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Introduction
These pages contains supplementary information (i.e. commands, figures and tables) supporting our main
manuscript regarding circtools — a one-stop software solution for circular RNA research. Within this
document the actual command line instructions for the seven available modules (listed in Table 1) are
documented in the Methods section. The Results sections sheds some more light on the results obtainable by
using circtools and gives example on how to interpret them.

Module Description
detect Detection of circRNAs from mapped reads (Cheng et al., 2016)
quickcheck Overview of circRNA counts after mapping & detection
circtest Statistical testing, e.g. host gene-independent expression (Cheng et al., 2016)
reconstruct Reconstruction of circRNA structures (Metge et al., 2017)
exon Identification of differential exon RNase R resistance
enrich Test for significantly enriched features in circRNAs
primex Design of circRNA specific qRT-PCR primer pairs

Table 1: Overview of available circtools modules and their respective functionality.

Source code, example data, and documentation
The complete, comprehensive, and regularly updated documentation of circtools can always be found under
http://docs.circ.tools. The program’s source code and the issue tracking system is hosted on the GitHub
platform and can be reached via http://circ.tools. The example data used throughout this document are
available via http://data.circ.tools. If you encounter any problems using circtools, please let us know at
http://support.circ.tools or contact us via circtools@dieterichlab.org

Installation
circtools is written in Python2 (>= 2.7, detect and reconstruct module) and Python3 (>=3.4, all other
modules). The tool has a number of external dependencies, mostly standard bioinformatics tools and packages.
The installation will, by default, try to install all required dependencies.

Installation is performed via python3 setup.py install. No sudo access is required if the installation is suffixed
with --user which will install the package in a user-writeable folder. In this case, the binaries should be
installed to /home/$USER/.local/bin/ (for Debian-based systems).

Supported operating systems
circtools was developed and tested on Debian Jessie 8 64 Bit and Debian Stretch 9 64 bit. macOS support
is currently (09/2018) being tested and is already available in the mac-dev branch of the github repository
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(however, the macOS functionality cannot be fully guaranteed yet).

Installation from PyPi (preferred)
The default installation will install everything needed to run circtools except R, STAR, or Stringtie (see below).
If you like you may install circtools locally (first call) or globally (second call, SU required).

pip3 install circtools --user # does not require root access

pip3 install circtools # will require root access

Installation from GitHub
The GitHub installation will install the most recent version directly from the source repository. Use this method
if you want the latest fixes and features.

git clone https://github.com/dieterich-lab/circtools.git
cd circtools
pip3 install . --verbose --user

Updating circtools
You may want to update the circtools package if new versions are published. Like for the initial installation
there are two ways to update circtools:

pip3 install circtools --user --upgrade

cd /path/to/circtools/repo/
git pull
pip3 install . install --verbose --user --upgrade

Required dependencies
External tools

• bedtools [>= 2.27.1] required by the enrichment module

• R [>= 3.3] required by visualization scripts and the primer design module

• STAR [>= 2.6.0] required by the detect and reconstruct module to map RNA-seq reads against a
reference genome and detect back splice junctions

• Stringtie [>= 1.3.3b, optional] required by the exon module to carry out exon level analyses.

The installation procedure will automatically install two additional Python-based dependencies: DCC
and FUCHS by temporarily cloning the repositories and installing both tools via setuptools to
/home/$USER/.local/bin/. Both tools require Python 2 in order to run.
The primer design module as well as the exon analysis and circRNA testing module require a working

installation of R with BioConductor. All R packages required are automatically installed during the setup.

important
The setup scripts assumes that the folder for R plugins is writeable (either in the user’s home or
the system folder).

Python packages

• For circRNA detection

– HTSeq>=0.11.0
– pysam>=0.13.0
– numpy>=1.8.2
– pandas>=0.18.1
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• For circRNA reconstruction

– HTSeq>=0.11.0
– pysam>=0.13.0
– numpy>=1.8.2
– pathos>=0.2.1

• For circRNA enrichment

– pybedtools>=0.7.10
– statsmodels>=0.8.0

• For circRNA primer design

– BioPython>=1.71

Detailed installation
Getting the source code

Step 1: Clone source code from GitHub:

git clone https://github.com/dieterich-lab/circtools.git

Installation

Step 2: Install circtools using the provided installation script. The --user flag installs circtools in your home
folder, thus making sure you do not require any administrative rights during the installation:

cd circtools
pip3 install . install --verbose --user

R environment

Step 3: Setting up R environment. In order for the automatic installation of R packages to work we need to set
the package directory to a user-writeable path. The setup automatically sets that path to /home/$USER/.R/.

