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Supplementary Method S1.1 NVR 
 
This algorithm (Welch et al., 2016) generates a connected graph based on the Euclidean 
distances of cell to cell gene expression. Based on this graph, the algorithm compares the 
variance of gene expression within neighborhoods and the variance of gene expression globally 
on a cell to cell basis. It then assumes that if the neighborhood variance is lower than the global 
variance, there exists some meaningful and controlled gene expression. The formalization of this 
neighborhood variance, in the context of genes, is described as follows, where n is the sample 
number, kc is the minimum number of neighbors in the connected graph, g is the gene of interest, 
and N( i , j ) is the nearest neighbor j of the sample i: 
 

 
An example of this phenomenon would be the expression of some gene that changes 
monotonically along the progression of a given developmental lineage. Neighborhood variation 
would be low given the gradual change of gene expression, and global variation would be higher 
given the differences in expression between end states of a transition. Due to the calculation of 
neighborhood variance, the time complexity of this algorithm is O(n) where n is the product of the 
number of cells and the number of genes. The following is the pseudocode for the algorithm: 
 
Determine the minimum number of connections, k, that will generate a connected graph.  
 Calculate the pairwise distances between each element of the input matrix 

Convert this vector into squareform 
Generate an adjacency matrix based on this squareform 
Permit k number of connections and generate a graph based on the adjacency matrix 
 Count the number of connected components, c 
 If C>1, add 1 to k and repeat until C=1 

Use this number of connections, k, to generate a connected graph 
For each gene, calculate the mean variance of some n neighbors based on the generated graph 

Repeat for all possible neighborhoods 
Calculate the mean of this neighborhood variance  

For each gene, calculate the global variance in the context of all cells  
If the global variance of a gene divided by the average neighborhood variance of that same gene 
is greater than 1, select that gene. 
 
  



Supplementary Method S1.2 dpFeature (dpF) 
 
This feature selection method, developed by the Trapnell group (Qiu et al., 2017), utilizes density 
peak clustering (Rodriguez and Laio, 2014) on a t-SNE (t-distributed stochastic neighbor 
embedding) dimension-reduced representation of transcriptomic data (Van Der Maaten and 
Hinton, 2008). For t-SNE, our study used the monocle R package using the parameters 
max_components=2, num_dim=6, and check_duplicates=FALSE. Using this representation of 
the data, density peak clustering was performed. A generalized linear model was then used to 
test for the most significantly differentially expressed genes between clusters. As this model 
calculates the significance for every gene and does not output a discrete number of genes like 
NVR, we selected the n most significant genes with respect to q-value. For the sake of set 
similarity calculations, this n is simply the number of genes that NVR selected. 
 
Supplementary Method S1.3 Closeness Thresholding and Resampling 
 
This resampling method is detailed in Herring et al. (Herring et al., 2018) and involves three 
primary steps: Down-sampling, density-based k-NN construction, and closeness thresholding. 
Down-sampling was performed on datasets with dimensionality reduced by PCA (Principal 
Component Analysis) to first normalize rare versus common events. The down-sampling 
procedure takes into consideration the local density of each cell, given a user determined metrics: 
space radius, target noise, and target cell number. An undirected density-based k-NN graph was 
then generated using the down-sampled dataset. This graph’s weighted edges were calculated 
as a product of node Euclidean distances and their minimum local density values. Given this 
connected graph, node closeness metrics were calculated by taking the normalized mean graph 
distance from a node x to all other nodes y in the graph given N nodes. This distance is the 
shortest path determined by Dijkstra’s algorithm. Resampling of the data involved setting a 
closeness threshold and randomly selecting a constant number of cells that satisfy this threshold. 
 
 
 
 
 
 
 
  



Supplementary Method S1.4 Jaccard Index calculations 
 
Set similarities were calculated based on the Jaccard index (Levandowsky and Winter, 1971) 
formally defined below where A and B are sets of genes selected by distinct algorithms such as 
NVR or dpFeature: 
 
 
 
 
 
 
Set similarities, in the context of algorithm robustness, r, were calculated based on the Jaccard 
index given the subset a: 
 
 
 
 
 
Supplementary Method S1.5 p-Creode 
 
p-Creode is an unsupervised trajectory reconstruction algorithm which utilizes the hierarchical 
placement of putative cell states to organize state transition trajectories (Herring et al., 2018). It 
incorporates a graph dissimilarity scoring metric built upon the Gromov-Hausdorff distance. p-
Creode assesses trajectories generated from resampled datasets using this metric to identify the 
most representative graph topology. Given these trajectories are represented as graphs, we 
overlaid heatmaps of gene expression across the representative nodes. We used the Python 
package, https://github.com/KenLauLab/pCreode, to perform this analysis. 
 
