

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

The Dr Foster Global Frailty Score: an international risk prediction model for hospitalised older persons derived from administrative datasets

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026759
Article Type:	Research
Date Submitted by the Author:	28-Sep-2018
Complete List of Authors:	Soong, John; National University Hospital, Medicine; Imperial College London Department of Primary Care and Public Health, Medicine Kaubryte, Jurgita; Dr Foster Ltd Liew, Danny; Monash University, Epidemiology and Preventive Medicine at The Alfred Centre; Peden, Carol; University of Southern California, Keck School of Medicine Bottle, Alex; Imperial College, Primary Care and Social Medicine Bell, Derek; The National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) Northwest London; Imperial College London Department of Primary Care and Public Health Cooper, Carolyn; Guy's and Saint Thomas' NHS Foundation Trust Hopper, Adrian; Guy's and Saint Thomas' NHS Foundation Trust
Keywords:	Frailty, Secondary Care, Measure, Administrative, Risk Prediction

Dear Editor

We are pleased to submit this observational study developing and validating an international score for the measurement of frailty that was derived from routinely collected administrative data

This is the first frailty score derived from an international dataset from 34 hospitals from nine countries across Europe, Australia, the UK and USA, and has validation in large English national administrative data for important outcomes: in-hospital mortality, 30 day nonelective readmission and long length of hospital stay.

Important implications of this research include international case-mix adjustment and clinical risk stratification of older persons at population level

This is a follow up study from previous work we have published at the BMJ Open:

Soong J, Poots A, Scott S, Donald K, Bell D. Developing and validating a risk 1. prediction model for acute care based on frailty syndromes. BMJ Open. 2015;5(10):e008457.

2. Suchage prevalence of frailty in English. We thank you for your kind consideration Dr John Tshon Yit Soong Soong J, Poots AJ, Scott S, Donald K, Woodcock T, Lovett D, et al. Quantifying the 2.

Title: The Dr Foster Global Frailty Score: an international risk prediction model for hospitalised older persons derived from administrative datasets

John Tshon Yit Soong¹, Jurgita Kaubryte², Danny Liew³, Carol J. Peden⁴, Alex Bottle⁵, Derek Bell⁶ Carolyn Cooper⁷, Adrian Hopper⁷

Corresponding author: John Tshon Yit Soong Address: NUHS Tower Block, 10th Floor, Advanced Internal Medicine, 1E Kent Ridge Road, 119228, Singapore Email: <u>John Soong@nuhs.edu.sg</u>

Telephone number: +6597328267

Word Count: 3182

Keywords: Frailty, Secondary Care, Measure, Administrative, Risk prediction

Authors Affiliations

1. National University Hospital, Singapore

2. Dr Foster Ltd, London, United Kingdom

3. School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia

4. Keck School of Medicine, University of Southern California, Los Angeles, USA.

5. School of Public Health, Faculty of Medicine, Imperial College London

6. The National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) Northwest London

7. Guy's and St Thomas' NHS Foundation Trust

Structured abstract 300 words. (300 words)

Objectives. This study aimed to examine the prevalence of frailty coding within the Dr Foster Global Comparators (GC) international database. We then aimed to develop and validate a risk prediction model, based on frailty syndromes, for key outcomes using the GC dataset.

Design. A retrospective cohort analysis of data from patients over 75 years of age from the GC international administrative data. A risk prediction model was developed from the initial analysis based on seven frailty syndrome groups and their relationship to outcome metrics. A weighting was then created for each syndrome group and summated to create the Dr Foster Global Frailty Score. Performance of the score for predictive capacity was compared with an established prognostic comorbidity model (Elixhauser) and tested on another administrative database Hospital Episode Statistics (2011-2015), for external validation.

Setting. 34 hospitals from nine countries across Europe, Australia, the UK and USA.

Results. Of 6.7 million patient records in the GC database, 1.4 M (20%) were from patients aged 75 years or more. There was marked variation in coding of frailty syndromes between countries and hospitals. Frailty syndromes were coded in 2-24% of patient spells. Falls and fractures was the most common syndrome coded (24%). The Dr Foster Global Frailty Score was significantly associated with in-hospital mortality, 30-day non-elective readmission and long length of hospital stay. The score had significant predictive capacity beyond that of other known predictors of poor outcome in older persons, such as co-morbidity and chronological age. The score's predictive capacity was higher in the elective group compared with non-elective, and may reflect improved performance in lower acuity states.

Conclusions: Frailty Syndromes can be coded in international secondary care administrative datasets. The Dr Foster Global Frailty Score significantly predicts key outcomes. This methodology may be feasibly utilised for case-mix adjustment for older persons internationally.

Article summary – strengths and limitations of this study

- This study is a large multicentre international study across Europe, Australia and the United States utilising a routinely collected administrative data with the aim of providing a simple model for case-mix adjustment for older persons in secondary care.
- The dataset used represent whole populations, and there was little missing data.
- Robust statistical methods were used and the Dr Foster Global Frailty Score was validated on an external dataset (Hospital Episode Statistics)
- Our model's predictive capacity is comparable with other recent single country studies
- The variability in frequency of coding of frailty syndromes across countries may limit reliability and generalisability.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Introduction

Increased population ageing stems from a range of diverse factors, including lower childhood and adult mortality, improved fertility, migration, relative world peace and improved health and social care(1). For many, this phenomenon is associated with good health and quality of life(2). For others, there is increased co-morbidity(3), functional decline(4) and poorer quality of life. Differences in the health and function of individuals as they grow older is not readily explained by chronological age(5). Frailty is common and increasingly prevalent with advancing age and often defined as a decrease in physiological reserve over a life-course. Using this pathophysiological model of frailty several underlying processes have been described, including chronic inflammation(6, 7), sarcopaenia(8), anaemia(9) and coagulopathy, steroid hormone dysregulation(10, 11), low vitamin D levels, malnutrition(12, 13) and insulin resistance(14, 15) underpin frailty. These deficits can accumulate over the course of life-time exposure to environmental stressors. Frailty manifests as a combination of the pathophysiological consequence of inbuilt senescence and the accumulation of defects throughout a life-course. Frailty ultimately results in recognisable clinical manifestations such as recurrent falls and delirium and is associated with increased mortality, disability and high resource utilisation(16). Conceptually and operationally, fraility appears to be related to, but distinct from, disability, co-morbidity and chronological age(17). The importance of contributing environmental factors and the psycho-social impact of frailty are increasingly being recognised(18) as important.

Assessing frailty in the hospital setting is challenging. Many frailty assessment scores tested have poor reliability, require large amounts of data, or specialised equipment and have poor predictive performance(19). Given these limitations, there is increasing interest in utilising routinely collected administrative data for risk prediction modelling for those at risk of frailty, particularly older persons. Risk prediction models estimate the likelihood of developing a specific outcome, or having a specific condition. These models can be utilised for the purposes of case-mix adjustment or risk-stratification. Case-mix risk adjustment allows for more accurate comparison of organisational performance by reducing confounding bias. For example, when considering mortality as an outcome measure for organisations, patient-specific factors such as illness severity influence outcome, and must be taken into account. Risk stratification allows for possible segmentation of a population into different levels of risk for developing a specific outcome. This segmentation can then be used to health system planning or inform targeting of resources.

In older persons, risk prediction models often utilise chronological age(20), co-morbidity(21) and functional dependence(22) as patient-specific factors for risk prediction. In the context of long-term care (e.g. nursing homes), risk prediction models often utilise functional dependence as a patient factor, to aid appropriate health resource utilisation and costing (23-25). A recent English study in the primary care setting derived an electronic frailty index from patient records with predictive validity for nursing home admission, hospitalisation and mortality (26). In secondary care, risk prediction models for older persons have utilised measures of demographics, and co-morbidity in the form of diagnostic (27-30) and procedural codes(31, 32), as well as prescription data(29, 33). Frailty syndromes are recognised as clinical manifestations of frailty(34). These common presentations in older persons include recurrent falls, cognitive impairment, incontinence and pressure ulcers, are associated with poor outcome. Recent studies have explored the coding of frailty syndromes within secondary care administrative datasets in the United Kingdom, and its association with in-hospital mortality, non-elective readmission and functional decline.(35, 36)

In this study, we explored the prevalence of coded frailty syndromes within an international secondary care dataset to develop and validate a risk prediction model based on frailty syndromes for the outcomes of mortality, non-elective readmission and long length of stay. We sought to compare the performance of this model with an established prognostic co-morbidity model for the above outcomes.

Methods

Data Sources

The Global Comparators programme at Dr Foster® was an international hospital collaborative which ran from 2011-2017, focused on pooling and benchmarking data, knowledge-sharing networks and health services research to better understand variations in outcomes and disseminate international best practice. The hospitals within the collaboration contributed administrative data to be pooled within the Global Comparators dataset, using established data cleaning processes(37). This provided a rich patient-level dataset containing demographics, diagnostic codes, procedure codes and outcomes, collected primarily for administrative purposes, such as operational needs and costing. To develop and test Dr Foster Global Frailty Score, Global Comparators data were extracted from 34 hospitals in nine countries: Australia, Belgium, Denmark, Finland, Italy, Netherlands, Norway, United Kingdom and United States.

BMJ Open

Hospital Episode Statistics (HES) is an English national administrative dataset, housed within the safe haven of NHS Digital, and contains administrative data from English hospital trusts, which are cleaned and securely stored. This dataset was used to validate the Dr Foster Global Frailty Score. We included the 138 English acute non-specialist hospital trusts, excluding hyper-specialist hospitals (e.g. single pathology quaternary referral units) and mental health units, which have different case-mix.

Study Population

Patient records were included in the analysis if they fulfilled the criteria of patient age \geq 75 years and required an elective or non-elective hospital admission of 24 hours or more. Patient spells were excluded if the age, sex or length of stay was recorded as missing or invalid, or the admission was planned and the patient discharged home on the same day, or the admission was unplanned but no procedure was undertaken and the patient went home after recorded length of stay less than 2 days. This was to exclude records with inadequate quality data, and patients admitted into observations units or day-case attendances. Overall, 0.17% of data were missing within the derivation dataset.

Coding frailty

Each patient record corresponded to a spell covering a patient's total length of stay at a hospital. Within HES, these were aggregated into 'superspells' (admissions), which encompass the full length of stay for the patient across all hospital trusts before their final discharge. Seven groups of frailty syndromes were chosen to represent the common domains used in comprehensive geriatric assessment: Dementia and Delirium, Mobility Problems, Falls and Fractures, Pressure Ulcers and Weight Loss, Incontinence, Dependence and Care, as well as Anxiety and Depression were coded within International Statistical Classification of Diseases. Injuries and Causes of Death (ICD) diagnostic coding groups, and within all available diagnostic fields. As the Global Comparators dataset comprised hospitals which utilised different revisions of ICD (revision 9 and 10), equivalent diagnostic codes for both versions were compiled. These diagnostic coding groups were modified from previously published work on English national administrative data(35). Appendix 1 displays the full list of ICD-9 and ICD-10 diagnostic codes utilised to code for the seven frailty syndrome groups. Trends by calendar year and month, country and frailty syndrome group were plotted to investigate frequency of coding for the years 2010-2014. Based on this analysis, years 2012-2013 were selected as having stable coding for multivariable risk prediction modelling within the derivation dataset.

Table 1: Predictors inputs for frailty risk prediction model (independent predictors)

Name	Time span	Description	Comments
Age	Current spell	Age on admission	
Gender	Current spell	Gender on admission	
Country	Current Spell	Country from which hospital contributed	Nominal; Countries were:
	0 k	data	Australia
	6		Belgium
			Denmark
			Finland
			Italy
		6	Netherlands
			Norway
			United Kingdom
			United States
Dementia & Delirium			Final Dr Foster Global Frailty
Mobility Problems	12-month historical binary	A binary flag indicating whether a relevant	Score is weighted (see risk
Falls & Fractures	indicator	diagnosis has been received during any	stratification models section for
Pressure Ulcers & Weight		inpatient spell in the past 12 months	further details)
Loss			
Dependence and Care			
Anxiety & Depression			
Co-morbidity (Elixhauser)	12-month historical score	A weighted score (see risk stratification	Integer

				models section for further details)
Number	of	previous	12-month historical count	The number of emergency admission Integer
admissions				spells in the previous 12 months,
				excluding the current spell

Table 2: Predictor outputs for frailty risk prediction model (dependent variables)

Time span	Description	Comments
Current spell	Indicates if the discharge method was death	
30 days from discharge	Indicates if the patient had an emergency	Spells that ended in death are
	admission with admission date between 1 and	excluded from the analysis
	30 days following the discharge date of the	
	index admission	
Current spell	Upper quartile length of hospital stay for	
	country	
	0 1	
	Current spell 30 days from discharge	Current spellIndicates if the discharge method was death30 days from dischargeIndicates if the patient had an emergency admission with admission date between 1 and 30 days following the discharge date of the index admissionCurrent spellUpper quartile length of hospital stay for

Risk Models

Within the Global Comparators dataset, 30 models were created. The characteristics of predictor and outcome variables included within the models are described in Tables 1 and 2. Elective and non-elective hospital admission populations were modelled separately. A two-step process for each outcome was utilised to model the frailty and comorbidity scores. First, binary logistic regression was utilised to ascertain odds ratios (ORs) for each frailty syndrome group and each outcome, within the population subgroups separately (elective and non-elective). The natural log of OR (*In* OR) was used to create weights for each frailty syndrome group, using the smallest *In* OR as reference (weighted 1.0). Secondly, the summation of the weights for each frailty syndrome group was utilised to create a frailty score. The patient-level frailty score was then included within a multivariable logistic regression model, adjusted for age, gender and country, for each outcome. Figure 1 illustrates an example of this two-step process for the outcome of upper quartile length of stay.

