Supplementary Materials: Proofs

Proposition 1

Let there be n genes with independent bivariate ranks (R, RY) and maximum rank statistics M, g =

1,...,n. Define the random variable:

2 if 7 is twice a maximum rank
Wi(i) = €1 if 4 is a unique maximum

0 if 7 is not a maximum rank

We calculate E[W,,(7)] because P(M, = i) = E[W,(i)]/n.
Consider the probability mass function of W, (7).

P(W,(i) =2) = P (3g: (R%, RY) € {(,i) : 1 <} and 3h: (R}, RY) € {(i,1) : | < i})
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+ P (3g: (R, RY) €{(l,i) : 1 <i} and 3h: (R}, R}) € {(m,i) : m > i})
+ P (3g: (R:RY) € {(l,i) : 1 > i} and 3h: (Ry, RY) € {(m,i) : m <i})
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Then the expectation of W, (i) can be determined under the null.

EW,({@)=0-PW,(1)=0)+1-P(W,(i) =1)+2- P(W,(i) =2)
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Thus the marginal probability mass function is known.

1 2;—_21 fori=1,...,n
P(M, = i) = - E(W,(3)) =
0 otherwise
The marginal pmf for M} /n is thus
‘ ‘ % fori=1,...,n
fao(i/n) = P(My = i) =
0 otherwise

Corollary 1

Assume (I1), (I2), and (I3). Further assume m € (0,1) is fixed, and let j., = |nm].

marginal pmf of Mj,/n for an irreproducible gene h is f, , (i/n) = fuj. ,(i/n — jr,):

2(i—jmy )1

. n—jr 2
Fam (ifn) = ¢ "7
0 otherwise

7r1<2'/n§1

Corollary 2

Then the

Let m € (0,1), x € (m,1), and i, = |nx]. Then we can derive the marginal cumulative distribution

function of M}, /n in the ideal setting:

Fom(x) = P(Mp/n < x)
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Theorem 1

Let m € (0,1), and = € (0, 1) be fixed, and assume (I1), (12), and (I3). For a fixed n, let k, = [nz],

and j., = [nm]. Then as n tends to infinity:

lim j,, /n— m, and lim k, — x.
n—00 n—00

Thus the limiting cumulative distribution function can be derived.
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Assume  is fixed, 71, S, (x), Sy(z), and MSE,()\) are as defined in the manuscript. We define the

quantity )

SS() = (1— )\)‘1/ (8u2) — (1= NSi(@)) " d

A

and show that argmin{ M SE, (\)} = argmin{SS(A)}. Then the proof outline to show 7; — 7 is as

follows:
1. Show that the random variables M) are absolutely reqular.

2. Use result from Nobel and Dembo (1993) and apply the Glivenko-Cantelli theorem to show that

SS(m) — 0 as n — oc.
3. Show SS(A) - 0 for A # .

4. Use (2) and (3) to prove consistency.



We now proceed with the proof outlined above.
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SS(i/n) :(1—2'/71)_1/ (8ule) — (1= i/m)Syue)) " da

/n
n

~ (1= ifn) 3 (Sulw/n) = (1= i/m)Siya(z/n))

r=1

2

n

=n— Z (gn(x/n) —(1- z’/n)&-/n(ac/n))2
—n-MSE(i/n)

= argimin {MSE(i/n)} = argimin {SS(i/n)}

1. Following Nobel and Dembo (1993), a sequence of random variables X1,..., Xy is absolutely

reqular if the dependence coefficients 5(n), n =1,2... go to 0, where
pn) = sup |P(X) = Py (X) P (A)].
AEO’(X1 ..... Xk,XnJrlJrl,.“)
Here, P is based on the full joint distribution, and P{°, P°__ are joint distributions for X ., ..., Xj
and X ..., X respectively and independently. Because the M}, have possible values 1,..., NV,

we must let n and N go to oo together. Thus set N = n? and consider the asymptotic behavior

of the dependence coefficients below:

A€o(Mi,...; Mg, My y1,....MN)

<|1—P((A1,..., My, Mpiv,...,My)=(1,2,...,N —n))|
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Because 5(n) — 0, we see that the M), are absolutely regular.

2. By Novel and Dembo (Nobel and Dembo, 1993), the Glivenko-Cantelli theorem holds for M}, /n

using the marginal distribution. Using the result from Theorem 1 in combination with the



Glivenko-Cantelli theorem the following holds:

sup |§n(x) — TS, ()] 220

z€(m,1)
1
:>/ (Sn(x) — 7S, (2))* dz 23 0

iSS(?Tl) — 0.

3. For an ideal setting where the proportion of reproducible signals is 7] # 7y,

A

(@) = Sy ()

and Jx € (7, 1) such that Sy, (x) # Sp(x). Because Sy, (v), Sy:(x) are continuous,

/ (S0(2) — 708 (2))2d 0 = SS(m1) £0

1

4. Thus by (1), (2), (3) above,
7 = arginf{SS(\)} —» m

A€(0,1)

Justification of assertion E[m| < m

Assume the proportion of reproducible signals is 71, and that of irreproducible signals is 7y = 1 — 7.