Dependencies

Step 4: The setup script is designed to make sure that the environment is setup correctly to run circtools.
The circtools setup will automatically install CircTest, primex, DCC and FUCHS.

Finishing up

Step 5: Adding installation folder to $PATH. In order for circtools to find all executables, the setup will add
the folder /home/$USER/.local/bin/ automatically to your .bashrc file

This closes the circtools installation. To verify that circtools has been correctly installed, try to call circtools
for the first time:

$> circtools --help
usage: circtools [-V]<command>
[<args>]

Use case 1: circRNAs in the murine heart
The first use case in this supplementary document is located online at http://docs.circ.tools in order to provide
a continously maintained and updated sample data set that can be used to test and verify the installation
of circtools. The online documentation contains chapters for each of circtools’ modules (click on the
module name to follow the link to the online documentation):

• detect

• reconstruct
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• quickcheck

• circtest

• enrichment

• exon

• primex

In the tutorial, we use the data set from Jakobi et al. (2016) as an example. The data are paired-end,
stranded RiboMinus RNA-seq data from Mus musculus, consisting of samples of four ages (2, 3, 6, and 12
month) collected from the whole hearts. The data can be downloaded from the NCBI SRA (accession number
SRP071584). While the circtools suite does not offer specific module for the initial data processing, the short
tutorial should give the user an idea on how to get the sequencing data in shape for the main circtools
pipeline.

Use case 2: K562 and HepG2 cell lines
Data
All analyses within for this work have been carried out using total RNA from two cell lines, K562 and HepG2.
K562 is a human immortalized leukemia cell line, known for its proteomic resemblance to undifferentiated
granulocytes and erythrocytes. HepG2 is a human liver cancer cell line that secretes major plasma proteins
and is used as a model to study intracellular trafficking and dynamics. Both cell line are also used within the
ENCODE consortium (The ENCODE Project Consortium, 2012), therefore allowing to use additional data
generated from these two cell lines.

rRNA depletion

Ribosomal RNA was depleted by using 20 µg of total RNA with the Ribo-Zero rRNA Removal Kit (Human/-
Mouse/Rat, Epicentre, Madison, WI, United States) and 5 µg input material per reaction. The depletion was
performed in parallel, afterwards samples were pooled.

Digestion of linear RNA

For digestion of linear RNA, 3/4 of the depleted total RNA was treated with RNase R, whereas the remaining
1/4 of the depleted RNA only received water and acts as a negative control. Both samples were treated equally
for all further steps. After heating to 70 ◦C and cooling to 35 ◦C, 10× RNase R reaction buffer and RNase R
(Epicentre; Cat No. RNR07250) were added to the 3-quarter fraction, followed by heating to 37 ◦C for 40 min.

Sequencing library preparation

Samples were cleaned up using Agencourt RNAClean XP beads (Beckman Coulter GmbH, Krefeld, North
Rhine-Westphalia, Germany). Subsequent library preparation was performed with ScriptSeq-v2 RNA-Seq
Library Preparation Kit (Epicentre). PCR amplification was performed with 15 cycles, without any further size
selection. Sequencing was carried out on an Illumina HiSeq2500 system for 150 cycles using paired-end mode.
Three replicates per sample have been sequenced.

Preprocessing of raw sequencing files

The raw sequencing files were quality checked with FASTQC. Afterwards, residual sequencing adapter fragments
and low quality bases were removed using Flexbar 3.0 (Roehr et al., 2017).

f l e x b a r −r mate1 . gz −p mate2 . gz −t output / −n 15 −z GZ −m 30 −u 0 −q TAIL
−qt 28 −as "AGATCGGAAGAG" −q f s ange r − j

Listing 1: Command line used for trimming residual adapter sequences and low quality regions using Flexbar.
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Methods
Mapping of raw sequencing files

Mapping of the preprocessed sequencing data was carried out using STAR version 2.5.3a (Dobin et al., 2013)
as outlined in the circtools documentation in the chapter “Detection - Mapping of the fastq files with STAR”.