The Elixhauser co-morbidity score was calculated for each outcome using previously described methods(38). To provide comparison, the Elixhauser co-morbidity score was then included within a multivariable logistic regression model, adjusting for age, gender and country, for each outcome. Finally, both the Elixhauser co-morbidity and Dr Foster Global Frailty Score were then included within a multivariable logistic regression model, adjusted for age, gender and country, for each outcome. The predicted probabilities from these regression models were utilised to calculate Area under the Receiver Operator Characteristic Curves (AUC) as a measure of predictive capacity for each outcome. This two-step process was repeated for the Dr Foster Global Frailty Score on HES years 2011-2015 for external validation.

Performance metrics

Multicollinearity between predictor variables was investigated by variance inflation factor (VIF), where VIF scores of over three were taken to denote unacceptable collinearity. The Hosmer-Lemeshow statistic was calculated for each model to ascertain model calibration. The Wald statistic was calculated to explore the explanatory power of the Dr Foster Global Frailty Score, Elixhauser co-morbidity Score, age, country and gender for each of the three outcomes. Statistical analysis was undertaken using the R Statistical Package.

Results

Descriptive statistics

Of the 6,739,790 spells within the Global Comparators Database from 2010-2014, 1,366,187 (20%) involved patients aged \geq 75 years. There was variation in frequency of coding of frailty syndromes across the countries. The four countries with most volume of coded frailty syndromes were Australia, Belgium, the United Kingdom and the United States. Figure 2a & 2b describes the percentage of spells of patients \geq 75 years to total volume by country and year within the database, and the frequency of coding for frailty syndromes by country for the year 2013.

Coded Frailty Syndromes

Frailty syndromes were coded in 2-24% of patient spells among patients aged \geq 75 years from 2010-2014 within the Global Comparators database: Falls and Fractures N=326,528 (24%); Dementia and Delirium N=215,629 (16%); Anxiety and Depression N=87,732 (6%); Pressure Ulcers and Weight Loss N=66,208 (5%); Incontinence N=50,277 (4%); Mobility Problems N=39,479 (3%); and Dependence and Care N=28,294 (2%). At least one frailty syndrome was present in 538,766 (39%) of spells.

Derivation Cohort

Of the 294,998 patient spells from 2012-2013 for those aged \geq 75 years used in the predictive models within the derivation cohort from the Global Comparators Dataset, 221 441 (75%) were non-elective admissions and 158 595 were female (54%). Patient spells that ended with inpatient mortality (42,354, 14%) of were excluded from the predictive models exploring non-elective readmission.

Dr Foster Global Frailty Score

Negative scores were set to 0 and positive scores were not capped. The Dr Foster Global Frailty Score varied based on outcome and population (elective and non-elective), and remained significant after multivariable adjustment. Table 3 summarises the ORs of the Dr Foster Global Frailty Score and Elixhauser Co-morbidity Score after multivariable adjustment for age, gender and country for the outcomes of in-hospital mortality, 30-day non-elective readmission and upper quartile length of stay (for country), by elective and non-elective population groups. Appendix 2 displays full multivariable adjustment of the Dr Foster Global Frailty Score.

Table 3: Odds ratios for Elixhauser and Dr Foster Global Frailty Score after multivariable adjustment for age, gender and country

adjustment for age, gender and country							
	Outcome	Score	Population	Odds	Lower	Upper	P-
		range		Ratio	CI	CI	value
Dr Foster	In-hospital	0-11	Elective	1.277	1.247	1.308	<0.001
Global	mortality	0-13	Non-elective				
Frailty				1.109	1.103	1.116	<0.001
Score	30-day non-	0-6	Elective	1.106	1.060	1.154	<0.001
	elective	0-4	Non-elective				
	readmission			1.056	1.031	1.082	<0.001
	Upper	0-16	Elective	1.365	1.347	1.382	<0.001
	Quartile	0-17	Non-elective				
	Length of						
	Stay (for						
	country)			1.199	1.194	1.205	<0.001
		6					
Elixhauser	In-hospital		Elective	1.309	1.290	1.329	<0.001
CO-	mortality		Non-elective	1.130	1.126	1.133	<0.001
morbidity	30-day non-		Elective	1.144	1.130	1.158	<0.001
score	alaatiya		New elective				

Elixhauser			Elective	1.309	1.290	1.329	<0.001
CO-	mortality		Non-elective	1.130	1.126	1.133	<0.001
morbidity	30-day non-		Elective	1.144	1.130	1.158	<0.001
score	elective		Non-elective				
	readmission			1.045	1.042	1.048	<0.001
	Upper		Elective	1.101	1.097	1.105	<0.001
	quartile						
	length of						
	stay		Non-elective	1 060	1 000	1 071	<0.001
	(for country)			1.069	1.068	1.071	<0.001

When both the Dr Foster Global Frailty Score and Elixhauser co-morbidity Score were included in multivariable risk adjustment models for age, gender and country, the Dr Foster Global Frailty Score remained significant for the outcomes of in-hospital mortality and upper quartile length of stay, but not for 30-day non-elective readmission (Table 4).

Table 4: Odds ratios for Elixhauser and Dr Foster Global Frailty Score after multivariable adjustment for age, gender and country with both scores in model

		-	Odds	Lower		
Outcome	Population	Score	Ratio	CI	Upper CI	P-value
In-hospital	Elective	Elixhauser	1.283	1.263	1.304	<0.001
mortality		Frailty	1.114	1.085	1.144	<0.001
	Non-elective	Elixhauser	1.123	1.119	1.126	<0.001
	O,	Frailty	1.058	1.052	1.065	<0.001
30-day non- elective	Elective	Admission History*	1.273	1.234	1.314	<0.001
readmission		Elixhauser	1.142	1.128	1.157	<0.001
		Frailty	1.032	0.988	1.077	0.160
	Non-elective	Admission				<0.001
		History*	1.240	1.228	1.252	
		Elixhauser	1.045	1.042	1.048	<0.001
		Frailty	1.024	1.000	1.049	0.052
Upper	Elective	Elixhauser	1.081	1.077	1.085	<0.001
quartile length of		Frailty	1.243	1.227	1.260	<0.001
stay	Non-elective	Elixhauser	1.055	1.053	1.056	<0.001
		Frailty	1.137	1.131	1.142	<0.001
*Admission his	tory included in r	nultivariable m	odel explori	ng 30-day n	on-elective re	eadmission

The predictive capacity of the Dr Foster Global Frailty Score and Elixhauser co-morbidity score are compared in Table 5. When the Dr Foster Global Frailty Score and Elixhauser co-morbidity score are both included in a multivariable model adjusted for age, gender and country, the predictive capacity is moderate to good. The predictive capacity of the Elixhauser co-morbidity score generally exceeds that of the Dr Foster Global Frailty Score for all three outcomes.

Table 5: Area under the Receiver Operator Statistic Curve for outcomes by Elixhauser score,Dr Foster Global Frailty Score and population within Global Comparators dataset

Global Comparators Dataset	Elixhause	r		er Global Score	Foster	er and Dr Global Score
Outcome/AUC	Elective	Non- elective	Elective	Non- elective	Elective	Non- elective
In-hospital mortality	0.80	0.69	0.70	0.62	0.81	0.69
30-day non-elective readmission*	0.67	0.64	0.64	0.63	0.67	0.64
Upper quartile length of stay	0.72	0.63	0.69	0.61	0.73	0.65

*Admission history included in multivariable model exploring 30-day non-elective readmission

The Wald statistic for independent variables included in final models by population and outcome are displayed in Table 6. Overall, the explanatory power of the Elixhauser co-morbidity score exceeds the Dr Foster Global Frailty Score for all three outcomes.

Table 6: Wald Statistic for independent variables of final models by outcome and population

	Upper quartile length of stay		,	non-elective dmission	In-hospital mortality	
	Elective	Non-elective	Elective	Non-elective	Elective	Non-elective
Age	31.1	31.4	0.0	0.4	46.4	747.2
Sex	18.7	0.2	6.9	77.6	9.5	85.2
Country	162.0	244.2	31.1	102.1	12.8	137.8
Admission History	-	-	225.9	1888.4	-	-
Dr Foster Global Frailty Score	1020.7	2579.9	2.0	3.8	62.7	318.2
Elixhauser Score	1727.5	4075.1	420.4	848.4	973.9	4842.1

Performance metrics

All our models displayed significance at p<0.05 for the Hosmer-Lemeshow tests for goodness-of-fit test. These findings have been similarly described by others who have produced models on large data sets as the test is recognised to detect unimportant differences(38, 39). None of the predictor variables demonstrated unacceptable collinearity(40).

Validation Cohort

Of the 7,195,950 patient spells from 2011-2015 used in the predictive models within the validation cohort from English national Hospital Episode Statistics data, 6,128,811 (85%) were non-elective admissions, and 564,182 (7.8%) patient spells ending with in-hospital mortality were excluded from predictive models exploring non-elective readmission.

The Dr Foster Global Frailty Score remained significant after multivariable adjustment within the validation dataset. However, the predictive capacity and ORs were generally lower across all three outcomes compared to the derivation cohort. Table 7 summarises the ORs and AUC of the Dr Foster Global Frailty Score after multivariable adjustment for age, gender and calendar year for the outcomes of in-hospital mortality, 30-day non-elective readmission and upper quartile length of stay (for country), by elective and non-elective population groups. Appendix 3 displays full multivariable adjustment of the Dr Foster Global Frailty Score within the validation dataset.

Table 7: Odds ratios and for Area under the Receiver Operator Statistic Curve (AUC) for Global Frailty Score following multivariable adjustment for age, gender, calendar year by population subgroup and outcome

Outcome	Population	AUC	Odds	Lower	Upper	
			Ratio	CI	CI	P-value
In-hospital	Elective	0.649	1.173	1.171	1.174	<0.001
mortality						
	Non-elective	0.655	1.108	1.107	1.109	<0.001
30-day non- elective	Elective	0.630	1.045	1.044	1.047	<0.001
readmission						
	Non-elective	0.630	1.030	1.030	1.031	<0.001
Upper Quartile	Elective	0.676	1.193	1.192	1.193	<0.001
Length of Stay (for country)		ee C	st.			
	Non-elective	0.677	1.055	1.055	1.055	<0.001

*Admission history included in multivariable model exploring 30-day non-elective readmission

Discussion

Our study found that frailty syndromes are feasibly coded within a large (N≈1.3m) international dataset of hospitalised older persons (aged over 75 years) utilising readily available administrative data. This is consistent with a previous study using English administrative data(36). The Dr Foster Global Frailty Score was derived from these coded syndromes within this dataset, and further validated on an English national secondary care dataset (N≈7.2m). The score was significantly associated with in-hospital mortality, 30-day non-elective readmission and long length of hospital stay. The Dr Foster Global Frailty Score has significant predictive capacity beyond that of other known predictors of poor outcome in older persons, such as co-morbidity and chronological age. The score's predictive capacity was generally higher in the elective group compared with the non-elective, and may reflect improved performance in lower acuity states.

The ORs and predictive capacity in the validation cohort were generally lower than the derivation cohort, but are in keeping with other risk prediction models for older persons within the English secondary care administrative data(35, 41). There was marked variation in

volume and frequency of coding for frailty syndromes across participating countries (Figure 2). These differences may reflect different coding practices and contrasting healthcare systems. These differences may contribute to poorer performance within the validation cohort. Nevertheless, within pooled data across all participating sites, the Dr Foster Global Frailty Score appears to significantly predict in-hospital mortality and upper quartile length of stay (for country) after multivariable adjustment for age, gender, country and co-morbidity.

When both the Elixhauser co-morbidity score and Dr Foster Global Frailty Score were included within multivariable adjustment, both scores remain statistically significant for the outcomes of in-hospital mortality and upper quartile length of stay, suggesting they are not collinear.

Although the setting for the validation cohort was sourced only from English data, it was a large dataset (N=~7m spells). After multivariable adjustment for age, gender and year, the Dr Foster Global Frailty Score remained significant for all three outcomes. Predictive power was demonstrated to be similar to a previous study(35), and comparable to the derivation cohort (Table 5).

In clinical practice, risk stratification in older persons for the secondary care setting often utilise demographics (including chronological age), physiological based track-and-trigger systems (e.g. National Early Warning Score(42)), biomarkers (e.g. troponin) and understanding about the prognosis of specific disease states(e.g. co-morbidity). When adjusting for case-mix between systems or at organisational level, registry(43) or administrative(28) data are often employed, as large scale high quality data from patient records are not readily available. Consequently, risk prediction models using administrative data have sought to differentiate risk by using diagnostic(27-30), procedural(31, 32) and more recently, prescribing codes(29, 33).