  



Supplementary Method S1.6 Gene Ontology Term Enrichment through WebGestalt 
 
As described by the Zhang group, WebGestalt is a web-based platform for gene ontology term 
enrichment analysis (Wang et al., 2017). We performed overrepresentation enrichment analysis 
because of the nature of the outputs from our feature selection algorithms, were lists of genes 
without expression values. Below is an overview of the parameters we used for our analysis: 
 
Parameter Value 
Select Organism of Interest Mmusculus
Select Method of Interest Overrepresentation Enrichment Analysis
Select Functional Database geneontology/Biological_Process_noRedundant
Select Gene ID Type Genesymbol
Upload Gene List   .txt file of genes selected by algorithms 
Select Reference Set for Enrichment 
Analysis 

Genome 

All advanced parameters default values
 
The returned values using these parameters are detailed in Supplementary Figure 4 and 
Supplementary Table 4. The following is a description of the abbreviated column names: 
 
Column Description 
C The number of reference genes in this category
O The number of genes in the user gene list and also in the category 
E The expected number in the category
R Ratio of enrichment (Observed/Expected)
Pvalue P value from hypergeometric test
FDR False discovery rate generated from the Benjamini-Hochberg (BH) procedure

 
Supplementary Method S1.7 findVariableGenes (FVG) 
 
findVariableGenes is a feature selection algorithm included as part of the Seurat R package 
(Butler et al., 2018). First, it calculates a normalized measure of gene expression, taking mean 
expression and dispersion into account. The genes are then binned (Bins=20). Finally, z-scores 
for dispersion are calculated given these bins, and the top N genes are returned based on these 
scores. We used an N equivalent to the number of genes selected by NVR for our similarity 
analyses.  
 
Supplementary Method S1.8 PCA-based Feature Extraction (PCAFE) 
 
Principal component analysis (PCA)-based unsupervised feature extraction (FE) is a another 
method used to select biologically relevant genes (Taguchi, 2018). This method starts by scaling 
the raw count data and performing a principal component analysis. For the first three principal 
components, the gene weights are then scaled and summed. These sums are used for a Chi-
squared test. Finally, an adjusted p-value threshold is set and genes that meet that threshold are 
selected. Although the provided examples of this method are dependent on a direct adjusted p-
value threshold, we modified the method to return the top N genes based on the most significant 
adjusted p-values.  
  



Supplementary Table S1. Native sequencing datasets used 
 

Dataset Biological Context scRNA-seq Platform Cell # Transcripts/Genes 

GSE 
60781 

Flow sorted dendritic cells 
collected from mouse 

bone marrow 

Fluidigm C1 251 29779 

GSE 
52529 

Human skeletal muscle 
myoblasts collected over 4 

days in a differentiation 
time course 

Fluidigm C1 271 47192 

GSE 
102698 

Dissociated epithelial cells 
collected from mouse 

colon 

inDrop 1597 25507 

 
  



Supplementary Table S2. Implementation Runtime Measurements 
 
Dataset Computer Method Time (h) Cell Count Genes Selected 

GSE72857 1 R 17.14 4000 27297 379 

GSE72857 1 Py 1.38 4000 27297 379 

GSE72857 2 R 29.25 4000 27297 379 

GSE72857 2 Py 1.74 4000 27297 379 

GSE102698 1 R 4.86 1597 25507 529 

GSE102698 1 Py 0.47 1597 25507 529 

GSE102698 2 R 8.74 1597 25507 529 

GSE102698 2 Py 0.57 1597 25507 529 

GSE60781 1 R 0.033833 251 29779 100 

GSE60781 1 Py 0.075552 251 29779 100 

GSE52529 1 R 0.071078 271 47192 318 

GSE52529 1 Py 0.130833 271 47192 318 

s1_pan 1 R 0.886138 329 25494 74 

s1_pan 1 Py 0.091389 329 25494 74 

s1_pan 2 R 1.877549 329 25494 74 

s1_pan 2 Py 0.109365 329 25494 74 

s2_pan 1 R 1.745 614 25494 56 

s2_pan 1 Py 0.170409 614 25494 56 

s2_pan 2 R 3.619634 614 25494 56 

s2_pan 2 Py 0.205921 614 25494 56 

 
  



