-specific mAbs as a detection antibody and
66	cross-reactive mAb as a capture antibody or (b) serotype-specific mAbs as a capture
67	antibody and cross-reactive mAb as a detection antibody. The serotype-cross-reactive
68	mAb53-1.1 was selected as the optimal capture antibody for pairing with the four
69	serotype-specific mAbs (mAb12-4.1, mAb33-7.1, mAb43-1.3, and mAb22-1.5) as
70	detection antibodies for the assembly of Dengue-type NS1 ELISA. We determined the
71	optimal experimental conditions for the coating and dilution of mAb-HRP using
72	checkerboard titration. Briefly, 96-well plates (Nunc Immuno Maxisorp, Thermo,

73	Roskilde, Denmark) were coated with 100 μl of 10 μg /ml of mAb53-1.1 and
74	incubated overnight at 4°C. The wells were subsequently blocked using blocking
75	buffer (PBS, 0.05% Tween, 5% skim milk) at 37°C for 1 h and washed with wash
76	buffer (PBS, 0.05% Tween). Viral culture supernatant or NS1 proteins were then
77	serially diluted using blocking buffer and incubated at 37°C for 1 h. The plates were
78	then washed before adding 100 μ l of 0.8 μ g/ml of serotype-specific mAb-HRP to
79	undergo incubation again at 37°C for 1 h. Finally, the microwell plates were washed
80	once again before adding 100 μl of TMB reagent to undergo incubation again at room
81	temperature for 10 min. The reaction was stopped using 1 N sulfuric acid, whereupon
82	the absorbance was read at 450 nm using a microplate autoreader.
83	Supplemental References
84	1. Chen L-K, Liao C-L, Lin C-G, Lai S-C, Liu C-I, Ma S-H, Huang Y-Y, Lin Y-L.
85	1996. Persistence of Japanese Encephalitis Virus Is Associated with Abnormal
86	Expression of the Nonstructural Protein NS1 in Host Cells. Virology
87	217:220-229.
88	2. KÖ Hler G, Milstein C. 1975. Continuous cultures of fused cells secreting
89	antibody of predefined specificity. Nature 256:495.

92 **Figure S1.** Standard curves illustrating the reactions between Dengue type NS1

94 DENV serotype was serially diluted 2-fold and analyzed (A-D); BSA was used to

95 establish a baseline for the assays. The minimum immunoaffinity-purified NS1

96 protein detection using these assays resulted in an OD450 value 2-fold higher than

97 BSA. Each data point represents the mean \pm SD of 3 replicated tests.

98