There are several risk models in the United States utilising frailty-specific groups of diagnostic codes within Medicare administrative data, Medicare Current Beneficiary Survey (MCBS) data and Veteran's Affairs (VA) administrative data. Examples of these risk prediction models include Johns Hopkins Adjusted Clinical Groups (ACG, Johns Hopkins University) frailty-defining diagnoses indicator(28) and High-Risk Diagnosis for the Elderly Scale(30). In the UK, studies exploring case-mix adjustment for older persons using administrative data have utilised HES as a data source, with diagnostic groups for multimorbidity(38) and complexity(44), as well as frailty(35, 41) being tested in the literature. Appendix 4 summarises the characteristics, setting, data sources, predictor and outcome

variables and performance of recent case-mix studies for older persons utilising administrative data. Where predictive capacity is known, the Dr Foster Global Frailty Score performs comparably if not favourably.

Our study benefits from being a large multicentre international study across Europe, Australia and the United States that utilised routinely collected administrative data with the aim of case-mix adjustment for older persons in secondary care. The datasets represent whole populations, and there was little missing data. Our study employed robust statistical methods and included validation of the Dr Foster Global Frailty Score on an external dataset. It expands the diagnostic coding, provides external validation for a previous UK study(35) and extends it to include elective patients. Additionally, our model's predictive capacity is not improved on by a recent UK study(41), and its predictive capacity is arguably more uniform across the three outcomes.

However, some limitations warrant mention. The variability in frequency of coding of frailty syndromes across countries may limit reliability and generalisability, although the country of origin was accounted for in the multivariable regression. Further subgroup analysis in countries with similar frequency of coding, or hierarchical regression to account for clusters, may be the next step. The accuracy of coding in administrative data has been challenged, and sampling of local clinical units was not feasible. The Dr Foster Global Frailty Score was based on diagnostic codes and thus did not fully encompass all dimensions of frailty such as functional and socio-environmental measures as these are not well coded in the administrative data at this time. Future work linking the datasets to pharmacy, social care, primary care and registry data may provide for a richer comprehensive case-mix adjustment. A small proportion of the validation cohort may have been duplicated from the derivation cohort (eight hospitals in calendar year 2013). However, using national data from several calendar years minimises the effect of this overlap.

Our study adds to the existing literature regarding the secondary use of administrative data for case-mix adjustment in general, and for hospitalised older persons in particular. It links the clinically valid concept of frailty syndromes to a reproducible method of measurement within administrative datasets. The Dr Foster Global Frailty Score may potentially be used to routinely identify older persons at risk of adverse outcomes for the purposes of targeted resource allocation, commissioning or service development. It may form the basis of a global comparator of risk adjustment for older persons.

Conclusion

Frailty Syndromes can be feasibly coded in international secondary care administrative datasets. The Dr Foster Global Frailty Score based on coded frailty syndromes significantly predicts in-hospital mortality and upper quartile length of stay in international datasets, and additionally 30-day non-elective readmission in England's national hospital dataset. It has predictive power beyond that of the Elixhauser co-morbidity score within these datasets. This methodology may be feasibly utilised for case-mix adjustment for older persons across the international setting.

Figures Legend

Figure 1: Example of 2-step multivariable logistic regression process for the outcome of upper quartile length of stay.

Figure 2a: Percentage Volume of patients aged \geq 75 year to total volume by country and year within Global Comparators Dataset

Figure 2b: Frequency of coding for frailty syndromes by country for year 2013 within Global Comparators Dataset (colour scale by country) in patients aged \geq 75 years

Funding statement

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors

Competing interest statement

CP has shares in Fidelity Health, has been a consultant for Merck and the Institute for Healthcare Improvement.

Ethics approval

As per Governance Arrangements for Research Ethics Committees (GAfREC), research limited to secondary use of information previously collected in the course of normal care (without an intention to use it for research at the time of collection), provided that the patients or service users are not identifiable to the research team in carrying out the research.

Patient and Public Involvement

Patients were not involved in this study

Authors contribution

JTYS conceived study, designed analysis, interpreted results and wrote first draft. AH conceived study, designed analysis, interpreted results. JK, DL, CP and CC designed analysis, interpreted results and contributed to ongoing writing. AB and DB interpreted results and contributed to ongoing writing.

Data Sharing

No supplementary data sharing

Acknowledgements

No further acknowledgment

References

1. World Population Ageing. United Nations, Department of Economic and Social Affairs, Population Division; 2013.

2. Survey of public attitudes and behaviours towards the environment. Department for Environment, Food and Rural Affairs (Defra); 2011.

3. Marengoni A, Angleman S, Melis R, Mangialasche F, Karp A, Garmen A, et al. Aging with multimorbidity: a systematic review of the literature. Ageing Res Rev. 2011;10(4):430-9.

4. Family Resources Survey. Department for Work & Pensions; 2014/2015.

5. Lacas A, Rockwood K. Frailty in primary care: a review of its conceptualization and implications for practice. BMC Medicine. 2012;10(1):4.

6. Maggio M, Guralnik J, Longo D, Ferrucci L. Interleukin-6 in aging and chronic disease: a magnificent pathway. J Gerontol A Biol Sci Med Sci. 2006;61(6):575-84.

7. Bruunsgaard H, Bjerregaard E, Schroll M, Pedersen B. Muscle Strength After Resistance Training Is Inversely Correlated with Baseline Levels of Soluble Tumor Necrosis Factor Receptors in the Oldest Old. Journal of the American Geriatrics Society.52(2):237-41.

8. Cesari M, Leeuwenburgh C, Lauretani F, Onder G, Bandinelli S, Maraldi C, et al. Frailty syndrome and skeletal muscle: results from the Invecchiare in Chianti study. Am J Clin Nutr. 2006;83(5):1142-8.

9. Roy CN. Anemia in Frailty. Clin Geriatr Med. 2011;27(1):67-78.

10. Baylis D, Bartlett DB, Syddall HE, Ntani G, Gale CR, Cooper C, et al. Immune-endocrine biomarkers as predictors of frailty and mortality: a 10-year longitudinal study in community-dwelling older people. Age (Dordr). 2012.

11. Varadhan R, Walston J, Cappola AR, Carlson MC, Wand GS, Fried LP. Higher levels and blunted diurnal variation of cortisol in frail older women. J Gerontol A Biol Sci Med Sci. 2008;63(2):190-5.

12. Kaiser M, Bandinelli S, Lunenfeld B. Frailty and the role of nutrition in older people. A review of the current literature. Acta Biomed. 2010;81 Suppl 1:37-45.

13. Hubbard RE, Lang IA, Llewellyn DJ, Rockwood K. Frailty, body mass index, and abdominal obesity in older people. J Gerontol A Biol Sci Med Sci. 2010;65(4):377-81.

14. Fulop T, Larbi A, Witkowski J, McElhaney J, Loeb M, Mitnitski A, et al. Aging, frailty and agerelated diseases. Biogerontology. 2010;11(5):547-63.

15. Abbatecola AM, Paolisso G. Is there a relationship between insulin resistance and frailty syndrome? Curr Pharm Des. 2008;14(4):405-10.

16. Xue Q-L. The Frailty Syndrome: Definition and Natural History. Clinics in Geriatric Medicine.27(1):1-15.

BMJ Open

1	
1 2	
3	17. Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G. Untangling the concepts of
4	disability, frailty, and comorbidity: implications for improved targeting and care. J Gerontol A Biol Sci
5	Med Sci. 2004;59(3):255-63.
6	18. Yu R, Wu W-C, Leung J, Hu SC, Woo J. Frailty and Its Contributory Factors in Older Adults: A
7	Comparison of Two Asian Regions (Hong Kong and Taiwan). International Journal of Environmental
8	Research and Public Health. 2017;14(10):1096.
9	19. Hogan DB, Maxwell CJ, Afilalo J, Arora RC, Bagshaw SM, Basran J, et al. A Scoping Review of
10	Frailty and Acute Care in Middle-Aged and Older Individuals with Recommendations for Future
11	Research. Canadian Geriatrics Journal. 2017;20(1):22-37.
12 13	20. Lunney JR, Lynn J, Hogan C. Profiles of Older Medicare Decedents. Journal of the American
13	Geriatrics Society. 2002;50(6):1108-12.
15	21. Sharabiani MT, Aylin P, Bottle A. Systematic review of comorbidity indices for administrative
16	data. Med Care. 2012;50(12):1109-18.
17	22. Eilertsen TB, Kramer AM, Schlenker RE, Hrincevich CA. Application of functional
18	independence measure-function related groups and resource utilization groups-version III systems
19	across post acute settings. Med Care. 1998;36(5):695-705.
20	23. Carpenter GI, Turner GF, Fowler RW. Casemix for inpatient care of elderly people:
21	rehabilitation and post-acute care. Casemix for the Elderly Inpatient Working Group. Age and
22	Ageing. 1997;26(2):123-31.
23	24. Eilertsen T, Kramer A, Schlenker R, Hrincevich C. Application of Functional Independence Measure-Function Related Groups and Resource Utilization Groups-Version III Systems Across Post
24 25	Acute Settings. Med Care. 1998;36(5):695-705.
25	25. Poss J, Hirdes J, Fries B, McKillop I, Chase M. Validation of Resource Utilization Groups
27	Version III for Home Care (RUG-III/HC): Evidence From a Canadian Home Care Jurisdiction. Med Care.
28	2008;46(4):380-7.
29	26. Clegg A, Bates C, Young J, Ryan R, Nichols L, Ann Teale E, et al. Development and validation
30	of an electronic frailty index using routine primary care electronic health record data. Age Ageing.
31	2016;45(3):353-60.
32	27. Bottle A, Aylin P, Bell D. Effect of the readmission primary diagnosis and time interval in
33	heart failure patients: analysis of English administrative data. European Journal of Heart Failure.
34	2014;16(8):846-53.
35 36	28. McIsaac DI, Bryson GL, van Walraven C. Association of frailty and 1-year postoperative
37	mortality following major elective noncardiac surgery: A population-based cohort study. JAMA
38	Surgery. 2016;151(6):538-45.
39	29. Sternberg SA, Bentur N, Abrams C, Spalter T, Karpati T, Lemberger J, et al. Identifying frail
40	older people using predictive modeling. Am J Manag Care. 2012;18(10):e392-7.
41	30. Desai Mayur M, Bogardus Sidney T, Williams Christianna S, Vitagliano G, Inouye Sharon K.
42	Development and Validation of a Risk-Adjustment Index for Older Patients: The High-Risk Diagnoses
43	for the Elderly Scale. Journal of the American Geriatrics Society. 2002;50(3):474-81.
44	31. Faurot KR, Funk MJ, Pate V, Brookhart MA, Patrick A, Hanson LC, et al. Using Claims Data to
45	Predict Dependency in Activities of Daily Living as a Proxy for Frailty. Pharmacoepidemiology and drug safety. 2015;24(1):50.66
46 47	drug safety. 2015;24(1):59-66. 32. Davidoff AJ, Hurria A, Zuckerman IH, Lichtman SM, Pandya N, Hussain A, et al. A Novel
47 48	32. Davidoff AJ, Hurria A, Zuckerman IH, Lichtman SM, Pandya N, Hussain A, et al. A Novel Approach to Improve Health Status Measurement in Observational Claims-based Studies of Cancer
49	Treatment and Outcomes. Journal of geriatric oncology. 2013;4(2):157-65.
50	33. Dubois M-F, Dubuc N, Kröger E, Girard R, Hébert R. Assessing comorbidity in older adults
51	using prescription claims data. Journal of Pharmaceutical Health Services Research. 2010;1(4):157-
52	65.
53	34. Acute Care Toolkit 3: Acute medical care for frail older people. London: Royal College of
54	Physicians; 2012.
55	
56 57	
57 58	
59	
60	For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

35. Soong J, Poots A, Scott S, Donald K, Bell D. Developing and validating a risk prediction model for acute care based on frailty syndromes. BMJ Open. 2015;5(10):e008457.

36. Soong J, Poots AJ, Scott S, Donald K, Woodcock T, Lovett D, et al. Quantifying the prevalence of frailty in English hospitals. BMJ Open. 2015;5(10):e008456.

37. Bottle A, Middleton S, Kalkman Cor J, Livingston Edward H, Aylin P. Global Comparators Project: International Comparison of Hospital Outcomes Using Administrative Data. Health Services Research. 2013;48(6pt1):2081-100.

38. Bottle A, Aylin P. Comorbidity scores for administrative data benefited from adaptation to local coding and diagnostic practices. J Clin Epidemiol. 2011;64(12):1426-33.

39. Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S. A comparison of goodness-of-fit tests for the logistic regression model. Stat Med. 1997;16(9):965-80.

40. Fox J, Monette G. Generalized Collinearity Diagnostics. Journal of the American Statistical Association. 1992;87(417):178-83.

41. Gilbert T, Neuburger J, Kraindler J, Keeble E, Smith P, Ariti C, et al. Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: an observational study. The Lancet. 2018;391(10132):1775-82.

42. Prytherch DR, Smith GB, Schmidt PE, Featherstone PI. ViEWS--Towards a national early warning score for detecting adult inpatient deterioration. Resuscitation. 2010;81(8):932-7.

43. Rudd AG, Lowe D, Hoffman A, Irwin P, Pearson M. Secondary prevention for stroke in the United Kingdom: results from the National Sentinel Audit of Stroke. Age and ageing. 2004;33(3):280-6.

44. Ruiz M, Bottle A, Long S, Aylin P. Multi-Morbidity in Hospitalised Older Patients: Who Are the Complex Elderly? . PLoS ONE. 2015;10(12).