Supplementary Table S3. Linear Regressions 
 

Coefficients 

Methods Dataset Coefficient Estimate Std. Error T value Pr(>|t|)
dpF + FVG Closeness Intercept  0.221254   0.005550   39.865   < 2e-16 

dpF + FVG Closeness Slope    0.045821   0.005307    8.634 1.63e-08 

dpF + FVG Size Intercept  0.279249   0.006737   41.448   < 2e-16 

dpF + FVG Size Slope    0.058447 0.010396 5.622 8.9e-07 

NVR + dpF Closeness Intercept   0.41371 0.01540   26.871   < 2e-16 
NVR + dpF Closeness Slope    0.09717    0.01472    6.601 1.23e-06 
NVR + dpF Size Intercept 0.558264   0.007767    71.88 <2e-16 
NVR + dpF Size Slope    0.159985 0.011985 13.35 <2e-16 
NVR + FVG Closeness Intercept 0.174128 0.008139   21.395 3.24e-16 
NVR + FVG Closeness Slope    0.065332 0.007782 8.395 2.63e-08 
NVR + FVG Size Intercept 0.24727    0.00833 29.684 < 2e-16 
NVR + FVG Size Slope    0.11066 0.01285 8.609 2.27e-11 
NVR + PCAFE Closeness Intercept        0.16849 0.01270 13.264 5.68e-12 
NVR + PCAFE Closeness Slope            0.07862 0.01215 6.473 1.64e-06 
NVR + PCAFE Size Intercept        0.272186 0.004610 59.042 <2e-16 
NVR + PCAFE Size Slope              0.012361 0.007113 1.738 0.0886 

  

Summary 
Methods Dataset Residual Standard 

Error 
Multiple 
RSquared

Adjusted 
RSquared 

F-
Statistic 

p-value 

dpF + 
FVG 

Closeness 0.01489 on 22 
degrees of freedom 

0.7721 0.7618 74.55 on 1 
and 22 DF

1.626e-
08 

dpF + 
FVG 

Size 0.01819 on 49 
degrees of freedom 

0.3921 0.3797 31.61 on 1 
and 49 DF

8.895e-
07

NVR + 
dpF 

Closeness 0.04131 on 22 
degrees of freedom 

0.6645 0.6492 43.57 on 1 
and 22 DF

1.227e-
06

NVR + 
dpF 

Size 0.02097 on 49 
degrees of freedom 

0.7843 0.7799 178.2 on 1 
and 49 DF

< 2.2e-
16 

NVR + 
FVG 

Closeness 0.02184 on 22 
degrees of freedom

0.7621 0.7513 70.48 on 1 
and 22 DF

2.627e-
08

NVR + 
FVG 

Size 0.02248 on 49 
degrees of freedom 

0.602 0.5939 74.12 on 1 
and 49 DF

2.272e-
11 

NVR + 
PCAFE 

Closeness 0.03409 on 22 
degrees of freedom 

0.6557 0.64 41.89 on 1 
and 22 DF

1.641e-
06 

NVR + 
PCAFE 

Size 0.01244 on 49 
degrees of freedom 

0.05805 0.03882 3.02 on 1 
and 49 DF

0.0885
5 



Supplementary Table S4. Gene Ontology Term Enrichment  
 

Feature 
Selection 

Dataset ID GO GO Category C O E R PValue FDR 

dpF Native GSE102698 0022613 ribonucleoprotein complex biogenesis 358 32 8.17 3.92 3.76E-11 2.69E-08 

dpF Native GSE102698 0045454 cell redox homeostasis 64 12 1.46 8.21 1.84E-08 6.55E-06 

dpF Native GSE102698 0002181 cytoplasmic translation 49 10 1.12 8.94 1.24E-07 2.79E-05 

dpF Native GSE102698 0071826 ribonucleoprotein complex subunit organization 180 18 4.11 4.38 1.56E-07 2.79E-05 

dpF Native GSE102698 0006457 protein folding 165 14 3.77 3.72 2.53E-05 3.62E-03 

dpF Native GSE102698 0009636 response to toxic substance 201 14 4.59 3.05 2.14E-04 2.54E-02 

dpF Native GSE102698 0006575 cellular modified amino acid metabolic process 139 11 3.17 3.47 3.43E-04 3.49E-02 

dpF Native GSE102698 0042493 response to drug 380 20 8.68 2.31 4.66E-04 4.16E-02 

dpF Native GSE102698 0034660 ncRNA metabolic process 415 21 9.47 2.22 5.66E-04 4.47E-02 

dpF Native GSE102698 0018196 peptidyl-asparagine modification 31 5 0.71 7.07 6.26E-04 4.47E-02 

FVG Native GSE102698 0002237 response to molecule of bacterial origin 315 24 5.59 4.29 1.87E-09 1.33E-06 

FVG Native GSE102698 0098542 defense response to other organism 434 27 7.7 3.51 1.41E-08 5.02E-06 

FVG Native GSE102698 0071216 cellular response to biotic stimulus 184 15 3.26 4.6 9.74E-07 1.93E-04 

FVG Native GSE102698 0010035 response to inorganic substance 441 24 7.82 3.07 1.08E-06 1.93E-04 

FVG Native GSE102698 0046683 response to organophosphorus 114 11 2.02 5.44 5.60E-06 8.00E-04 

