
Supplementary Materials: Proofs

Proposition 1

Let there be n genes with independent bivariate ranks (Rx
g , R

y
g) and maximum rank statistics Mg, g =

1, . . . , n. Define the random variable:

Wn(i) =


2 if i is twice a maximum rank

1 if i is a unique maximum

0 if i is not a maximum rank

(1)

We calculate E[Wn(i)] because P (Mg = i) = E[Wn(i)]/n.

Consider the probability mass function of Wn(i).

P (Wn(i) = 2) = P
(
∃g : (Rx

g , R
y
g) ∈ {(l, i) : l < i} and ∃h : (Rx

h, R
y
h) ∈ {(i, l) : l < i}

)
=
i− 1

n
· i− 1

n− 1

=
(i− 1)2

n(n− 1)
(2)

P (Wn(i) = 1) = P
(
∃g : (Rx

g , R
y
g) = (i, i)

)
+ P

(
∃g : (Rx

g , R
y
g) ∈ {(l, i) : l < i} and ∃h : (Rx

h, R
y
h) ∈ {(m, i) : m > i}

)
+ P

(
∃g : (Rx

g , R
y
g) ∈ {(l, i) : l > i} and ∃h : (Rx

h, R
y
h) ∈ {(m, i) : m < i}

)
=

1

n
+
i− 1

n
· n− i
n− 1

+
i− 1

n
· n− i
n− 1

=
−n− 1 + 2(n+ 1)i− 2i2

n(n− 1)
(3)

P (Wn(i) = 0) = 1− P (Wn(i) = 2) = P (Wn(i) = 1)

=
n2 + i2 − 2ni

n(n− 1)
(4)

Then the expectation of Wn(i) can be determined under the null.

E(Wn(i)) = 0 · P (Wn(i) = 0) + 1 · P (Wn(i) = 1) + 2 · P (Wn(i) = 2)

=
−n− 1 + 2(n+ 1)i− 2i2

n(n− 1)
+

2(i− 1)2

n(n− 1)

=
2i− 1

n
(5)

1



Thus the marginal probability mass function is known.

P (Mg = i) =
1

n
E(Wn(i)) =


2i−1
n2 for i = 1, . . . , n

0 otherwise
(6)

The marginal pmf for Mh/n is thus

fn,0(i/n) = P (Mh = i) =


2i−1
n2 for i = 1, . . . , n

0 otherwise
(7)

Corollary 1

Assume (I1), (I2), and (I3). Further assume π1 ∈ (0, 1) is fixed, and let jπ1 = bnπ1c. Then the

marginal pmf of Mh/n for an irreproducible gene h is fn,π1(i/n) = fn−jπ1,0(i/n− jπ1):

fn,π1(i/n) =


2(i−jπ1 )−1
(n−jπ1 )2

π1 < i/n ≤ 1

0 otherwise

Corollary 2

Let π1 ∈ (0, 1), x ∈ (π1, 1), and ix = bnxc. Then we can derive the marginal cumulative distribution

function of Mh/n in the ideal setting:

Fn,π0(x) = P (Mh/n ≤ x)

= P (π1 < Mh/n ≤ x) =
kx∑

i=jπ1

P (Mh = i)

=
kx∑

i=jπ1+1

2(i− jπ1)− 1

(n− jπ1)2
=

1

(n− jπ1)2

2
kx∑

i=jπ1+1

(i− jπ1)−
kx∑

i=jπ1+1

1


=

1

(n− jπ1)2

(
2

(kx − jπ1)(kx − jπ1 + 1)

2
− (kx − jπ1)

)
=

1

(n− jπ1)2
(kx − jπ1)(kx − jπ1 + 1− 1)

=
(kx − jπ1)2

(n− jπ1)2
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Theorem 1

Let π1 ∈ (0, 1), and x ∈ (0, 1) be fixed, and assume (I1), (I2), and (I3). For a fixed n, let kx = bnxc,

and jπ1 = bnπ1c. Then as n tends to infinity:

lim
n→∞

jπ1/n→ π1, and lim
n→∞

kx → x.

Thus the limiting cumulative distribution function can be derived.

Fn,π1(x) =
(kx − jπ1)2

(n− jπ1)2
=

(kx − jπ1)2/n2

(n− jπ1)2/n2

=
(kx/n− jπ1/n)2

(n/n− jπ1/n)2

→ (x− π1)2

(1− π1)2

Theorem 2

Assume π1 is fixed, π̂1, Ŝn(x), Sn(x), and MSEn(λ) are as defined in the manuscript. We define the

quantity

SS(λ) = (1− λ)−1
∫ 1

λ

(
Ŝn(x)− (1− λ)Sλ(x)

)2
dx

and show that arg min{MSEn(λ)} = arg min{SS(λ)}. Then the proof outline to show π̂1 → π1 is as

follows:

1. Show that the random variables Mh are absolutely regular.

2. Use result from Nobel and Dembo (1993) and apply the Glivenko-Cantelli theorem to show that

SS(π1)→ 0 as n→∞.