BMJ O	pen
	Step 1. Elective Long LOS model: Estimate Reference Weight
Step 1 – model to estimate frailty weights to calculate	Group 1 Dementia and Delirium 0.997 0.350 2.848 Group 2 Mobility Problems 0.350 0.350 1.000 Group 3 Falls and Fractures 0.510 0.350 1.458 Group 4 Pressure Ulcers and Weight Loss 1.090 0.350 3.114
weights to calculate weighted frailty score	Group 5 Incontinence 0.676 0.350 1.930 Group 6 Dependence and Care 1.676 0.350 4.789 Group 7 Anxiety and Depression 0.672 0.350 1.921
	Step 2. Elective Long LOS model: Odds Ratio (Intercept) 0.065 Age 1.016 Sex - F Reference
Step 2 – final model with frailty score as predictor variable	Sex - M 0.966 Country - Australia Reference Country - Belgium 0.415 Country - Denmark 0.616 Country - Finland 0.511
among other variables	Country - Italy 1.053 Country - Netherlands 0.763 Country - Norway 0.767 Country - United Kingdom 0.294
Figure 1: Example of 2-step multivariable logistic reg	Country - United States 0.819 Frailty Score 1.365
length of 240x126mm (14	f stay.

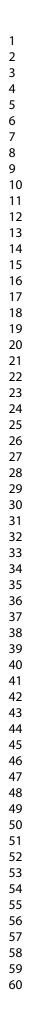


Figure 2a: Percentage Volume of patients aged \geq 75 year to total volume by country and year within Global Comparators Dataset

Figure 2b: Frequency of coding for frailty syndromes by country for year 2013 within Global Comparators Dataset (colour scale by country) in patients aged ≥ 75 years

114x125mm (144 x 144 DPI)

1	
2 3	
4	
3 4 5 6 7 8 9	
6 7	
8	
9	
10	
11 12	
13	
14	
13 14 15 16	
17	
18	
19 20	
20 21	
22	
23	
24 25	
25 26	
27	
20 21 22 23 24 25 26 27 28 29 30 31	
29 30	
31	
32	
33 34	
35	
35 36	
37 38	
39	
40	
41 42	
42 43	
44	
45	
46 47	
48	
49	
50 51	
52	
53	
54 55	
55 56	
57	
58	
59 60	
00	

Group	ICD -10	Description (ICD-10)	ICD-9	Description (ICD-9)
1. Dementia and Delirium	F00	Dementia in Alzheimer's disease	2904	Arteriosclerotic dementia
	F01	Vascular dementia	2941- 2942	Dementia in other diseases and unspecified dementia
	F02	Dementia in other diseases classified elsewhere	2930- 2931	Subacute delirium and delirium due to conditions classified elsewhere
	F03	Unspecified dementia	V4031	Wandering in diseases classified elsewhere
	F05	Delirium not induced by alcohol and other psychoactive	3310	Alzheimer's disease
	G30	Alzheimer's disease	3312	Senile degeneration of brain
	G31 1	Senile degeneration of brain, not elsewhere classified	2900- 2903	Senile and presenile dementia, dementia with delirium
	G31 0	Circumscribed brain atrophy	33119	Other frontotemporal dementia
	F04	Organic amnesic syndrome, not induced by alcohol and other psychoactive substances	33182	Dementia with lewy bodies
	R41	Other symptoms and signs involving cognitive functions and awareness	2908- 2909	Other senile psychotic conditions
			2948- 2949	Other persistent mental disorders due to conditions classified elsewhere
		N	2940	Amnestic disorder in conditions classified elsewhere
2. Mobility Problems	R26	Abnormalities of gait and mobility	7812	Abnormality of gait
	R29 8	Other and unspecified symptoms and signs involving the nervous and musculoskeletal systems	78199	Other symptoms involving nervous and musculoskeletal systems
3. Falls and Fractures	S32	Fracture of lumbar spine and pelvis	8054- 8055	Fracture of lumbar vertebra without mention of spinal cord injury
Tradition	S33	Dislocation, sprain and strain of joints and ligaments of lumbar spine and pelvis	8064- 8065	Fracture of lumbar spine with spinal cord injury
	S42	Fracture of shoulder and upper arm	8056- 8057	Fracture of sacrum and coccyx withou mention of spinal cord injury
	S43	Dislocation, sprain and strain of joints and ligaments of shoulder girdle	8066- 8067	Fracture of sacrum & coccyx with spinal cord injury
	S52	Fracture of forearm	808- 809	Fracture of pelvis and III-defined fractures of bones of trunk
	S53	Dislocation, sprain and strain of joints and //	8392- 8393	Dislocation, thoracic & lumbar vertebra
	S62	Fracture at wrist and hand level	83941	Dislocation, coccyx and sacrum
	862	Dislocation approin and strain of joints and	83952	Coroine 9 strains of approxiliae region
	S63	Dislocation, sprain and strain of joints and ligaments at wrist and hand level	846	Sprains & strains of sacroiliac region
	S72	Fracture of femur	8472- 8474	Sprain of lumbar, sacrum, coccyx
	S73	Dislocation, sprain and strain of joint and ligaments of hip	8485	Sprain of pelvic
	W0- W1	Falls	810- 812	Fracture of clavicle, scapula, humerus
	M8 0	Osteoporosis with pathological fracture	831- 835	Dislocation of shoulder, elbow, wrist, finger, hip
	M8 1	Osteoporosis without pathological fracture	840- 843	Sprains & strains of shoulder, upper arm, elbow, forearm, wrist, hand, hip, thigh
	R29 6	Tendency to fall, not elsewhere classified	83961 & 83971	Dislocation, sternum
	R55	Syncope and collapse	8484	Sternum sprain
	R54	Senility	813- 817	Fracture of radius & ulna, carpal bone(s), metacarpal bone(s), phalanges of hand
	M9 66	Fracture of bone following insertion of orthopaedic implant, joint prosthesis, or bone plate	820- 821	Fracture of neck of femur and other parts of femur
			E88	Falls

			7330	Osteoporosis
			7331	Pathological fracture
			V1588	History of fall
			7802	Syncope and collapse
			797	Senility without mention of psychosis
			9964	Mechanical complication of internal
				orthopedic device implant and graft
4. Pressure Ulcers and Weight Loss	L89	Decubitus ulcer and pressure area	7072	Pressure ulcer
	R63 4	Abnormal weight loss	7070	Decubitus ulcer
	R63 6	Insufficient intake of food and water due to self neglect	7832	Abnormal Loss of Weight
	Z72 4	Inappropriate diet and eating habits	V691	Inappropriate diet and eating habits
5. Incontinence	R32	Unspecified urinary incontinence	7883	Incontinence of urine
	R15	Faecal incontinence	7876	Incontinence of feces
6. Dependence and Care	Z74	Problems related to care-provider dependency	V604	No other household member able to render care
	Z75	Problems related to medical facilities and other health care	V63	Unavailability of other medical facilities for care
7. Anxiety and Depression	F38	Other mood [affective] disorders	2969	Other & unspecified affective psychoses
	F41	Other anxiety disorders	3000	Anxiety states
	F43	Reaction to severe stress, and adjustment disorders	308	Acute reaction to stress
	F44	Dissociative [conversion] disorders	309	Adjustment reaction
	F06 4	Organic anxiety disorder	3001	Hysteria
	F32	Depressive episode	2962	Major depressive disorder, single episode
	F33	Recurrent depressive disorder	2963	Major depressive disorder, recurrent episode
	F20 4	Post-schizophrenic depression	2965	Bipolar affective disorder, depressed
	F25 1	Schizoaffective disorder, depressive type	3004	Dysthymic disorder
	F31	Bipolar affective disorder	3090	Adjustment disorder with depressed mood
	F34 1	Dysthymia	3091	Prolonged depressive reaction
	F41 2	Mixed anxiety and depressive disorder	3092	Adjustment reaction with predominant disturbance of other emotions
	F43 2	Adjustment disorders	2968	Manic-depressive psychosis, other & unspecified
			2980	Depressive type psychosis
			3011	Affective personality disorder
			311	Depressive disorder, not elsewhere classified

Appendix 2: Odds Ratios for Frailty Score after adjustment for age, gender, country for the outcomes of in-hospital mortality, 30-day non-elective readmission and upper quartile length of stay (for country), by elective and non-elective population groups within the Global Comparators Dataset (Derivation)

In-hospital mortality

Table 12: Odds Ratios of Frailty Score for in-hospital mortality adjusted for age, gender country within each subgroup (elective and non-elective)

Elective

	Odds Ratio	Lower Cl	Upper Cl	P-value
(Intercept)	0.001	0.000	0.001	<0.001
Age	1.041	1.029	1.054	<0.001
Sex - F	Reference			
Sex - M	1.441	1.277	1.626	<0.001
Country - Australia	Reference			
Country - Belgium	1.039	0.836	1.292	0.730
Country - Denmark	0.913	0.668	1.248	0.569
Country - Finland	0.318	0.227	0.446	<0.001
Country - Italy	0.702	0.496	0.994	0.046
Country - Netherlands	1.413	1.107	 1.803 	0.005
Country - Norway	0.616	0.492	0.770	<0.001
Country - United Kingdom	0.566	0.467	0.686	<0.001
Country - United States	0.838	0.686	1.023	0.082
Frailty Score	1.277	1.247	1.308	<0.001
New destruction				

Non-elective

, 0				
Country - United States	0.838	0.686	1.023	0.082
Frailty Score	1.277	1.247	1.308	<0.001
Non-elective				4
	Odds Ratio	Lower Cl	Upper Cl	P-value
(Intercept)	0.002	0.002	0.003	<0.001
Age	1.040	1.037	1.043	<0.001
Sex - F	Reference			
Sex - M	1.305	1.265	1.346	<0.001
Country - Australia	Reference			
Country - Belgium	1.338	1.213	1.478	<0.001
Country - Denmark	1.480	1.371	1.598	<0.001
Country - Finland	0.936	0.864	1.015	0.109
Country - Italy	1.682	1.462	1.936	<0.001
Country - Netherlands	1.525	1.361	1.709	<0.001
Country - Norway	1.001	0.942	1.062	0.987
Country - United Kingdom	1.492	1.419	1.570	<0.001
Country - United States	0.897	0.844	0.953	<0.001
Frailty Score	1.109	1.103	1.116	<0.001

30-day non-elective readmission

Table 13: Odds Ratios of Frailty Score for 30-day non-elective readmission adjusted for age, gender country within each subgroup (elective and non-elective)

Elective

	Odds Ratio	Lower Cl	Upper Cl	P-value
(Intercept)	0.037	0.021	0.065	<0.001
Age	1.002	0.995	1.009	0.622
Sex - F	Reference			
Sex - M	1.159	1.087	1.236	<0.001
Country - Australia	Reference			
Country - Belgium	0.893	0.758	1.053	0.179
Country - Denmark	1.573	1.339	1.847	<0.001
Country - Finland	1.153	1.003	1.326	0.045
Country - Italy	0.500	0.391	0.640	<0.001
Country - Netherlands	1.174	0.988	1.395	0.068
Country - Norway	1.616	1.434	1.821	<0.001
Country - United Kingdom	1.094	0.975	1.228	0.125
Country - United States	1.323	1.168	1.498	<0.001
Admission History	1.453	1.411	1.495	<0.001
Frailty Score	1.106	1.060	1.154	<0.001
Non-elective		9		

Non-elective

	Odds Ratio	Lower Cl	Upper Cl	P-value
(Intercept)	0.112	0.091	0.136	<0.001
Age	0.998	0.996	1.001	0.201
Sex - F	Reference			
Sex - M	1.167	1.137	1.198	<0.001
Country - Australia	Reference			
Country - Belgium	0.803	0.722	0.893	<0.001
Country - Denmark	1.317	1.231	1.408	<0.001
Country - Finland	0.995	0.931	1.063	0.879
Country - Italy	0.760	0.646	0.893	0.001
Country - Netherlands	0.774	0.683	0.877	<0.001
Country - Norway	1.582	1.507	1.660	<0.001
Country - United Kingdom	1.362	1.302	1.425	<0.001
Country - United States	1.274	1.211	1.340	<0.001
Admission History	1.315	1.303	1.326	<0.001
Frailty Score	1.056	1.031	1.082	<0.001

Upper Quartile Length of Stay (for country)

Table 14: Odds Ratios of Frailty Score for Upper Quartile Length of Stay (for country) adjusted for age, gender country within each subgroup (elective and non-elective)

Elective

	Odds Ratio	Lower Cl	Upper Cl	P-value
(Intercept)	0.065	0.045	0.094	<0.001
Age	1.016	1.011	1.020	<0.001
Sex - F	Reference			
Sex - M	0.966	0.927	1.008	0.112
Country - Australia	Reference			
Country - Belgium	0.415	0.376	0.457	<0.001
Country - Denmark	0.616	0.549	0.691	<0.001
Country - Finland	0.511	0.467	0.558	<0.001
Country - Italy	1.053	0.953	1.162	0.310
Country - Netherlands	0.763	0.691	0.843	<0.001
Country - Norway	0.767	0.713	0.825	<0.001
Country - United Kingdom	0.294	0.273	0.316	<0.001
Country - United States	0.819	0.765	0.878	<0.001
Frailty Score	1.365	1.347	1.382	<0.001