FVG Native GSE102698 0014074 response to purine-containing compound 131 11 2.32 4.73 2.12E-05 2.52E-03 

FVG Native GSE102698 0034341 response to interferon-gamma 88 9 1.56 5.77 2.53E-05 2.58E-03 

FVG Native GSE102698 0031347 regulation of defense response 456 21 8.09 2.6 6.34E-05 5.31E-03 

FVG Native GSE102698 0042044 fluid transport 25 5 0.44 11.27 6.69E-05 5.31E-03 

FVG Native GSE102698 0072348 sulfur compound transport 29 5 0.51 9.72 1.41E-04 1.01E-02 

NVR Native GSE102698 0022613 ribonucleoprotein complex biogenesis 358 30 7.99 3.76 4.36E-10 3.11E-07 

NVR Native GSE102698 0002181 cytoplasmic translation 49 11 1.09 10.06 7.76E-09 2.77E-06 

NVR Native GSE102698 0045454 cell redox homeostasis 64 11 1.43 7.71 1.47E-07 3.50E-05 

NVR Native GSE102698 0071826 ribonucleoprotein complex subunit organization 180 17 4.01 4.23 5.66E-07 1.01E-04 

NVR Native GSE102698 0006457 protein folding 165 16 3.68 4.35 8.59E-07 1.23E-04 

NVR Native GSE102698 0043900 regulation of multi-organism process 228 16 5.09 3.15 5.32E-05 6.33E-03 

NVR Native GSE102698 0070670 response to interleukin-4 32 6 0.71 8.41 6.51E-05 6.64E-03 

NVR Native GSE102698 0034976 response to endoplasmic reticulum stress 205 14 4.57 3.06 2.06E-04 1.73E-02 

NVR Native GSE102698 0006818 hydrogen transport 135 11 3.01 3.65 2.18E-04 1.73E-02 

NVR Native GSE102698 0044419 interspecies interaction between organisms 296 17 6.6 2.57 3.56E-04 2.54E-02 

PCAFE Native GSE102698 0022613 ribonucleoprotein complex biogenesis 358 28 5.6 5 1.89E-12 1.35E-09 

PCAFE Native GSE102698 0002181 cytoplasmic translation 49 12 0.77 15.65 8.69E-12 3.10E-09 

PCAFE Native GSE102698 0006818 hydrogen transport 135 17 2.11 8.05 3.34E-11 7.95E-09 

PCAFE Native GSE102698 0009123 nucleoside monophosphate metabolic process 247 19 3.86 4.92 1.11E-08 1.98E-06 

PCAFE Native GSE102698 0071826 ribonucleoprotein complex subunit organization 180 15 2.82 5.33 1.46E-07 1.74E-05 

PCAFE Native GSE102698 0009141 nucleoside triphosphate metabolic process 233 17 3.64 4.66 1.46E-07 1.74E-05 

PCAFE Native GSE102698 0019693 ribose phosphate metabolic process 435 23 6.81 3.38 3.30E-07 3.37E-05 

PCAFE Native GSE102698 0015672 monovalent inorganic cation transport 460 23 7.2 3.2 8.75E-07 7.81E-05 

PCAFE Native GSE102698 0006414 translational elongation 49 7 0.77 9.13 1.02E-05 8.09E-04 

PCAFE Native GSE102698 1901657 glycosyl compound metabolic process 323 17 5.05 3.36 1.30E-05 8.68E-04 

 
  



 
Feature 
Selection 

Dataset ID GO GO Category C O E R PValue FDR 

dpF Closeness 0 GSE102698 0006820 anion transport 475 20 6.51 3.07 8.11E-06 3.64E-03 

dpF Closeness 0 GSE102698 0055067 monovalent inorganic cation homeostasis 128 10 1.75 5.7 1.02E-05 3.64E-03 

dpF Closeness 0 GSE102698 0006818 hydrogen transport 135 10 1.85 5.41 1.63E-05 3.88E-03 

dpF Closeness 0 GSE102698 0015672 monovalent inorganic cation transport 460 18 6.3 2.86 6.14E-05 1.10E-02 

dpF Closeness 0 GSE102698 0006575 cellular modified amino acid metabolic process 139 9 1.9 4.73 1.24E-04 1.77E-02 

dpF Closeness 0 GSE102698 0070085 glycosylation 247 12 3.38 3.55 1.53E-04 1.82E-02 

dpF Closeness 0 GSE102698 0043270 positive regulation of ion transport 208 10 2.85 3.51 5.89E-04 6.01E-02 

dpF Closeness 0 GSE102698 0009100 glycoprotein metabolic process 338 13 4.63 2.81 7.79E-04 6.95E-02 

dpF Closeness 0 GSE102698 0045454 cell redox homeostasis 64 5 0.88 5.7 1.81E-03 1.35E-01 

dpF Closeness 0 GSE102698 0072521 purine-containing compound metabolic process 466 15 6.38 2.35 1.89E-03 1.35E-01 