3. Show SS(λ) 9 0 for λ 6= π1.

4. Use (2) and (3) to prove consistency.
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We now proceed with the proof outlined above.

SS(i/n) = (1− i/n)−1
∫ 1

i/n

(
Ŝn(x)− (1− i/n)Si/n(x)

)2
dx

≈ (1− i/n)−1
n∑
x=i

(
Ŝn(x/n)− (1− i/n)Si/n(x/n)

)2
= n

1

n− 1

n∑
x=i

(
Ŝn(x/n)− (1− i/n)Si/n(x/n)

)2
= n ·MSE(i/n)

⇒ arg min
i
{MSE(i/n)} = arg min

i
{SS(i/n)}

1. Following Nobel and Dembo (1993), a sequence of random variables X1, . . . , XN is absolutely

regular if the dependence coefficients β(n), n = 1, 2 . . . go to 0, where

β(n) = sup
A∈σ(X1,...,Xk,Xn+1+1,... )

∣∣P (X)− P k
0 (X)P∞n+k+1(A)

∣∣ .
Here, P is based on the full joint distribution, and P∞1 , P 0

−∞ are joint distributions forX−∞, . . . , X0

and X1 . . . , X∞ respectively and independently. Because the Mh have possible values 1, . . . , N ,

we must let n and N go to∞ together. Thus set N = n2 and consider the asymptotic behavior

of the dependence coefficients below:

β(n) = sup
A∈σ(M1,...,Mk,Mn+1,...,MN )

∣∣P (A)− P k
0 (A)PN

n+k+1(A)
∣∣

≤ |1− P ((A1, . . . ,Mk,Mn+1, . . . ,MN) = (1, 2, . . . , N − n))|

=

∣∣∣∣∣1−
N−n∑
i=1

P (Mh = i)

∣∣∣∣∣ =

∣∣∣∣1− (N − n)2

N2

∣∣∣∣
=

∣∣∣∣1− (1 +
n2 − 2n

N2
)

∣∣∣∣
=
n2 − 2n

N2

→ 0

Because β(n)→ 0, we see that the Mh are absolutely regular.

2. By Novel and Dembo (Nobel and Dembo, 1993), the Glivenko-Cantelli theorem holds for Mh/n

using the marginal distribution. Using the result from Theorem 1 in combination with the
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Glivenko-Cantelli theorem the following holds:

sup
x∈(π1,1)

|Ŝn(x)− π0Sπ0(x)| a.s.→ 0

⇒
∫ 1

π1

(Ŝn(x)− π0Sπ0(x))2 dx
a.s.→ 0

⇒SS(π1)→ 0.

3. For an ideal setting where the proportion of reproducible signals is π∗1 6= π1,

Ŝn(x)→ Sπ∗
1
(x)

and ∃x ∈ (π1, 1) such that Sπ1(x) 6= Sπ∗
1
(x). Because Sπ1(x), Sπ∗

1
(x) are continuous,

∫ 1

π1

(Ŝn(x)− π0Sπ0(x))2 dx9 0 ⇒ SS(π1) 6= 0

4. Thus by (1), (2), (3) above,

π̂1 = arg inf
λ∈(0,1)

{SS(λ)} → π1

Justification of assertion E[π̂1] ≤ π1

Assume the proportion of reproducible signals is π1, and that of irreproducible signals is π0 = 1− π1.

Additionally assume:

(R1) Reproducible signals tend to be ranked higher than irreproducible signals. Thus if gene g is

reproducible and gene h is irreproducible,

P (Rx
g < Rx

h) > 1/2, and P (Ry
g < Ry

h) > 1/2).

(I2) The correlation between the ranks of reproducible signals is non-negative. Thus for any repro-

ducible gene g,

Cor(Rx
g , R

y
g) ≥ 0

(I3) The correlation between ranks of irreproducible signals is 0. Thus for any irreproducible gene

h,

Cor(Rx
h, R

y
h) = 0
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The justification hinges on the following:

1. If λ1 ≤ λ2 then (1− λ1)Sλ1(x) ≥ (1− λ2)Sλ2(x) ∀x ∈ (λ2, 1).

2. E(Ŝn(x)) ≥ (1− π1)Sπ1(x) for x ∈ (π1, 1).

Based on these two statements, it is clear that λ∗ ≤ π1 exists such that

E[MSEn(λ∗)] ≤ E[MSEn(π1)],

and thus based on the definition of π̂1 as the argument that gives the first local minimum of the

MSEn(λ), E[π̂1] ≤ π1.