Non-elective

Country - United States	0.819	0.765	0.878	<0.001
Frailty Score	1.365	1.347	1.382	<0.001
Non-elective				
	Odds Ratio	Lower Cl	Upper Cl	P-value
(Intercept)	0.284	0.245	0.330	<0.001
Age	0.995	0.993	0.996	<0.001
Sex - F	Reference		2	<0.001
Sex - M	1.055	1.034	1.076	<0.001
Country - Australia	Reference			<0.001
Country - Belgium	1.766	1.658	1.881	<0.001
Country - Denmark	1.570	1.492	1.652	<0.001
Country - Finland	1.705	1.628	1.786	<0.001
Country - Italy	2.270	2.074	2.484	<0.001
Country - Netherlands	2.268	2.112	2.435	<0.001
Country - Norway	1.303	1.254	1.353	<0.001
Country - United Kingdom	1.508	1.459	1.559	<0.001
Country - United States	1.434	1.382	1.488	<0.001
Frailty Score	1.199	1.194	1.205	<0.001

Appendix 3: Odds Ratios for Frailty Score after adjustment for age, gender, calendar year for the outcomes of in-hospital mortality, 30-day non-elective readmission and upper quartile length of stay (for country), by elective and non-elective population groups in Hospital Episode Statistics dataset (Validation)

In-hospital mortality

Table 15: Odds Ratios of Frailty Score for in-hospital mortality adjusted for age, gender and calendar year within each subgroup (elective and non-elective)

Elective

	Odds Ratio	Lower Cl	Upper Cl	Z-value	P-value
(Intercept)	0.001	0.001	0.001	-338.153	0.000
Age	1.051	1.050	1.051	206.705	0.000
Sex - F	Reference				
Sex - M	1.274	1.267	1.281	84.839	0.000
Calendar Year - 2012	Reference				
Calendar Year - 2013	0.938	0.931	0.945	-16.172	0.000
Calendar Year – 2014	0.851	0.844	0.857	-40.603	0.000
Calendar Year – 2015	0.865	0.858	0.871	-36.727	0.000
Frailty Score	1.173	1.171	1.174	279.196	0.000
n-elective		3			

Non-elective

	Odds Ratio	Lower CI	Upper Cl	Z-value	P-value
(Intercept)	0.001	0.001	0.001	-353.600	0.000
Age	1.055	1.055	1.056	227.822	0.000
Sex - F	Reference				
Sex - M	1.233	1.226	1.240	73.302	0.000
Calendar Year - 2012	Reference				
Calendar Year - 2013	0.936	0.929	0.944 🧹	-16.598	0.000
Calendar Year – 2014	0.850	0.844	0.857	-40.640	0.000
Calendar Year – 2015	0.869	0.862	0.876	-35.371	0.000
Frailty Score	1.108	1.107	1.109	315.847	0.000
					1

30-day non-elective readmission

Table 16: Odds Ratios of Frailty Score for 30-day non-elective readmission adjusted for age, gender and calendar year within each subgroup (elective and non-elective)

Elective

-	Lower Cl	Upper Cl	Z-value	P-value	
(Intercept)	0.055	0.054	0.057	-186.458	0.000
Age	1.011	1.010	1.011	58.247	0.000
Sex - F	Reference				
Sex - M	1.119	1.114	1.123	53.787	0.000
Calendar Year - 2012	Reference				
Calendar Year - 2013	0.994	0.989	1	-1.918	0.055
Calendar Year – 2014	1.015	1.009	1.021	5.090	0.000
Calendar Year – 2015	1.018	1.012	1.024	6.228	0.000
Previous Emergency	U,				
Admissions	1.443	1.440	1.445	379.358	0.000
Frailty Score	1.045	1.044	1.047	77.860	0.000

Non-elective

1.045	1.044	1.047	77.000	0.000				
n-elective								
Odds Ratio	Lower Cl	Upper Cl	Z-value	P-value				
0.053	0.051	0.054	-191.317	0.000				
1.011	1.011	1.012	62.570	0.000				
Reference								
1.121	1.117	1.126	54.752	0.000				
Reference								
0.993	0.987	0.998	-2.526	0.012				
1.012	1.007	1.018	4.231	0.000				
1.015	1.010	1.021	5.218	0.000				
1.439	1.436	1.442	376.406	0.000				
1.030	1.030	1.031	85.172	0.000				
	Odds Ratio 0.053 1.011 Reference 1.121 Reference 0.993 1.012 1.015 1.439	Odds Ratio Lower Cl 0.053 0.051 1.011 1.011 Reference	Odds Ratio Lower Cl Upper Cl 0.053 0.051 0.054 1.011 1.011 1.012 Reference	Odds Ratio Lower Cl Upper Cl Z-value 0.053 0.051 0.054 -191.317 1.011 1.011 1.012 62.570 Reference				

Upper quartile length of stay

Table 17: Odds Ratios of Frailty Score for upper quartile length of stay
adjusted for age, gender and calendar year within each subgroup (elective and non-elective)

Elective

	Odds Ratio	Lower Cl	Upper Cl	Z-value	P-value
(Intercept)	0.030	0.029	0.031	-258.331	0.000
Age	1.023	1.023	1.024	143.925	0.000
Sex - F	Reference				
Sex - M	0.940	0.937	0.944	-32.930	0.000
Calendar Year - 2012	Reference				
Calendar Year - 2013	0.975	0.970	0.980	-9.874	0.000
Calendar Year – 2014	0.891	0.886	0.895	-44.736	0.000
Calendar Year – 2015	0.872	0.868	0.877	-52.705	0.000
Frailty Score	1.193	1.192	1.193	593.715	0.000
on-elective					

Non-elective

	Odds Ratio	Lower Cl	Upper Cl	Z-value	P-value
(Intercept)	0.031	0.030	0.032	-255.862	0.000
Age	1.023	1.022	1.023	139.087	0.000
Sex - F	Reference				
Sex - M	0.948	0.944	0.951	-28.576	0.000
Calendar Year - 2012	Reference				
Calendar Year - 2013	endar Year - 2013 0.979		0.984	-8.288	0.000
Calendar Year – 2014	0.896	0.891	0.900	-42.538	0.000
Calendar Year – 2015	0.878	0.874	0.883	-50.020	0.000
Frailty Score 1.055		1.055	1.055	602.049	0.000

<u>1.055</u> 602.049 0.000

Page 33 of 40

BMJ Open

Author	Year	Country	Study population	Ν	Data Source	Outcome	Predictors	Model performance
			Population					
Von Korff		United	based			Mortality and	Consensus based Chronic	
et al.(1)	1991	States	pharmacy data	122911	Administrative	hospitalisation	Disease Score(CDS)	
					Administrative			
					(Patient			
					Assessment			
					File(PAF),			
					Patient		Internetional Observition of	
							International Classification of	
			Long-term		File(PTF), Extended		Diseases, Ninth Revision	AUC for decline
Rosen et		United	facility resident (Veterans	· - C	Care	Decline in	Clinical Modification (ICD-9), demographics, treatments,	in functional
al.(2)	2001	States	Affairs)	39839	File(ECF))	functional status	activities of daily living	status is 0.70
ai.(z)	2001	Olales	Analisj	33033			activities of daily living	AUC 0.76 for
					Administrative			mortality in
					(Management		International Classification of	derivation and
Desai et		United	≥70 admitted to		Information		Diseases system version 9	AUV 0.68 in
al.(3)	2002	States	geriatric service	1376	System)	Mortality	(ICD-9)	validation)
			<u> </u>		Administrative		(/	
					The Medicare			
					Current			
					Beneficiary			
					Survey			
Kautter et		United			(MCBS)		ADLs, Long-term institution	
al(4)	2004	States	Medicare	17597		Cost	status, Age	
			Individual					
			patients aged ≥					
			65, ≥ 75, and ≥					
			85who had at					
			least two		Administrative			
		11.26	emergency		(Hospital	Non-elective	Individual patients aged ≥	
Roland et	0005	United	admissions	007000	Episode	hospital	65who had at least two	
al.(5)	2005	Kingdom	1	227206	Statistics)	readmission	emergency admissions	

							Deyo-Charlson, comorbidity score ≥ 2 , any prior	
						Non-elective	hospitalization 6 or more	
Inoye et		United	Primary care			hospital	primary care visits, ≥ 85 years	
al.(6)	2008	States	clinic	3919	Administrative	admission	unmarried status	AUC 0.73
0(0)						Resource		
						utilisation		
						(number of	VES Frailty Score(13-item	
						physician visits	function-based self-report	
			Patients			in 3 months,	questionnaire The Adjusted	
			receiving			number of ED	Clinical Groups-diagnoses	
			Comprehensive			visits in a year,	based predictive model (ACG	
			Geriatric 🧹			and number of	Dx-PM) based on age, sex,	ACG predict
Sternberg			Assessment via		Administrative;	hospitalizations	diagnostic codes, and	frailty defined by
et al.(7)	2012	Israel	OPD	221	and survey	in the year)	pharmacy data	VES – AUC 0.63
					\mathbf{N}		Healthcare services, Berenson-	
							Eggers Type of Service	
							(BETOS) codes- American	
					Administrative		Medical Association's Current	
					(Medicare)		Procedural Terminology (CPT)	
					and Medicare		codes, or the CMS, Healthcare	
			US Medicare		Current		Common Procedure Coding	
			beneficiaries		Beneficiary		System (HCPCS level II) codes,	
Davidoff et		United	aged ≥ 65		Survey		demographic	AUC 0.92 for
al.(8)	2013	States	years	14788	(MCBS),	Disability Status		disability status
							AHRQ's (Agency for Healthcare	
							Research and Quality) Clinical	
					Administrative	Non cleative	Classification System	
Bottle et		United	Admitted with		(Hospital	Non-elective	International Classification of	
al.(9)	2014	Kingdom	heart failure	84212	Episode statistics)	hospital readmission	Diseases system version 10 (ICD-10)	
ai.(<i>3)</i>	2014	Nilyuulli		04212	ວເລແວແບວ)	reaumission		AUC Mortality
								0.74, AUC
			US Medicare				Demographic measures,	cardiac
			beneficiaries				cardiovascular conditions,	catheterisation
			aged ≥ 65			Mortality,	comorbidities, previous	0.79, Including
Chrischilles		United	years admitted			cardiac	hospitalization, and Function	the FRIs
et al.(10)	2014	States	with acute	144112	Administrative	catheterisation	related indicators(FRI)	improved

			myocardial infarction					prediction models
Ruiz et		United	Individual patients aged ≥ 65 with hospital		Administrative (Hospital Episode	Mortality, Non- elective hospital readmission, Hospital admission	≥ 65 years old, who have at least 3 simultaneous diagnoses	
al.(11)	2015	Kingdom	admission	2788900	Statistics)		of major clinical conditions.	
			0	De	Administrative and Medicare Current		demographics, International Classification of Diseases, Ninth Revision Clinical Modification (ICD-9) diagnosis/procedure and durable medical equipment codes for frailty-associated conditions, (Current Procedural	
_			≥ 65		Beneficiary		Terminology (CPT) and	
Faurot et		United	community		Survey	Functional	Healthcare Common Procedure	
al.(12)	2015	States	dwelling	6391	(MCBS)	decline	Coding System (HCPC)) International Classification of Diseases, Ninth Revision Clinical Modification (ICD-9) diagnosis & claims for skilled nursing facility: creation of four categories: 1)Cancer 2)Chronic	
Hope et		United	>70 admitted to		Administrative		Organ Failure3)Frailty4) Robust	
al.(13)	2015	States	ICU	47427	(Medicare)	Mortality		
								AUC of 0.624– 0.659 for inpatient
			>65 non- elective			Mortality, non- elective readmission,		mortality, 0.63- 0.654 for institutionalisatio
Soong et		United	admission to	2 099		functional	ICD-10 coded Frailty	and 0.57–0.63 fo
al.	2015	Kingdom	hospital	252	Administrative	decline	Syndromes	30-day

								emergency readmission.
Briggs et al.(14)	2016	Ireland	Patients admitted with dementia to single hospital	929	Administrative	Cost	International Classification of Diseases system version 10 (ICD-10)	
Vclsaac et			>65 years Elective non-	- DE	Administrative Discharge Abstract Database, Ontario Health Insurance Plan Database, Registered Persons Database	Inpatient	John's Hopkins Adjusted Clinical Groups (ACG, Johns Hopkins University) frailty- defining diagnoses indicator,	
al.(15) Kim et	2016	Canada	cardiac surgery ≥ 65 community	202811	Administrative (Medicare) and Medicare Current Beneficiary Survey	Mortality, disability, mobility impairment, and	International Classification of Diseases, Ninth Revision Clinical Modification (ICD-9) (Current Procedural Terminology (CPT) and Healthcare Common Procedure Coding System (HCPC)) to	
al.(16) Gilbert et	2017	States United	dwelling >75 years elective and non-elective admissions to	10017 1 013	(MCBS) Administrative Hospital Episode	recurrent falls Mortality, long length of stay, non-elective	ICD-10 Codes identified by cluster analysis for Bed days, Hospital costs, and ICD-10	AUC 0.60 for 3 day mortality 0.68 for long hospital stay 0.56 for 30-da
al.(17)	2018	Kingdom	hospital	590	Statistics	readmission	coded Frailty Syndromes	readmission

 BMJ Open

References

1. Von Korff M, Wagner EH, Saunders K. A chronic disease score from automated pharmacy data. Journal of Clinical Epidemiology.45(2):197-203.