FVG Closeness 0 GSE102698 0098542 defense response to other organism 434 18 4.22 4.26 2.05E-07 1.45E-04 

FVG Closeness 0 GSE102698 0002237 response to molecule of bacterial origin 315 15 3.07 4.89 4.07E-07 1.45E-04 

FVG Closeness 0 GSE102698 0071216 cellular response to biotic stimulus 184 11 1.79 6.14 1.76E-06 4.18E-04 

FVG Closeness 0 GSE102698 0002440 production of molecular mediator of immune 
response 

158 8 1.54 5.2 1.54E-04 2.29E-02 

FVG Closeness 0 GSE102698 0019221 cytokine-mediated signaling pathway 351 12 3.42 3.51 1.60E-04 2.29E-02 

FVG Closeness 0 GSE102698 0034341 response to interferon-gamma 88 6 0.86 7.01 2.13E-04 2.54E-02 

FVG Closeness 0 GSE102698 0010035 response to inorganic substance 441 13 4.29 3.03 3.62E-04 3.70E-02 

FVG Closeness 0 GSE102698 0019932 second-messenger-mediated signaling 195 8 1.9 4.22 6.35E-04 5.67E-02 

FVG Closeness 0 GSE102698 0035821 modification of morphology or physiology of other 
organism 

79 5 0.77 6.5 1.02E-03 7.70E-02 

FVG Closeness 0 GSE102698 0002697 regulation of immune effector process 273 9 2.66 3.39 1.39E-03 7.70E-02 

NVR Closeness 0 GSE102698 0002181 cytoplasmic translation 49 8 0.66 12.12 2.62E-07 1.87E-04 

NVR Closeness 0 GSE102698 0006818 hydrogen transport 135 10 1.82 5.5 1.41E-05 5.05E-03 

NVR Closeness 0 GSE102698 0015672 monovalent inorganic cation transport 460 18 6.2 2.9 4.94E-05 1.18E-02 

NVR Closeness 0 GSE102698 0022613 ribonucleoprotein complex biogenesis 358 15 4.82 3.11 1.01E-04 1.81E-02 

NVR Closeness 0 GSE102698 0070085 glycosylation 247 12 3.33 3.61 1.31E-04 1.87E-02 

NVR Closeness 0 GSE102698 0009100 glycoprotein metabolic process 338 14 4.55 3.07 1.95E-04 2.20E-02 

NVR Closeness 0 GSE102698 0045454 cell redox homeostasis 64 6 0.86 6.96 2.16E-04 2.20E-02 

NVR Closeness 0 GSE102698 0042493 response to drug 380 14 5.12 2.73 6.36E-04 5.68E-02 

NVR Closeness 0 GSE102698 0055067 monovalent inorganic cation homeostasis 128 7 1.72 4.06 1.73E-03 1.26E-01 

NVR Closeness 0 GSE102698 0006457 protein folding 165 8 2.22 3.6 1.77E-03 1.26E-01 

PCAFE Closeness 0 GSE102698 0006818 hydrogen transport 135 10 1.07 9.34 1.11E-07 7.93E-05 

PCAFE Closeness 0 GSE102698 0019693 ribose phosphate metabolic process 435 15 3.45 4.35 1.66E-06 5.91E-04 

PCAFE Closeness 0 GSE102698 0009123 nucleoside monophosphate metabolic process 247 11 1.96 5.61 4.08E-06 9.72E-04 

PCAFE Closeness 0 GSE102698 0009141 nucleoside triphosphate metabolic process 233 10 1.85 5.41 1.58E-05 2.60E-03 

PCAFE Closeness 0 GSE102698 0072521 purine-containing compound metabolic process 466 14 3.7 3.79 1.82E-05 2.60E-03 

PCAFE Closeness 0 GSE102698 0006091 generation of precursor metabolites and energy 304 11 2.41 4.56 2.88E-05 3.42E-03 

PCAFE Closeness 0 GSE102698 0050878 regulation of body fluid levels 317 11 2.52 4.37 4.22E-05 4.30E-03 

PCAFE Closeness 0 GSE102698 1901657 glycosyl compound metabolic process 323 10 2.56 3.9 2.43E-04 2.01E-02 

PCAFE Closeness 0 GSE102698 0034109 homotypic cell-cell adhesion 73 5 0.58 8.63 2.80E-04 2.01E-02 

PCAFE Closeness 0 GSE102698 0015672 monovalent inorganic cation transport 460 12 3.65 3.29 2.82E-04 2.01E-02 

 
  