circtools detect

For the detect module, a few files have to be prepared, namely the bam_files.txt, samplesheet, mate1,
and mate2. Please refer to the section “Detection of circular RNAs from chimeric.out.junction files with
circtools” of the main documentation for details on how to prepare these files. Briefly, the files contain the list
of different input files for all of the samples.

c i r c t o o l s d e t e c t @samplesheet −s s −T 10 −Pi −mt1 @mate1 −mt2 @mate2 −D −an
GRCh38 . 8 5 . g t f −A GRCh38_85 . f a −B @bam_f i l e s . t x t −R GRCh38_repeatmasker . g t f
−M −Nr 2 2 −f g −G −t temp −F −L 20

Listing 2: Command line used for the circRNA detection process using the detect module

circtools quickcheck

For the quickcheck module STAR log files are required since they contain detailed information regarding the
mapping process. The path to the STAR mappings is supplied via -s stars_mappings/, the directory for the
additionally required results of the detect module is specified via -d detect/. Furthermore the labeling, the
order of replicates, and the columns to use from the of the circRNA detection data are provided.

c i r c t o o l s qu i ckcheck −d d e t e c t / −s s ta r s_mapp ings /
− l HepG2_RNaseR−,HepG2_RNaseR+,K562_RNaseR−,K562_RNaseR+
−g 1 , 2 , 1 , 2 , 1 , 2 , 3 , 4 , 3 , 4 , 3 , 4 −o / r e s u l t s / −R 16 ,17 ,18 ,19 ,20 ,21

Listing 3: Command line used for a quality check of the detection/mapping process with the quickcheck module

circtools circtest

The circtest module features input flags similar to the quickcheck module. The labeling, replicates, and
the grouping of columns have to be provided additionally to the folder containing the detect results.

c i r c t o o l s c i r c t e s t −d d e t e c t /
− l HepG2_RNaseR−,HepG2_RNaseR+,K562_RNaseR−,K562_RNaseR+
−c 4 ,5 , 6 , 7 , 8 , 9 , 10 , 11 ,12 , 13 ,14 ,15
−g 1 , 2 , 1 , 2 , 1 , 2 , 3 , 4 , 3 , 4 , 3 , 4 −n c i r c t e s t −o r e s u l t s / −m 2000

Listing 4: Command line used for a circtest module to identify significantly enriched circRNA in the RNase R-treated
sample compared to the untreated samples

circtools reconstruct

The reconstruct module requires processed results from the detect module as well as output generated
during read mapping. An overview of the required input can be found in the “Required input data” section of
the module’s main documentation.

c i r c t o o l s r e c o n s t r u c t −O r e s u l t s / −r 2 −q 2 −p r e f s e q −e 3 −T /tmp/
−D de t e c t /CircRNACount −J 2047_$LIB_STARmapping . Ch imer i c . out . j u n c t i o n −F
2047_$LIB_mate1_STARmapping . Ch imer i c . out . j u n c t i o n −R
2047_$LIB_mate2_STARmappingChimeric . out . j u n c t i o n . f i x e d
−B $LIB_merged . bam −A hg38 . RefSeq . exons . bed −N $LIB −P 40

Listing 5: Command line used for the reconstruct module to carry out the structurual analysis of the circRNAs. LIB
is to be replaced with the library letter.
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circtools exon

The exon module requires additional files generated with StringTie Pertea et al. (2015). The directory to these
results is supplied to the circtools call.

s t r i n g t i e 2047_$LIB_STARmapping/ A l i gned . noS . bam −v −f 0 . 2 −p 20
−G GRCh38 . 8 5 . g t f −e −B
−o 2047_$LIB_STARmapping_StringTieBallgown/ ba l l gown . g t f
−C 2047_$LIB_STARmapping_StringTieBallgown/ r e f e r e n c e _ t r a n s c r i p t s . g t f

Listing 6: StingTie command line used for generating the required count tables for the exon module.