2. Amy R, Jeanne W, Bei-Hung C, Dan B, Carter R, Arlene A, et al. Risk Adjustment for Measuring Health Outcomes: An Application in VA Long term Care. American Journal of Medical Quality. 2001;16(4):118-27.

3. Desai Mayur M, Bogardus Sidney T, Williams Christianna S, Vitagliano G, Inouye Sharon K. Development and Validation of a Risk-Adjustment Index for Older Patients: The High-Risk Diagnoses for the Elderly Scale. Journal of the American Geriatrics Society. 2002;50(3):474-81.

4. Kautter J, Pope GC. CMS Frailty Adjustment Model. Health Care Financing Review. 2004;26(2):1-19.

5. Roland M, Dusheiko M, Gravelle H, Parker S. Follow up of people aged 65 and over with a history of emergency admissions: analysis of routine admission data. BMJ. 2005;330(7486):289-92.

6. Inouye S, Md MPH, Zhang Y, Jones R, Shi P, Cupples L, et al. Risk Factors for Hospitalization Among Community-Dwelling Primary Care Older Patients: Development and Validation of a Predictive Model. Med Care. 2008;46(7):726-31.

7. Sternberg SA, Wershof Schwartz A, Karunananthan S, Bergman H, Mark Clarfield A. The identification of frailty: a systematic literature review. J Am Geriatr Soc. 2011;59(11):2129-38.

8. Davidoff AJ, Hurria A, Zuckerman IH, Lichtman SM, Pandya N, Hussain A, et al. A Novel Approach to Improve Health Status Measurement in Observational Claims-based Studies of Cancer Treatment and Outcomes. Journal of geriatric oncology. 2013;4(2):157-65.

9. Bottle A, Aylin P, Bell D. Effect of the readmission primary diagnosis and time interval in heart failure patients: analysis of English administrative data. European Journal of Heart Failure. 2014;16(8):846-53.

10. Chrischilles E, Schneider K, Wilwert J, Lessman G, O'Donnell B, Gryzlak B, et al. Beyond Comorbidity: Expanding the Definition and Measurement of Complexity Among Older Adults Using Administrative Claims Data. Medical Care. 2014;52:S75-S84.

11. Ruiz M, Bottle A, Long S, Aylin P. Multi-Morbidity in Hospitalised Older Patients: Who Are the Complex Elderly? . PLoS ONE. 2015;10(12).

12. Faurot KR, Funk MJ, Pate V, Brookhart MA, Patrick A, Hanson LC, et al. Using Claims Data to Predict Dependency in Activities of Daily Living as a Proxy for Frailty. Pharmacoepidemiology and drug safety. 2015;24(1):59-66.

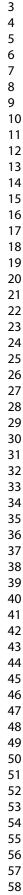
13. Hope Aluko A, Gong Michelle N, Guerra C, Wunsch H. Frailty Before Critical Illness and Mortality for Elderly Medicare Beneficiaries. Journal of the American Geriatrics Society. 2015;63(6):1121-8.

14. Briggs R, Coary R, Collins R, Coughlan T, O'Neill D, Kennelly SP. Acute hospital care: how much activity is attributable to caring for patients with dementia? QJM. 2016;109(1):41-4.

15. McIsaac DI, Bryson GL, van Walraven C. Association of frailty and 1-year postoperative mortality following major elective noncardiac surgery: A population-based cohort study. JAMA Surgery. 2016;151(6):538-45.

16. Kim DH, Schneeweiss S, Glynn RJ, Lipsitz LA, Rockwood K, Avorn J. Measuring Frailty in Medicare Data: Development and Validation of a Claims-Based Frailty Index. The Journals of Gerontology: Series A. 2017:glx229-glx.

17. Gilbert T, Neuburger J, Kraindler J, Keeble E, Smith P, Ariti C, et al. Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: an observational study. The Lancet. 2018;391(10132):1775-82.


BMJ Open

For peer review only

TRAPOD

TRIPOD Checklist: Prediction Model Development and Validation

Section/Topic	Item		Checklist Item	P
Title and abstract	1	D;V	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.	
Abstract	2	D;V	Provide a summary of objectives, study design, setting, participants, sample size,	+
Introduction	2	D, v	predictors, outcome, statistical analysis, results, and conclusions.	
			Explain the medical context (including whether diagnostic or prognostic) and rationale	
Background and objectives	3a	D;V	for developing or validating the multivariable prediction model, including references to existing models.	
and objectives	3b	D;V	Specify the objectives, including whether the study describes the development or validation of the model or both.	
Methods		•		
Source of data	4a	D;V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.	
Source of data	4b	D;V	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	
Participante	5a	D;V	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	
Participants	5b	D;V	Describe eligibility criteria for participants.	
	5c <	D;V	Give details of treatments received, if relevant.	_
Outcome	6a	D;V	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	
	6b 7a	D;V D;V	Report any actions to blind assessment of the outcome to be predicted. Clearly define all predictors used in developing or validating the multivariable prediction	
Predictors			model, including how and when they were measured. Report any actions to blind assessment of predictors for the outcome and other	A
	7b	D;V	predictors.	
Sample size	8	D;V	Explain how the study size was arrived at.	1
Missing data	9	D;V	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	
	10a	D	Describe how predictors were handled in the analyses.	8
Statistical	10b	D	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	1
analysis	10c	V	For validation, describe how the predictions were calculated.	
methods	10d	D;V	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	
	10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	
Risk groups	11	D;V	Provide details on how risk groups were created, if done.	
Development vs. validation	12	V	For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors.	
Results				
	13a	D;V	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	1
Participants	13b	D;V	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	
	13c	V	For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).	1
Model	14a	D	Specify the number of participants and outcome events in each analysis.	1
development			If done, report the unadjusted association between each candidate predictor and	_
	14b	D	outcome.	1
Model specification	15a	D	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	
	15b	D	Explain how to the use the prediction model.	L
Model performance	16	D;V	Report performance measures (with Cls) for the prediction model.	1
Model-updating	17	V	If done, report the results from any model updating (i.e., model specification, model performance).	$\left \right $
Discussion	1	1		1
Limitations	18	D;V	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	
	19a	V	For validation, discuss the results with reference to performance in the development data, and any other validation data.	1
Interpretation	19b	D;V	Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.	1 A
Implications	20	D;V	Discuss the potential clinical use of the model and implications for future research.	1
Other information		1		
Supplementary	21	D;V	Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.	1

TRIPOD Checklist: Prediction Model Development and Validation

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.

to beet the work

BMJ Open

BMJ Open

The Dr Foster Global Frailty Score: An international retrospective observational study developing and validating a risk prediction model for hospitalised older persons from administrative datasets.

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-026759.R1
Article Type:	Research
Date Submitted by the Author:	07-Mar-2019
Complete List of Authors:	Soong, John; National University Hospital, Medicine; Imperial College London Department of Primary Care and Public Health, Medicine Kaubryte, Jurgita; Dr Foster Ltd Liew, Danny; Monash University, Epidemiology and Preventive Medicine at The Alfred Centre; Peden, Carol; University of Southern California, Keck School of Medicine Bottle, Alex; Imperial College, Primary Care and Social Medicine Bell, Derek; The National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) Northwest London; Imperial College London Department of Primary Care and Public Health Cooper, Carolyn; Guy's and Saint Thomas' NHS Foundation Trust Hopper, Adrian; Guy's and Saint Thomas' NHS Foundation Trust
Primary Subject Heading :	Geriatric medicine
Secondary Subject Heading:	Diagnostics, Global health, Health informatics, Health policy, Health services research
Keywords:	Frailty, Secondary Care, Measure, Administrative, Risk Prediction

BMJ Open

Title: The Dr Foster Global Frailty Score: An international retrospective observational study developing and validating a risk prediction model for hospitalised older persons from administrative datasets.

John Tshon Yit Soong¹, Jurgita Kaubryte², Danny Liew³, Carol J. Peden⁴, Alex Bottle⁵, Derek Bell⁶ Carolyn Cooper⁷, Adrian Hopper⁷

Corresponding author: John Tshon Yit Soong

Address: NUHS Tower Block, 10th Floor, Advanced Internal Medicine, 1E Kent Ridge Road, 119228, Singapore

Email: John_Soong@nuhs.edu.sg

Telephone number: +6597328267

Word Count: 3420

Keywords: Frailty, Secondary Care, Measure, Administrative, Risk prediction

Authors Affiliations

1. National University Hospital, Singapore

2. Dr Foster Ltd, London, United Kingdom

3. School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia

4. Keck School of Medicine, University of Southern California, Los Angeles, USA.

5. School of Public Health, Faculty of Medicine, Imperial College London

6. The National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) Northwest London

7. Guy's and St Thomas' NHS Foundation Trust

Structured abstract 300 words. (300 words)

Objectives. This study aimed to examine the prevalence of frailty coding within the Dr Foster Global Comparators (GC) international database. We then aimed to develop and validate a risk prediction model, based on frailty syndromes, for key outcomes using the GC dataset.

Design. A retrospective cohort analysis of data from patients over 75 years of age from the GC international administrative data. A risk prediction model was developed from the initial analysis based on seven frailty syndrome groups and their relationship to outcome metrics. A weighting was then created for each syndrome group and summated to create the Dr Foster Global Frailty Score. Performance of the score for predictive capacity was compared with an established prognostic comorbidity model (Elixhauser) and tested on another administrative database Hospital Episode Statistics (2011-2015), for external validation.

Setting. 34 hospitals from nine countries across Europe, Australia, the UK and USA.

Results. Of 6.7 million patient records in the GC database, 1.4 M (20%) were from patients aged 75 years or more. There was marked variation in coding of frailty syndromes between countries and hospitals. Frailty syndromes were coded in 2-24% of patient spells. Falls and fractures was the most common syndrome coded (24%). The Dr Foster Global Frailty Score was significantly associated with in-hospital mortality, 30-day non-elective readmission and long length of hospital stay. The score had significant predictive capacity beyond that of other known predictors of poor outcome in older persons, such as co-morbidity and chronological age. The score's predictive capacity was higher in the elective group compared with non-elective, and may reflect improved performance in lower acuity states.

Conclusions: Frailty Syndromes can be coded in international secondary care administrative datasets. The Dr Foster Global Frailty Score significantly predicts key outcomes. This methodology may be feasibly utilised for case-mix adjustment for older persons internationally.

Article summary – strengths and limitations of this study

- This study is a large multicentre international study across Europe, Australia and the United States utilising a routinely collected administrative data with the aim of providing a simple model for case-mix adjustment for older persons in secondary care.
- The dataset used represent whole populations, and there was little missing data.
- Robust statistical methods were used and the Dr Foster Global Frailty Score was validated on an external dataset (Hospital Episode Statistics)
- Our model's predictive capacity is comparable with other recent single country studies
- The variability in frequency of coding of frailty syndromes across countries may limit reliability and generalisability.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Introduction

Increased population ageing stems from a range of diverse factors, including lower childhood and adult mortality, improved fertility, migration, relative world peace and improved health and social care(1). For many, this phenomenon is associated with good health and quality of life(2). For others, there is increased co-morbidity(3), functional decline(4) and poorer quality of life. Differences in the health and function of individuals as they grow older is not readily explained by chronological age(5). Frailty is common and increasingly prevalent with advancing age and often defined as a decrease in physiological reserve over a life-course. Using this pathophysiological model of frailty several underlying processes have been described, including chronic inflammation(6, 7), sarcopaenia(8), anaemia(9) and coagulopathy, steroid hormone dysregulation(10, 11), low vitamin D levels, malnutrition(12, 13) and insulin resistance(14, 15) underpin frailty. These deficits can accumulate over the course of life-time exposure to environmental stressors. Frailty manifests as a combination of the pathophysiological consequence of inbuilt senescence and the accumulation of defects throughout a life-course. Frailty ultimately results in recognisable clinical manifestations such as recurrent falls and delirium and is associated with increased mortality, disability and high resource utilisation(16). Conceptually and operationally, frailty appears to be related to, but distinct from, disability, co-morbidity and chronological age(17). The importance of contributing environmental factors and the psycho-social impact of frailty are increasingly being recognised(18) as important.

Assessing frailty in the hospital setting is challenging. Many frailty assessment scores tested have poor reliability, require large amounts of data, or specialised equipment and have poor predictive performance(19). Given these limitations, there is increasing interest in utilising routinely collected administrative data for risk prediction modelling for those at risk of frailty, particularly older persons. Risk prediction models estimate the likelihood of developing a specific outcome, or having a specific condition. These models can be utilised for the purposes of case-mix adjustment or risk-stratification. Case-mix risk adjustment allows for more accurate comparison of organisational performance by reducing confounding bias. For example, when considering mortality as an outcome measure for organisations, patient-specific factors such as illness severity influence outcome, and must be taken into account. Risk stratification allows for possible segmentation of a population into different levels of risk for developing a specific outcome. This segmentation can then be used to health system planning or inform targeting of resources.