 
Feature 
Selection 

Dataset ID GO GO Category C O E R PValue FDR 

dpF Closeness 1.75 GSE102698 0022613 ribonucleoprotein complex biogenesis 358 31 7.58 4.09 2.55E-11 1.82E-08 

dpF Closeness 1.75 GSE102698 0002181 cytoplasmic translation 49 11 1.04 10.6 4.53E-09 1.62E-06 

dpF Closeness 1.75 GSE102698 0071826 ribonucleoprotein complex subunit organization 180 17 3.81 4.46 2.74E-07 6.51E-05 

dpF Closeness 1.75 GSE102698 0045454 cell redox homeostasis 64 10 1.36 7.38 8.57E-07 1.53E-04 

dpF Closeness 1.75 GSE102698 0006457 protein folding 165 14 3.5 4.01 1.10E-05 1.57E-03 

dpF Closeness 1.75 GSE102698 0070085 glycosylation 247 16 5.23 3.06 7.48E-05 8.90E-03 

dpF Closeness 1.75 GSE102698 0032528 microvillus organization 23 5 0.49 10.26 1.01E-04 1.03E-02 

dpF Closeness 1.75 GSE102698 0006575 cellular modified amino acid metabolic process 139 11 2.94 3.74 1.80E-04 1.61E-02 

dpF Closeness 1.75 GSE102698 0009100 glycoprotein metabolic process 338 18 7.16 2.51 3.20E-04 2.54E-02 

dpF Closeness 1.75 GSE102698 0018196 peptidyl-asparagine modification 31 5 0.66 7.61 4.45E-04 3.18E-02 

FVG Closeness 1.75 GSE102698 0046683 response to organophosphorus 114 7 0.93 7.53 3.98E-05 2.84E-02 

FVG Closeness 1.75 GSE102698 0014074 response to purine-containing compound 131 7 1.07 6.55 9.64E-05 3.44E-02 

FVG Closeness 1.75 GSE102698 0010035 response to inorganic substance 441 12 3.6 3.34 2.49E-04 5.92E-02 

FVG Closeness 1.75 GSE102698 0098542 defense response to other organism 434 11 3.54 3.11 8.22E-04 1.47E-01 

FVG Closeness 1.75 GSE102698 0042493 response to drug 380 10 3.1 3.23 1.08E-03 1.54E-01 

FVG Closeness 1.75 GSE102698 0061614 pri-miRNA transcription from RNA polymerase II 
promoter 

29 3 0.24 12.68 1.65E-03 1.97E-01 

FVG Closeness 1.75 GSE102698 0070670 response to interleukin-4 32 3 0.26 11.49 2.21E-03 2.25E-01 

FVG Closeness 1.75 GSE102698 0055067 monovalent inorganic cation homeostasis 128 5 1.04 4.79 3.94E-03 3.31E-01 

FVG Closeness 1.75 GSE102698 0002237 response to molecule of bacterial origin 315 8 2.57 3.11 4.23E-03 3.31E-01 

FVG Closeness 1.75 GSE102698 0034341 response to interferon-gamma 88 4 0.72 5.57 5.78E-03 3.31E-01 

NVR Closeness 1.75 GSE102698 0022613 ribonucleoprotein complex biogenesis 358 30 6.14 4.89 5.37E-13 3.83E-10 

NVR Closeness 1.75 GSE102698 0002181 cytoplasmic translation 49 12 0.84 14.29 2.54E-11 9.08E-09 

NVR Closeness 1.75 GSE102698 0071826 ribonucleoprotein complex subunit organization 180 16 3.09 5.19 7.98E-08 1.90E-05 

NVR Closeness 1.75 GSE102698 0045454 cell redox homeostasis 64 8 1.1 7.29 1.28E-05 2.28E-03 

NVR Closeness 1.75 GSE102698 0006414 translational elongation 49 7 0.84 8.33 1.85E-05 2.64E-03 

NVR Closeness 1.75 GSE102698 0034660 ncRNA metabolic process 415 20 7.11 2.81 3.12E-05 3.72E-03 

NVR Closeness 1.75 GSE102698 0006457 protein folding 165 11 2.83 3.89 1.28E-04 1.24E-02 

NVR Closeness 1.75 GSE102698 0006575 cellular modified amino acid metabolic process 139 10 2.38 4.2 1.39E-04 1.24E-02 

NVR Closeness 1.75 GSE102698 0070670 response to interleukin-4 32 5 0.55 9.12 1.95E-04 1.55E-02 

NVR Closeness 1.75 GSE102698 0034976 response to endoplasmic reticulum stress 205 12 3.51 3.42 2.18E-04 1.56E-02 

PCAFE Closeness 1.75 GSE102698 0022613 ribonucleoprotein complex biogenesis 358 29 5.47 5.31 1.60E-13 1.14E-10 