The labeling, replicates, and the grouping of data columns have to be provided additionally to the folder
containing the detect results and the path to the files containing the significantly enriched circRNAs from the
circtest module.

c i r c t o o l s exon −d d e t e c t / −r 1 , 1 , 2 , 2 , 3 , 3
− l HepG2_RNaseR−,HepG2_RNaseR+,K562_RNaseR−,K562_RNaseR+
−c 10 ,11 ,12 ,13 ,14 ,15 −g 1 ,2 , 1 , 2 , 1 , 2 −C en r i c hmen t_ to t a l . c s v
−b s t r i n g t i e _ l a t e s t / −G GRCh38 . 8 5 . g t f −o r e s u l t s /

Listing 7: Command line used for the exon module to identify differentially spliced exons within the detected circRNAs

circtools enrich

The enrich module uses precomputed peaks from BED narrow peak files 1 to screen for circRNAs that might
be enriched for peaks / binding sites of certain RNA binding proteins. The module uses the significant enriched
circRNAs from the circtest as primary source and is run multiple times for each of the RBPs. For each RBP
and cell line 2,000 random iterations were performed to be able to distinguish between a significant enrichment
and random background.

c i r c t o o l s e n r i c h −c en r i c hmen t_ to t a l . c s v −b e c l i p /$RBP_$CELL . bed
−a GRCh38 . 8 5 . g t f −g hg38 . chrom . s i z e s − i 2000 − I exon −p 20 −P 1 −T 1
−o r e s u l t s / −F $RBP_$CELL
−t / s c r a t c h / globa l_tmp/

Listing 8: Command line used for the enrich module to identify circRNAs that may be enriched for binding sites of
RNA binding proteins. Coordinates are based on eCLIP peaks.

Since the computations were performed for each individual RBP and cell line the results have to be merged.
A simple awk command can be used to combine all CSV output files into one final table.

awkt '{{ p r i n t FILENAME"\ t " $0 }} ' ∗2000∗. c sv |
sed ' s /_2000_ . ∗ . c sv //g ' |
g rep −v circRNA_host_gene > f i n a l _ t a b l e . c s v

Listing 9: awk command line used to combine the CSV output files of all RNA binding proteins into the final results
table.

circtools primex

In a final step, primer pairs were generated exemplary for the circRNA circN4BP2L2. As input, the results
from the detect module are recommended, together with the exact ID of the circRNA of interest and the
genome annotation used for a correct display of the circRNA.

c i r c t o o l s pr imex −d d e t e c t / C i r cCoo r d i n a t e s −f GRCh38_85 . f a −g
GRCh38_85 . g t f −O hs −o p r ime r / − i N4BP2L2_13_32517857_32527532_−
−T "N4BP2L2 p r ime r "

Listing 10: Command line used for the enrich module to generate a set of primers for circRNA circN4BP2L2
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Supplementary Figure 1: Visualization of an example circtools workflow with the seven modules. Input for the
workflow are for two RNase R treated samples and two untreated samples (each from K562 and HepG2 total RNA). a)
detect module: Shown are the number of detected BSJ per sample given the threshold of 2 replicates >= 2 BSJ. b)
quickcheck module: the module is intended to allow a fast assessment of the quality of the library and the success
of the read mapping phase. An example is shown in Supplementary Fig.2 a) and b). c) circtest module: Shown
are the number of significantly enriched circRNAs by BSJ counts in the RNase R treated sample compared to the
untreated sample given an FDR < 0.05. d) reconstruct module: shown are the numbers of completely reconstructed
(i.e. coverage score = 1.0) circRNAs shared between all three replicates of each of the RNase R-treated samples. e)
exon module: Shown are the numbers of exons enriched in the RNAse R-treated libraries compared to the untreated
samples. f) enrich module: Number of circRNAs that show significant (p < 0.05) enrichment of RBP peaks in exons
of the annotated circRNA region (linear p > 0.05, examples shown in Figure 4) g) primex module: the module allows
for quick and easy design of primers specific to selected circRNAs. Example shown in Supplementary Fig.5.

Results
circtools detect

An overview of the complete project work flow is shown in Supplementary Fig.1. Using the “CircSeq” approach
(Jeck et al., 2013) RNA pools of two cell lines were sequenced. The initial circRNA prediction of the detect
module yielded 20,118 circRNAs for both cell lines. After filtering this set for at least 2 reads per back splice
junction (BSJ) in at least 2 replicates the final set of high-confidence predictions contains 15,195 circRNAs for
K562 and 8,138 for the HepG2 cell line (Supplementary Fig.1 a). A direct comparison of the detected circRNAs
shows 1/3 of the circRNAs is shared between both cell lines. More than 50% of the detected circRNAs are
specific to K562 while only sightly more than 10% are specific to the HepG2 cells (Supplementary Fig.2 f). All
predicted circRNAs are stored in a BED-like format, therefore making it easy to directly visualize the predictions
in any compatible visualization tool. e.g. IGV (Robinson et al. (2011), Supplementary Fig.2 c).