BMJ Open

In older persons, risk prediction models often utilise chronological age(20), co-morbidity(21) and functional dependence(22) as patient-specific factors for risk prediction. In the context of long-term care (e.g. nursing homes), risk prediction models often utilise functional dependence as a patient factor, to aid appropriate health resource utilisation and costing (23-25). A recent English study in the primary care setting derived an electronic frailty index from patient records with predictive validity for nursing home admission, hospitalisation and mortality (26). In secondary care, risk prediction models for older persons have utilised measures of demographics, and co-morbidity in the form of diagnostic (27-30) and procedural codes(31, 32), as well as prescription data(29, 33). Frailty syndromes are recognised as clinical manifestations of frailty(34). These common presentations in older persons include recurrent falls, cognitive impairment, incontinence and pressure ulcers, are associated with poor outcome. Recent studies have explored the coding of frailty syndromes within secondary care administrative datasets in the United Kingdom, and its association with in-hospital mortality, non-elective readmission and functional decline.(35, 36)

In this study, we explored the prevalence of coded frailty syndromes within an international secondary care dataset to develop and validate a risk prediction model based on frailty syndromes for the outcomes of mortality, non-elective readmission and long length of stay. We sought to compare the performance of this model with an established prognostic co-morbidity model for the above outcomes.

Methods

Data Sources

The Global Comparators programme at Dr Foster® was an international hospital collaborative which ran from 2011-2017, focused on pooling and benchmarking data, knowledge-sharing networks and health services research to better understand variations in outcomes and disseminate international best practice. The hospitals within the collaboration contributed administrative data to be pooled within the Global Comparators dataset, using established data cleaning processes(37). This provided a rich patient-level dataset containing demographics, diagnostic codes, procedure codes and outcomes, collected primarily for administrative purposes, such as operational needs and costing. To develop and test Dr Foster Global Frailty Score, Global Comparators data were extracted from 34 hospitals in nine countries: Australia, Belgium, Denmark, Finland, Italy, Netherlands, Norway, United Kingdom and United States.

Hospital Episode Statistics (HES) is an English national administrative dataset, housed within the safe haven of NHS Digital, and contains administrative data from English hospital trusts, which are cleaned and securely stored. This dataset was used to validate the Dr Foster Global Frailty Score. We included the 138 English acute non-specialist hospital trusts, excluding hyper-specialist hospitals (e.g. single pathology quaternary referral units) and mental health units, which have different case-mix.

Study Population

Patient records were included in the analysis if they fulfilled the criteria of patient age \geq 75 years and required an elective or non-elective hospital admission of 24 hours or more. Patient spells were excluded if the age, sex or length of stay was recorded as missing or invalid, or the admission was planned and the patient discharged home on the same day, or the admission was unplanned but no procedure was undertaken and the patient went home after recorded length of stay less than 2 days. This was to exclude records with inadequate quality data, and patients admitted into observations units or day-case attendances. Overall, 0.17% of data were missing within the derivation dataset.

Coding frailty

Each patient record corresponded to a spell covering a patient's total length of stay at a hospital. Within HES, these were aggregated into 'superspells' (admissions), which encompass the full length of stay for the patient across all hospital trusts before their final discharge. Seven groups of frailty syndromes were chosen to represent the common domains used in comprehensive geriatric assessment: Dementia and Delirium, Mobility Problems, Falls and Fractures, Pressure Ulcers and Weight Loss, Incontinence, Dependence and Care, as well as Anxiety and Depression were coded within International Statistical Classification of Diseases, Injuries and Causes of Death (ICD) diagnostic coding groups, and within all available diagnostic fields. As the Global Comparators dataset comprised hospitals which utilised different revisions of ICD (revision 9 and 10), equivalent diagnostic codes for both versions were compiled. These diagnostic coding groups were modified from previously published work on English national administrative data(35). Appendix 1 displays the full list of ICD-9 and ICD-10 diagnostic codes utilised to code for the seven frailty syndrome groups. Trends by calendar year and month, country and frailty syndrome group were plotted to investigate frequency of coding for the years 2010-2014. Based on this analysis, years 2012-2013 were selected as having stable coding for multivariable risk prediction modelling within the derivation dataset.

 BMJ Open

Name	Time span	Description	Comments
Age	Current spell	Age on admission	
Gender	Current spell	Gender on admission	
Country	Current Spell	Country from which hospital contributed	Nominal; Countries were:
		data	Australia
		data	Belgium
			Denmark
	6		Finland
		t .	Italy
			Netherlands
			Norway
			United Kingdom
		- N	United States
Dementia & Delirium		0.5	Final Dr Foster Global Frailty
Mobility Problems	12-month historical binary	A binary flag indicating whether a relevant	Score is weighted (see risl
Falls & Fractures	indicator	diagnosis has been received during any	stratification models section fo
Pressure Ulcers & Weight	-	inpatient spell in the past 12 months	further details)
Loss			
Dependence and Care			
Anxiety & Depression			
Co-morbidity (Elixhauser)	12-month historical score	A weighted score (see risk stratification	Integer

				models section for further details)	
Number	of	previous	12-month historical count	The number of emergency admission	Integer
admissions				spells in the previous 12 months,	
				excluding the current spell	

Table 2: Predictor outputs for frailty risk prediction model (dependent variables)

Name	Time span	Description	Comments
In-hospital mortality	Current spell	Indicates if the discharge method was death	
30-day non-elective readmission	30 days from discharge	Indicates if the patient had an emergency	Spells that ended in death are
		admission with admission date between 1 and	excluded from the analysis
		30 days following the discharge date of the	
		index admission	
Long length of stay	Current spell	Upper quartile length of hospital stay for	
		country	
		5	

Risk Models

Within the Global Comparators dataset, 30 separate regression models were undertaken, to account for admission status, frailty, Elixhauser co-morbidity and combination of frailty and Elixhauser for the three outcomes above(Figure 1).. The characteristics of predictor and outcome variables included within the models are described in Tables 1 and 2. Elective and non-elective hospital admission populations were modelled separately. A two-step process for each outcome was utilised to model the frailty and comorbidity scores. First, binary logistic regression was utilised to ascertain odds ratios (ORs) for each frailty syndrome group and each outcome, within the population subgroups separately (elective and non-elective). The natural log of OR (*In* OR) was used to create weights for each frailty syndrome group, using the smallest *In* OR as reference (weighted 1.0). Secondly, the summation of the weights for each frailty syndrome group was utilised to create a frailty score. The patient-level frailty score was then included within a multivariable logistic regression model, adjusted for age, gender and country, for each outcome. Figure 2 illustrates an example of this two-step process for the outcome of upper quartile length of stay.

The Elixhauser co-morbidity score was calculated for each outcome using previously described methods(38). To provide comparison, the Elixhauser co-morbidity score was then included within a multivariable logistic regression model, adjusting for age, gender and country, for each outcome. Finally, both the Elixhauser co-morbidity and Dr Foster Global Frailty Score were then included within a multivariable logistic regression model, adjusted for age, gender and country, for each outcome. The predicted probabilities from these regression models were utilised to calculate Area under the Receiver Operator Characteristic Curves (AUC) as a measure of predictive capacity for each outcome. This two-step process was repeated for the Dr Foster Global Frailty Score on HES years 2011-2015 for external validation.

Performance metrics

Multicollinearity between predictor variables was investigated by variance inflation factor (VIF), where VIF scores of over three were taken to denote unacceptable collinearity. The Hosmer-Lemeshow statistic was calculated for each model to ascertain model calibration. The Wald statistic was calculated to explore the explanatory power of the Dr Foster Global Frailty Score, Elixhauser co-morbidity Score, age, country and gender for each of the three outcomes. Statistical analysis was undertaken using the R Statistical Package.

Patient and Public Involvement

Patients were not involved in this study

Results

Descriptive statistics

Of the 6,739,790 spells within the Global Comparators Database from 2010-2014, 1,366,187 (20%) involved patients aged \geq 75 years. There was variation in frequency of coding of frailty syndromes across the countries. The four countries with most volume of coded frailty syndromes were Australia, Belgium, the United Kingdom and the United States. Figure 3a & 3b describes the percentage of spells of patients \geq 75 years to total volume by country and year within the database, and the frequency of coding for frailty syndromes by country for the year 2013.

Coded Frailty Syndromes

Frailty syndromes were coded in 2-24% of patient spells among patients aged \geq 75 years from 2010-2014 within the Global Comparators database: Falls and Fractures N=326,528 (24%); Dementia and Delirium N=215,629 (16%); Anxiety and Depression N=87,732 (6%); Pressure Ulcers and Weight Loss N=66,208 (5%); Incontinence N=50,277 (4%); Mobility Problems N=39,479 (3%); and Dependence and Care N=28,294 (2%). At least one frailty syndrome was present in 538,766 (39%) of spells.

Derivation Cohort

Of the 294,998 patient spells from 2012-2013 for those aged \geq 75 years used in the predictive models within the derivation cohort from the Global Comparators Dataset, 221 441 (75%) were non-elective admissions and 158 595 were female (54%). Patient spells that ended with inpatient mortality (42,354, 14%) of were excluded from the predictive models exploring non-elective readmission.

Dr Foster Global Frailty Score

Negative scores were set to 0 and positive scores were not capped. The Dr Foster Global Frailty Score varied based on outcome and population (elective and non-elective), and remained significant after multivariable adjustment. Table 3 summarises the ORs of the Dr Foster Global Frailty Score and Elixhauser Co-morbidity Score after multivariable adjustment for age, gender and country for the outcomes of in-hospital mortality, 30-day non-elective readmission and upper quartile length of stay (for country), by elective and non-elective

population groups. Appendix 2 displays full multivariable adjustment of the Dr Foster Global Frailty Score.

Table 3: Odds ratios for Elixhauser and Dr Foster Global Frailty Score after multivariable adjustment for age, gender and country

	Outcome	Score	Population	Odds	Lower	Upper	P-
		range		Ratio	CI	CI	value
Dr Foster	In-hospital	0-11	Elective	1.277	1.247	1.308	<0.001
Global	mortality	0-13	Non-elective				
Frailty				1.109	1.103	1.116	<0.001
Score	30-day non-	0-6	Elective	1.106	1.060	1.154	<0.001
	elective	0-4	Non-elective				
	readmission			1.056	1.031	1.082	<0.001
	Upper	0-16	Elective	1.365	1.347	1.382	<0.001
	Quartile	0-17	Non-elective				
	Length of						
	Stay (for						
	country)			1.199	1.194	1.205	<0.001

Elixhauser			Elective	1.309	1.290	1.329	<0.001
CO-	mortality		Non-elective	1.130	1.126	1.133	<0.001
morbidity	30-day non-		Elective	1.144	1.130	1.158	<0.001
score	elective		Non-elective				
	readmission			1.045	1.042	1.048	<0.001
	Upper		Elective	1.101	1.097	1.105	<0.001
	quartile length of						
	stay		Non-elective				
	(for country)			1.069	1.068	1.071	<0.001

When both the Dr Foster Global Frailty Score and Elixhauser co-morbidity Score were included in multivariable risk adjustment models for age, gender and country, the Dr Foster Global Frailty Score remained significant for the outcomes of in-hospital mortality and upper quartile length of stay, but not for 30-day non-elective readmission (Table 4).

-		-	Odds	Lower		
Outcome	Population	Score	Ratio	CI	Upper Cl	P-value
In-hospital	Elective	Elixhauser	1.283	1.263	1.304	<0.001
mortality		Frailty	1.114	1.085	1.144	<0.001
	Non-elective	Elixhauser	1.123	1.119	1.126	<0.001
		Frailty	1.058	1.052	1.065	<0.001
30-day non-	Elective	Admission	4.070	1 00 4	1.014	<0.001
elective		History*	1.273	1.234	1.314	
readmission		Elixhauser	1.142	1.128	1.157	<0.001
		Frailty	1.032	0.988	1.077	0.160
	Non-elective	Admission				<0.001
		History*	1.240	1.228	1.252	
		Elixhauser	1.045	1.042	1.048	<0.001
		Frailty	1.024	1.000	1.049	0.052
Upper	Elective	Elixhauser	1.081	1.077	1.085	<0.001
quartile		Frailty	1.243	1.227	1.260	<0.001
length of stay	Non-elective	Elixhauser	1.055	1.053	1.056	<0.001
		Frailty	1.137	1.131	1.142	<0.001
*Admission his	tory included in r	nultivariable m	nodel explori	ng 30-day n	on-elective re	admission

Table 4: Odds ratios for Elixhauser and Dr Foster Global Frailty Score after multivariable adjustment for age, gender and country with both scores in model

The predictive capacity of the Dr Foster Global Frailty Score and Elixhauser co-morbidity score are compared in Table 5. When the Dr Foster Global Frailty Score and Elixhauser co-morbidity score are both included in a multivariable model adjusted for age, gender and country, the predictive capacity is moderate to good. The predictive capacity of the Elixhauser co-morbidity score generally exceeds that of the Dr Foster Global Frailty Score for all three outcomes.