PCAFE Closeness 1.75 GSE102698 0006818 hydrogen transport 135 18 2.06 8.73 2.12E-12 7.57E-10 

PCAFE Closeness 1.75 GSE102698 0002181 cytoplasmic translation 49 12 0.75 16.04 6.53E-12 1.55E-09 

PCAFE Closeness 1.75 GSE102698 0009123 nucleoside monophosphate metabolic process 247 19 3.77 5.04 7.45E-09 1.33E-06 

PCAFE Closeness 1.75 GSE102698 0071826 ribonucleoprotein complex subunit organization 180 16 2.75 5.82 1.57E-08 2.10E-06 

PCAFE Closeness 1.75 GSE102698 0009141 nucleoside triphosphate metabolic process 233 18 3.56 5.06 1.76E-08 2.10E-06 

PCAFE Closeness 1.75 GSE102698 0015672 monovalent inorganic cation transport 460 24 7.02 3.42 1.45E-07 1.48E-05 

PCAFE Closeness 1.75 GSE102698 0019693 ribose phosphate metabolic process 435 23 6.64 3.46 2.13E-07 1.90E-05 

PCAFE Closeness 1.75 GSE102698 0006414 translational elongation 49 8 0.75 10.69 6.79E-07 5.39E-05 

PCAFE Closeness 1.75 GSE102698 0072521 purine-containing compound metabolic process 466 22 7.12 3.09 2.63E-06 1.88E-04 

  



Supplementary Figure S1. Closeness Threshold Sampling 
 
Visualization of the closeness threshold sampling procedure with closeness threshold indicated 
on top left-hand corners of the plots. This visualization is in principal component space where the 
axes are the first and second components or the second and third components.  
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Supplementary Figure S2. Dataset Distribution Analytical Workflow 
To quantify the effects of cell number, we performed feature selection on triplicate random cell 
samplings of the datasets with replacement. This random sampling progressed through different 
granularities from 20% to 95%, in increments of 5%, of the full dataset. Jaccard indices were then 
calculated to compare algorithm performance. To quantify the effects of cell closeness, we 
performed feature selection on triplicate random cell samplings given a closeness threshold in 
principal component space with replacement. We perturbed closeness because of its effect on 
dataset distribution. The tested closeness thresholds progressed from 0 to 1.75, in increments of 
0.25. Jaccard indices were also calculated given these perturbations to compare algorithm 
performance. The analyses of FVG and PCAFE performance followed a similar workflow to 
dpFeature, with the number of genes selected based on a significance threshold cutoff. 
  



Supplementary Figure S3. Algorithm Robustness 
 
The robustness of the algorithms by overlap between the sets of genes selected by the same 
algorithm given different dataset sample sizes. (A) Comparison of Jaccard Indices in the context 
of robustness to random sampling. (B) Representation of the difference in Jaccard index given 
NVR minus dpFeature. The green lines indicate the points where the mean NVR Jaccard Index 
becomes greater than the mean dpFeature Jaccard Index.  
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Supplementary Figure S4. Over-Representation Analysis 
 
Given that the gene sets returned by selected feature selection algorithms vary significantly, we 
examined the gene ontological annotations of the respective sets. We did this through 
WebGestalt, as described by the Zhang lab for over-representation analysis. We examined the 
gene sets generated from GSE102698 using four feature selection algorithms. Over-
representation analysis considers the expected and observed number of genes falling within a 
given GO category.  The height of the bars in the plots generated represent the ratio of the number 
of observed genes over the number of expected genes within some given category. The coloring 
represents the p-value as determined through hypergeometric testing. Given these p-values, we 
examined the top ten gene ontology categories by significance. 
 
(A) Gene sets generated by the four feature selection algorithms from the native GSE102698 
dataset. We observed significantly enriched categories. Though there were similarities, we 
observed distinctly different categories across the gene sets selected by the four algorithms 
tested. Notably, NVR and FVG gene sets were associated with categories presumably related to 
the microbiome. Unlike NVR and FVG, categories similar to “response to molecule of bacterial 
origin” and “interspecies interaction between organisms” were not associated with dpF and 
PCAFE gene sets. In total only 8 of 31 unique GO categories were associated with more than 
one gene set.  
 
(B) Gene sets generated by the same feature selection algorithms, using resampled GSE102698 
datasets with closeness threshold set 0.0 (Supplementary Figure S1). To consolidate the 
replicates, we performed our analyses on the intersection of the generated gene sets. 
Interestingly, FVG found associations with an entirely unique set of categories, sharing no 
categories with the other algorithms given the dataset. 7 of 31 unique GO categories were 
associated with more than one gene set. 
 