circtools quickcheck

The initial quickcheck results show a typical outcome for high quality CircSeq libraries. While libraries A, E,
and E (HepG2), as well as K, G, and I (K562) show very high absolute counts for linear reads and also cluster
closely together, the RNase R-treated libraries B, D, F (HepG2) and H, J, L (K562) are strongly enriched for
circRNA read counts (Supplementary Fig.2 a). This is in accordance with the number of circRNAs detected per
million uniquely mapped reads. Although the number of circRNA per million mapped reads is slightly variable
between the three replicates, the overall trend of highly elevated circRNA counts in the RNase R-treated
samples is clearly visible (Supplementary Fig.2 b). The circRNA read count metric also confirms the lower
overall number of circRNAs detected for the HepG2 cell line since the absolute counts for K562 are higher
for all three replicates than for any of the HepG2 samples. However, taken the results from the quickcheck
module, all libraries passed the initial checks (Supplementary Fig.1 b).

1https://tinyurl.com/eclip-data
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Supplementary Figure 2: Initial quality assessment of library setup, read mapping phase, and visualization of circRNA
detection phase. a) Comparison of mapped reads for linear transcripts with those reads spanning a BSJ. b) Assessment
of the library preparation employing the CircSeq approach using the quickcheck module. c) Graphical representation
of circRNA detection results, shown are detected circRNAs isoforms originating from the N4BP2L2 host gene. d)
Detailed view of the enrichment of circN4BP2L2-1 in the RNase R-treated samples. e) Detailed view of the enrichment
of circN4BP2L2-2 in the RNase R-treated samples. f) Overlapping and distinct circRNAs detected in K562 and HepG2
samples.

circtools circtest

After quality checking, candidate circRNA sets were processed using the circtest module to obtain the
number of significantly enriched circRNAs by BSJ counts in the RNase R-treated sample vs. the untreated
sample. For the K562 cell line 3,980 circRNAs passed the test at p < 0.05, for HepG2 1,971 circRNAs were
marked as significant (Supplementary Fig.1 c). In addition to these global counts of enriched circRNAs, the
circtest module also generates a PDF file with a graphical representation of the relative enrichment for the
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top enriched candidates. Exemplary shown are circN4BP2L2-1 (Supplementary Fig.2 d) and circN4BP2L2-2
(Supplementary Fig.2 d). While both circRNAs originate from the same host gene, N4BP2L2, and are part of
the set of high-confidence candidates, circN4BP2L2-1 shows a higher enrichment in both K562 and HepG2
compared to circN4BP2L2-2.

circtools reconstruct

Subsequently the results of the detect module were passed over to the reconstruct module in order to
reconstruct internal circRNA structures. Using a cutoff of 100% coverage of all exons by reads, the internal
structure of 2,074 and respectively 1,015 circRNAs was reconstructed for K562 and HepG2 (Supplementary Fig.1
d). The results are available on a genome-wide scale, thus giving the researcher an overview of all reconstructed
circRNAs as well as on a per-circRNA level (see the “Output produced by circtools reconstruct” section of the
module’s main documentation for a detailed summary of all available output files). BED12-compatible output
of the module can be used to visualize the reconstructed circRNAs with a suitable genome browser and allows
also for a direct comparison to the initial prediction (Supplementary Fig.3 a) & b)

Supplementary Figure 3: Graphical representation of results generated by the exon, circtest, and reconstruct
module. a) ENSEMBL genome annotation (build 95) for the human genome in blue showing protein coding transcripts
and circRNA candidates that show a significant (p < 0.05) enrichment in the RNase R-trated samples compared to the
untreated samples (green). b) Reconstructed circRNA structure by the reconstruction module. Shown are the identical
structures for K562 (green) and HepG2 (purple). c) Graphical representation of results produced by the exon module.
Shown are the fold-changes for exons that show differential RNase R-resistance between experimental conditions (brown:
up, blue: down).

circtools exon

The exon module complements the reconstruction module in that within this module, the focus is set to
test particular exons of circRNA candidates for resistance to RNAseR treatment. Hence, to further extend the
researcher’s knowledge of the circRNA structure, results from the detect module are combined with exon
read counts from StringTie runs. Herein, only multi-exon genes are considered. The results encompass 3,377
circRNA-related exons for K562, which show differential RNAseR resistance (p < 0.05), while for HepG2 1,659
exons show differential RNAseR resistance (Supplementary Fig.1 e). The exon analysis also confirms the results
of the example circRNA circN4BP2L2-1 reconstruction module, showing a positive Log2 fold change for
the 4 exons predicted by the reconstruction algorithm (Supplementary Fig.2 c).