Additionally assume:

(R1) Reproducible signals tend to be ranked higher than irreproducible signals. Thus if gene ¢ is

reproducible and gene h is irreproducible,

P(R; < Ry) >1/2, and P(R} < R}) > 1/2).

(I2) The correlation between the ranks of reproducible signals is non-negative. Thus for any repro-

ducible gene g,
Cor(Ry, RY) > 0

(I3) The correlation between ranks of irreproducible signals is 0. Thus for any irreproducible gene
h,
Cor(R;,R])=0
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The justification hinges on the following:
1. If )\1 S )\2 then (1 — )\1)5)\1(1‘) Z (]_ — )\Q)S)\z(f) Vx € ()\27 1)
2. BE(S,(x)) > (1 —m)Sy, (z) for z € (my,1).

Based on these two statements, it is clear that A* < 7y exists such that
E[MSE,(\")] < E[MSE,(m)],

and thus based on the definition of 7; as the argument that gives the first local minimum of the

MSEn()\), E[Tfl] S 1.

To prove (1) assume A\; < Ay. Then consider the quantity

1—-XN 1— X
2

= Ao oy (@ = A= 2) = (2= 2)(1 = 1)

2
BTN PR A

(I =) (@) = (1= A2) o) =

Thus

Therefore
(1= A1)Sy (7) > (1 = A9) Sy, ()

To justify (2):
Note that we use the term ‘justify’ in place of ‘prove’. This substitution is intentional, as a formal
proof would require further assumptions about the distribution of reproducible signals. In this jus-

tification we outline why the claim that E(S,(x)) > (1 — m)Sy, (x) for = € (m,1) is reasonable.

In the discussion below, let S(x) be the underlying survival function for some mixture distribution
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mg(z) + (1 —m)f(x), where g, f give the marginal distributions of M, /n for reproducible and irre-

producible signals respectively.

Consider the appropriately weighted theoretical survival function dependent on 7, evaluated at
m o (1—=m)Ss (m) = 1—m;. In the idealistic setting, the survival function must go through the point
(m1,1—mq). In the realistic setting, however, P(My/n > m) > 0. Thus S(m) > (1 —m)Sx, (7m1). This
fact places the expected empirical survival curve above the theoretical survival curve at the key input
7. Further, as the effect size decreases, P(M,/n > m) increases, in turn increasing the difference

between S(m) and (1 — 7m7)Sy, (m1).

The same reasoning holds for = > m. For any effect size P(M,/n > z) > 0, inflating S(x) above
(1 — 71)Sy (x). For small effect sizes this is particularly noticeable. For this reason, survival curves
from data sets with smaller effect sizes more closely resemble theoretical curves calculated using a

smaller reproducible component.

Outline of derivation for higher-order procedure based on

Maximum of three ranks

Assume three independently ranked experiments for the same n signals. Further assume that all
signals are independent (completely irreproducible). Thus for each signal g, there are three ranks:

My, MY, M;. Define the maximum rank as
3) x z
M = max{M7, MY, M:}.

Define the random variable W,,(i)®® in similar fashion to W, (i) in Proposition 1:

(
3 if 7 is thrice a maximum rank

2 if 7 is twice a maximum rank

1 if ¢ is a unique maximum

0 if 7 is not a maximum rank
\

Derivation of a three-dimensional MaRR procedure using the maximum proceeds by the following

steps:

1. Determine the marginal probability mass function of W,* (7).



2. Use the fact that P(Mf) =1) = E(Wrgg))/n to define a marginal pmf for Mf’) : ffg(z/n),

similar to the marginal pmf f, o(¢/n) in Proposition 1.
3. Assume ideal conditions

(I1) Reproducible signals are always ranked higher than irreproducible signals for all three

experiments.
(I2) Correlation between ranks of reproducible signals is non-negative.

(I3) The three ranks per irreproducible gene are independent.

and derive marginal mass function f,S?%l (i/n) dependent on 71, the proportion of signals consis-

tent across all three experiments
4. Calculate corresponding marginal cumulative distribution and survival functions, FTELBT)H and S,(L?,)rl
5. Derive limiting distributions Fﬁ’), S,(r?) as n — 00.
6. Define a loss function dependent on 7 similar to SS(A):

1

= | (890 - -5 @) an

SSY =
where gfl?’)(x) is the empirical survival function for My,

7. Define a new estimate k = argmin, {SS(i/n)}.

8. Estimate mFDR using for rejection region ff’z n’

Figure for top k genes

The below figure shows the rank of method-specific PCR genes in the top & (5000, 10000, and 25000)
for only MaRR (light gray) or for only the copula mixture model (dark gray) for comparisons 1-6
of the SEQC data. Horizontal lines indicate median values. PCR genes with lower-valued ranks are

more highly expressed.
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