 (C) Gene sets generated by the same feature selection algorithms, using resampled GSE102698 
datasets with closeness threshold set 1.75 (Supplementary Figure S1). Replicates of resampled 
datasets were also consolidated through finding replicate set intersections. FVG consistently 
produced gene sets that had some association with an immune response or bacterial interaction, 
with categories such as “response to molecule of bacterial origin” and “response to interleukin-4”. 
A notable category detected using this dataset includes “microvillus organization” associated with 
dpF’s gene set and unobserved elsewhere in this analysis. 8 of 29 unique GO categories were 
associated with more than one gene set. 
 
The observed variation of GO categories associated with these four feature selection algorithms 
demonstrate quantifiable inconsistencies in genes selected with different biological contexts.  
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Supplementary Figure S5. FVG and PCAFE p-Creode Analysis 
 
p-Creode analysis on the gene sets selected by FVG and PCAFE similar to the analysis and 
interpretation performed with dpFeature and NVR. As we did for our over-representation analysis 
in Supplementary Figure S6, we consolidated genes selected from replicate dataset samplings 
by examining their intersections.  
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Supplementary Figure S6. findVariableGenes Similarity Analysis 
 
In addition to comparisons between dpFeature and NVR, we also examined findVariableGenes 
as a feature selection method. This algorithm is detailed in Supplementary Method S1.7. We 
observed relatively low similarity indices between the sets of genes selected from native datasets 
between findVariableGenes and NVR as well as dpFeature (A). 
 
We performed the same gene set similarity analyses described in Figure 1 given different cell 
number and closeness samplings. (B) Between FVG and NVR, we observed significant, positive 
linear relationships (Supplementary Table S3) between gene set Jaccard index, cell number 
(p=2.27e-11), and cell closeness sampling thresholds (p=2.63e-8). (C) A similar relationship was 
observed between FVG and dpFeature; we observed significant, positive linear relationships 
(Supplementary Table S3) between gene set Jaccard index, cell number (p=8.90e-7), and cell 
closeness sampling thresholds (p=1.63e-8).  
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Supplementary Figure S7. PCAFE Similarity Analysis 
 
We also performed analyses on PCAFE. This algorithm is detailed in Supplementary Method 
S1.8. We observed a range of similarity indices between the sets of genes selected from native 
datasets between PCAFE and NVR as well as dpFeature (A). We performed the same gene set 
similarity analyses described in Figure 1 given different cell number and closeness samplings. (B) 
Between PCAFE and NVR, we observed significant, positive linear relationships (Supplementary 
Table S3) between gene set Jaccard index and cell closeness sampling thresholds (p=1.64e-6A 
corresponding trend was not observed with respect to cell number sampling (p=0.088). 
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Dataset GSE60781 GSE52529 GSE102698

Cell Number 251 271 1597 

Jaccard Index 0.10 0.14 0.36 

 
 

Dataset GSE60781 GSE52529 GSE102698

Cell Number 251 271 1597 

Jaccard Index 0.01 0.04 0.33 

 
  



B. 
 
  



References 
 
Butler,A. et al. (2018) Integrating single-cell transcriptomic data across different conditions, 

technologies, and species. Nat. Biotechnol., 36, 411–420. 
Herring,C.A. et al. (2018) Unsupervised Trajectory Analysis of Single-Cell RNA-Seq and 

Imaging Data Reveals Alternative Tuft Cell Origins in the Gut. Cell Syst., 6, 37–51.e9. 
Levandowsky,M. and Winter,D. (1971) Distance between Sets. Nature, 234, 34–35. 
Van Der Maaten,L.J.P. and Hinton,G.E. (2008) Visualizing high-dimensional data using t-SNE. 

J. Mach. Learn. Res., 9, 2579–2605. 
Macosko,E.Z. et al. (2015) Highly Parallel Genome-wide Expression Profiling of Individual Cells 

Using Nanoliter Droplets. Cell, 161, 1202–1214. 
Qiu,X. et al. (2017) Reversed graph embedding resolves complex single-cell trajectories. Nat. 

Methods, 14, 979–982. 
Rodriguez,A. and Laio,A. (2014) Clustering by fast search and find of density peaks. Science, 

344, 1492–1496. 
Taguchi,Y. (2018) Principal Component Analysis-Based Unsupervised Feature Extraction 

Applied to Single-Cell Gene Expression Analysis. In, Huang,D. et al. (eds), ICIC 2018: 
Intelligent Computing Theories and Application. Springer, Cham, 816–826. 

Wang,J. et al. (2017) WebGestalt 2017: a more comprehensive, powerful, flexible and 
interactive gene set enrichment analysis toolkit. Nucleic Acids Res., 45, W130–W137. 

Welch,J.D. et al. (2016) SLICER: inferring branched, nonlinear cellular trajectories from single 
cell RNA-seq data. Genome Biol., 17, 106. 

 
 