circtools enrich

As one of the last steps of the workflow the significantly enriched candidate circRNAs produced by the circtest
module were used as input for the enrich module together with eCLIP data provided through the ENCODE
project (Van Nostrand et al., 2016) for the two cell lines and yielded 1,667 and 1,012 circRNAs that show
a significant (p < 0.05) enrichment for RBP peaks in exons for K562 and HepG2 (Supplementary Fig.1 f).
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Supplementary Figure 4: Visualization of results generated by the enrichment module. a) Top 10 circRNAs enriched
(p < 0.05) for eCLIP peaks for the HepG2 data set. b) Top 10 RBPs with enrichment within the flanking introns (max.
+/− 2kb) of the significantly enriched circRNA candidates of the HepG2 cell line c) Detailed view of the RBP eCLIP
peaks enriched in the exons of isoform 1 of circN4BP2L2 d) Combined view of circRNAs enriched for RBP eCLIP peaks
in the flanking introns and the landscape of the RBPs that are enriched within the flanking intronic regions.

Going more into detail, in HepG2 the circRNA circN4BP2L2 shows more than 80 RBPs that show a significant
enrichment of eCLIP peaks within the exons, while circATXN10 follows closely (Supplementary Fig.4 a). When
focusing the enrichment analysis on introns instead of exons (the enrich module can be configured to use any
annotated feature for enrichment analyses) our data shows, that the number of significantly enriched circRNAs
per RBP varies. Several RBPs (PPIG, GRWD1, PRPF8, BUD13, and UCHL5) show elevated counts compared
to other RBPs (Supplementary Fig.4 b). The enrich module, like most other modules allows to view results
on a genome-wide and per-circRNA level. Detailed inspection of the landscape of enriched RBPs for circRNA
circN4BP2L2 show that specifically the heterogeneous nuclear ribonucleoproteins (hnRNPs) HNRNPC and
HNRNPA1 display a high number of significant eCLIP peaks compared to other RBPs also enriched on this
circRNA (Supplementary Fig.4 c). When changing back to the genome-wide view and setting the focus on the
raw number of eCLIP peaks per circRNA, in HepG2 we can observe that circSDF4 accumulates nearly twice as
much peaks as the second circRNA in the list, circATXN7 (Supplementary Fig.4 d). This type of plot also
is able to show different preferences for RBP binding sites, like a strong prevalence for hnRNPs in TXLNA
(Supplementary Fig.4 d).

circtools primex

In the last stage of the circtools workflow researchers have the possibility to design specific primer pairs
for selected circRNAs of interest (Supplementary Fig.1 g). The primex module only requires a circRNA ID,
genomic position or host gene name in order to automatically design optimal primer pairs that are circRNA
specific, do not amplify the linear host gene, and therefore allow in combination with qRT-PCR to test and
verify in silico predictions. The module generates an easy to navigate HTML page that can be displayed in any
recent browser (Supplementary Fig.5 a). The table contains the most important information such as primer
sequences, melting temperature, product size, or GC content. Additionally, during the design phase primers
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Supplementary Figure 5: Helpful visualization output produced by the primer design module. a) Table of all designed
primers. Columns contain information about position, PCR product size, melting temperature and GC content for
forward and reverse primer as well as BLAST results for possible cross-hybridization of the designed primers. b) To-scale
representation of the circRNA based on the supplied genome annotation. Annotated exons are shown in thick gray, the
first and last exon are colored in red and orange respectively. Forward and reverse primer are depicted in green, the
final PCR product is shown in blue. c) Default primer design mode, positioning both primers in the flanking exons. d)
Forward primer is placed over the BSJ e) Reverse primer is placed over the BSJ.

can automatically be checked for specificity via an online BLAST search. The HTML page also contains a full
graphical representation of the circRNA, including known exons from the genome annotation (Supplementary
Fig.5 b). In default mode, the primex module generates primer pairs that have the forward and reverse primer
each located within the fused exons, thus the PCR product spans the BSJ (Supplementary Fig.4 c). However,
for specific use cases it might be desirable to have either the forward or reverse primer located directly on the
BSJ (Supplementary Fig.5 d) & e).
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