To prove (1) assume λ1 < λ2. Then consider the quantity

(1− λ1)fλ1(x)− (1− λ2)fλ2(x) =
2(x− λ1)

1− λ1
− 2(x− λ2)

1− λ2
=

2

(1− λ1)(1− λ2)
((x− λ1)(1− λ2)− (x− λ2)(1− λ1))

=
2

(1− λ1)(1− λ2)
· (λ1 − λ2) · (x− 1)

= (+) · (−) · (−)

> 0

Thus

(1− λ1)Sλ1(x)− (1− λ2)Sλ2(x) =

∫ 1

x

(1− λ1)fλ1(x)− (1− λ2)fλ2(x) dx

>

∫ 1

x

0 dx

= 0

Therefore

(1− λ1)Sλ1(x) > (1− λ2)Sλ2(x)

To justify (2):

Note that we use the term ‘justify’ in place of ‘prove’. This substitution is intentional, as a formal

proof would require further assumptions about the distribution of reproducible signals. In this jus-

tification we outline why the claim that E(Ŝn(x)) ≥ (1 − π1)Sπ1(x) for x ∈ (π1, 1) is reasonable.

In the discussion below, let S(x) be the underlying survival function for some mixture distribution
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π1g(x) + (1− π1)f(x), where g, f give the marginal distributions of Mg/n for reproducible and irre-

producible signals respectively.

Consider the appropriately weighted theoretical survival function dependent on π1, evaluated at

π1 : (1−π1)Sπ1(π1) = 1−π1. In the idealistic setting, the survival function must go through the point

(π1, 1−π1). In the realistic setting, however, P (Mg/n > π1) > 0. Thus S(π1) > (1−π1)Sπ1(π1). This

fact places the expected empirical survival curve above the theoretical survival curve at the key input

π1. Further, as the effect size decreases, P (Mg/n > π1) increases, in turn increasing the difference

between S(π1) and (1− π1)Sπ1(π1).

The same reasoning holds for x > π1. For any effect size P (Mg/n > x) > 0, inflating S(x) above

(1 − π1)Sπ1(x). For small effect sizes this is particularly noticeable. For this reason, survival curves

from data sets with smaller effect sizes more closely resemble theoretical curves calculated using a

smaller reproducible component.

Outline of derivation for higher-order procedure based on

Maximum of three ranks

Assume three independently ranked experiments for the same n signals. Further assume that all

signals are independent (completely irreproducible). Thus for each signal g, there are three ranks:

Mx
g , M

y
g , M

z
g . Define the maximum rank as

M (3)
g = max{Mx

g ,M
y
g ,M

z
g }.

Define the random variable Wn(i)(3) in similar fashion to Wn(i) in Proposition 1:

W (3)
n (i) =



3 if i is thrice a maximum rank

2 if i is twice a maximum rank

1 if i is a unique maximum

0 if i is not a maximum rank

(8)

Derivation of a three-dimensional MaRR procedure using the maximum proceeds by the following

steps:

1. Determine the marginal probability mass function of W
(3)
n (i).
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2. Use the fact that P (M
(3)
g = i) = E(W

(3)
n )/n to define a marginal pmf for M

(3)
g : f

(3)
n,0(i/n),

similar to the marginal pmf fn,0(i/n) in Proposition 1.

3. Assume ideal conditions

(I1) Reproducible signals are always ranked higher than irreproducible signals for all three

experiments.

(I2) Correlation between ranks of reproducible signals is non-negative.

(I3) The three ranks per irreproducible gene are independent.

and derive marginal mass function f
(3)
n,π1(i/n) dependent on π1, the proportion of signals consis-

tent across all three experiments

4. Calculate corresponding marginal cumulative distribution and survival functions, F
(3)
n,π1 and S

(3)
n,π1

5. Derive limiting distributions F
(3)
π1 , S

(3)
π1 as n→∞.

6. Define a loss function dependent on π1 similar to SS(λ):

SS
(3)
λ =

1

1− λ

∫
λ

(
Ŝ(3)
n (x)− (1− λ)S

(3)
λ (x)

)2
dx,

where Ŝ
(3)
n (x) is the empirical survival function for M

(3)
g .

7. Define a new estimate k̂ = argmini {SS(i/n)}.

8. Estimate mFDR using for rejection region f
(3)

n,k̂/n
.

Figure for top k genes

The below figure shows the rank of method-specific PCR genes in the top k (5000, 10000, and 25000)

for only MaRR (light gray) or for only the copula mixture model (dark gray) for comparisons 1–6

of the SEQC data. Horizontal lines indicate median values. PCR genes with lower-valued ranks are

more highly expressed.

8



●●

●●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

0

300

600

900

1 2 3 4 5 6

method
●

●

MaRR

Copula

k=5000

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●●

●

●
●

●●●
●
● ●

●

●

●

●

0

300

600

900

1 2 3 4 5 6

method
●

●

MaRR

Copula

k=10000

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

0

300

600

900

1 2 3 4 5 6

method
●

●

MaRR

Copula

k=25000

9



References

A. Nobel and A. Dembo. A note on uniform laws of averages for dependent processes. Statistics and

Probability Letters, 1993.

10