Table 5: Area under the Receiver Operator Statistic Curve for outcomes by Elixhauser score,Dr Foster Global Frailty Score and population within Global Comparators dataset

Global Comparators Dataset	Elixhauser		Dr Foster Global Frailty Score		Elixhauser and Dr Foster Global Frailty Score	
Outcome/AUC	Elective	Non- elective	Elective	Non- elective	Elective	Non- elective
In-hospital mortality	0.80	0.69	0.70	0.62	0.81	0.69
30-day non-elective readmission*	0.67	0.64	0.64	0.63	0.67	0.64
Upper quartile length of stay	0.72	0.63	0.69	0.61	0.73	0.65

*Admission history included in multivariable model exploring 30-day non-elective readmission

The Wald statistic for independent variables included in final models by population and outcome are displayed in Table 6. Overall, the explanatory power of the Elixhauser co-morbidity score exceeds the Dr Foster Global Frailty Score for all three outcomes.

Table 6: Wald Statistic for independent variables of final models by outcome and population

		uartile length of stay	-	non-elective dmission	In-hospital mortality			
	Electiv	Non-	Electiv	Non-	Electiv	Non-		
	е	elective	е	elective	е	elective		
Age	31.1	31.4	0.0	0.4	46.4	747.2		
Sex	18.7	0.2	6.9	77.6	9.5	85.2		
Country	162.0	244.2	31.1	102.1	12.8	137.8		
Admissio n History	-	-	225.9	1888.4	-	-		
Dr Foster Global Frailty Score	1020.7	2579.9	2.0	3.8	62.7	318.2		
Elixhause r Score	1727.5	4075.1	420.4	848.4	973.9	4842.1		

Performance metrics

All our models displayed significance at p<0.05 for the Hosmer-Lemeshow tests for goodness-of-fit test. These findings have been similarly described by others who have produced models on large data sets as the test is recognised to detect unimportant differences(38, 39). None of the predictor variables demonstrated unacceptable collinearity(40).

Validation Cohort

Of the 7,195,950 patient spells from 2011-2015 used in the predictive models within the validation cohort from English national Hospital Episode Statistics data, 6,128,811 (85%) were non-elective admissions, and 564,182 (7.8%) patient spells ending with in-hospital mortality were excluded from predictive models exploring non-elective readmission.

The Dr Foster Global Frailty Score remained significant after multivariable adjustment within the validation dataset. However, the predictive capacity and ORs were generally lower across all three outcomes compared to the derivation cohort. Table 7 summarises the ORs and AUC of the Dr Foster Global Frailty Score after multivariable adjustment for age, gender and calendar year for the outcomes of in-hospital mortality, 30-day non-elective readmission and upper quartile length of stay (for country), by elective and non-elective population groups. Appendix 3 displays full multivariable adjustment of the Dr Foster Global Frailty Score within the validation dataset.

Table 7: Odds ratios and for Area under the Receiver Operator Statistic Curve (AUC) for Global Frailty Score following multivariable adjustment for age, gender, calendar year by population subgroup and outcome

Outcome	Population	AUC	Odds	Lower	Upper	
			Ratio	CI	CI	P-value
In-hospital	Elective	0.649	1.173	1.171	1.174	<0.001
mortality						
	Non-elective	0.655	1.108	1.107	1.109	<0.001
30-day non- elective	Elective	0.630	1.045	1.044	1.047	<0.001
readmission						
	Non-elective	0.630	1.030	1.030	1.031	<0.001
Upper Quartile	Elective	0.676	1.193	1.192	1.193	<0.001
Length of Stay (for country)		RC	4			
	Non-elective	0.677	1.055	1.055	1.055	<0.001

*Admission history included in multivariable model exploring 30-day non-elective readmission

Discussion

Our study found that frailty syndromes are coded with variable frequency within a large (N≈1.3m) international dataset of hospitalised older persons (aged over 75 years) utilising readily available administrative data, with Falls & Fractures and Dementia & Delirium being the most frequently coded syndromes. This is consistent with a previous study using English administrative data(36). The Dr Foster Global Frailty Score was derived from these coded syndromes within this dataset, and further validated on an English national secondary care dataset (N≈7.2m). The score was significantly associated with in-hospital mortality, 30-day non-elective readmission and long length of hospital stay. The score's predictive capacity was generally higher in the elective group compared with the non-elective, and may reflect improved performance in lower acuity states.

1.

The ORs and predictive capacity in the validation cohort were generally lower than the derivation cohort, but are in keeping with other risk prediction models for older persons within the English secondary care administrative data(35, 41). There was marked variation in volume and frequency of coding for frailty syndromes across participating countries (Figure

2). These differences may reflect different coding practices and contrasting healthcare systems. These differences may contribute to poorer performance within the validation cohort. Nevertheless, within pooled data across all participating sites, the Dr Foster Global Frailty Score appears to significantly predict in-hospital mortality and upper quartile length of stay (for country) after multivariable adjustment for age, gender, country and co-morbidity.

When both the Elixhauser co-morbidity score and Dr Foster Global Frailty Score were included within multivariable adjustment, both scores remain statistically significant for the outcomes of in-hospital mortality and upper quartile length of stay, suggesting they are not collinear.

Although the setting for the validation cohort was sourced only from English data, it was a large dataset (N=~7m spells). After multivariable adjustment for age, gender and year, the Dr Foster Global Frailty Score remained significant for all three outcomes. Predictive power was demonstrated to be similar to a previous study(35), and comparable to the derivation cohort (Table 5).

In clinical practice, risk stratification in older persons for the secondary care setting often utilise demographics (including chronological age), physiological based track-and-trigger systems (e.g. National Early Warning Score(42)), biomarkers (e.g. troponin) and understanding about the prognosis of specific disease states(e.g. co-morbidity). When adjusting for case-mix between systems or at organisational level, registry(43) or administrative(28) data are often employed, as large scale high quality data from patient records are not readily available. Consequently, risk prediction models using administrative data have sought to differentiate risk by using diagnostic(27-30), procedural(31, 32) and more recently, prescribing codes(29, 33).

There are several risk models in the United States utilising frailty-specific groups of diagnostic codes within Medicare administrative data, Medicare Current Beneficiary Survey (MCBS) data and Veteran's Affairs (VA) administrative data. Examples of these risk prediction models include Johns Hopkins Adjusted Clinical Groups (ACG, Johns Hopkins University) frailty-defining diagnoses indicator(28) and High-Risk Diagnosis for the Elderly Scale(30). In the UK, studies exploring case-mix adjustment for older persons using administrative data have utilised HES as a data source, with diagnostic groups for multimorbidity(38) and complexity(44), as well as frailty(35, 41) being tested in the literature. Appendix 4 summarises the characteristics, setting, data sources, predictor and outcome variables and performance of recent case-mix studies for older persons utilising

BMJ Open

administrative data. Where predictive capacity is known, the Dr Foster Global Frailty Score performs comparably if not favourably.

Our study benefits from being a large multicentre international study across Europe, Australia and the United States that utilised routinely collected administrative data with the aim of case-mix adjustment for older persons in secondary care. The datasets represent whole populations, and there was little missing data. Our study employed robust statistical methods and included validation of the Dr Foster Global Frailty Score on an external dataset. It expands the diagnostic coding, provides external validation for a previous UK study(35) and extends it to include elective patients. The approach of targeting frailty syndromes for hospitalised patients has support in existing literature(45), and in keeping with national standards bodies recommendations in the UK(34, 46, 47). Additionally, our model's predictive capacity is not improved on by a recent UK study(41), and its predictive capacity is arguably more uniform across the three outcomes. However, we note that our model's predictive powers are not suitable for clinical risk prediction at the patient's bedside (AUC >0.80). Further investigation of appropriate cut-points based on desired model sensitivity and specificity for the above outcomes depending on how the model is used (e.g. health resource planning) represents future work.

However, some limitations warrant mention. The variability in frequency of coding of frailty syndromes across countries may limit reliability and generalisability, although the country of origin was accounted for in the multivariable regression. Further subgroup analysis in countries with similar frequency of coding, or hierarchical regression to account for clusters, may be the next step. The hospitals that contributed data to the Global Comparators dataset were mainly large academic centres with reputations of clinical excellence. As such, the quality of coding and patient outcomes represented may not be representative of other institutions. The score was developed on hospitalised populations of age \geq 75 years as the majority of frail older persons fall within this age-group, particularly in Western Europe. This score is therefore not validated in those who fall below 75 years of age. Additionally, the study focused on hospitalised patients of \geq 24 hours to exclude patients admitted to observational units, for investigations or procedures. There is increasing acceptance for the acute medical management of older persons in an ambulatory setting. This methodology will exclude same-day discharges, limiting generalisability.

The accuracy of coding in administrative data has been challenged, and sampling of local clinical units was not feasible. The Dr Foster Global Frailty Score was based on diagnostic codes and thus did not fully encompass all dimensions of frailty such as functional and

socio-environmental measures as these are not well coded in the administrative data at this time. Future work linking the datasets to pharmacy, social care, primary care and registry data may provide for a richer comprehensive case-mix adjustment. A small proportion of the validation cohort may have been duplicated from the derivation cohort (eight hospitals in calendar year 2013). However, using national data from several calendar years minimises the effect of this overlap. Lastly, We have not demonstrated population segmentation utilising the Dr Foster Global Frailty Score to show separation of risk for the three outcomes above, and this represents future work.

Our study adds to the existing literature regarding the secondary use of administrative data for case-mix adjustment in general, and for hospitalised older persons in particular. It links the clinically valid concept of frailty syndromes to a reproducible method of measurement within administrative datasets. The Dr Foster Global Frailty Score may potentially be used to routinely identify older persons at risk of adverse outcomes for the purposes of targeted resource allocation, commissioning or service development. It may form the basis of a global comparator of risk adjustment for older persons.

Conclusion

Frailty Syndromes can be feasibly coded in international secondary care administrative datasets. The Dr Foster Global Frailty Score based on coded frailty syndromes significantly predicts in-hospital mortality and upper quartile length of stay in international datasets, and additionally 30-day non-elective readmission in England's national hospital dataset. This methodology may be feasibly utilised for case-mix adjustment for older persons across the international setting.

Figures Legend

Figure 1: Summary of 30 risk prediction models undertaken, accounting for admission status, frailty and co-morbidity

Figure 2: Example of 2-step multivariable logistic regression process for the outcome of upper quartile length of stay.

Figure 3a: Percentage Volume of patients aged \geq 75 year to total volume by country and year within Global Comparators Dataset

Figure 3b: Frequency of coding for frailty syndromes by country for year 2013 within Global Comparators Dataset (colour scale by country) in patients aged \geq 75 years

Funding statement

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors

Competing interest statement

CP has shares in Fidelity Health, has been a consultant for Merck and the Institute for Healthcare Improvement.

Ethics approval

Data sharing agreements with all individual hospitals included were in place in order to receive the data. The data used in this study was collected for administrative purposes and anonymized. As per Governance Arrangements for Research Ethics Committees (GAfREC), research limited to secondary use of information previously collected in the course of normal care (without an intention to use it for research at the time of collection), provided that the patients or service users are not identifiable to the research team in carrying out the research.

Authors contribution

JTYS conceived study, designed analysis, interpreted results and wrote first draft. AH conceived study, designed analysis, interpreted results. JK, DL, CP and CC designed analysis, interpreted results and contributed to ongoing writing. AB and DB interpreted results and contributed to ongoing writing.

Data Sharing

The data used for this study was available due to data sharing agreements signed with the individual hospitals as part of their participation in the Global Comparators programme managed by Dr Foster. The Global Comparators programme no longer exists and therefore data sharing agreements are no longer in place to allow for supplementary data sharing.

Acknowledgements

No further acknowledgment

References

1. World Population Ageing. United Nations, Department of Economic and Social Affairs, Population Division; 2013.

2. Survey of public attitudes and behaviours towards the environment. Department for Environment, Food and Rural Affairs (Defra); 2011.

3. Marengoni A, Angleman S, Melis R, Mangialasche F, Karp A, Garmen A, et al. Aging with multimorbidity: a systematic review of the literature. Ageing Res Rev. 2011;10(4):430-9.

4. Family Resources Survey. Department for Work & Pensions; 2014/2015.

5. Lacas A, Rockwood K. Frailty in primary care: a review of its conceptualization and implications for practice. BMC Medicine. 2012;10(1):4.

6. Maggio M, Guralnik J, Longo D, Ferrucci L. Interleukin-6 in aging and chronic disease: a magnificent pathway. J Gerontol A Biol Sci Med Sci. 2006;61(6):575-84.

7. Bruunsgaard H, Bjerregaard E, Schroll M, Pedersen B. Muscle Strength After Resistance Training Is Inversely Correlated with Baseline Levels of Soluble Tumor Necrosis Factor Receptors in the Oldest Old. Journal of the American Geriatrics Society.52(2):237-41.

8. Cesari M, Leeuwenburgh C, Lauretani F, Onder G, Bandinelli S, Maraldi C, et al. Frailty syndrome and skeletal muscle: results from the Invecchiare in Chianti study. Am J Clin Nutr. 2006;83(5):1142-8.

9. Roy CN. Anemia in Frailty. Clin Geriatr Med. 2011;27(1):67-78.

10. Baylis D, Bartlett DB, Syddall HE, Ntani G, Gale CR, Cooper C, et al. Immune-endocrine biomarkers as predictors of frailty and mortality: a 10-year longitudinal study in community-dwelling older people. Age (Dordr). 2012.

11. Varadhan R, Walston J, Cappola AR, Carlson MC, Wand GS, Fried LP. Higher levels and blunted diurnal variation of cortisol in frail older women. J Gerontol A Biol Sci Med Sci. 2008;63(2):190-5.

12. Kaiser M, Bandinelli S, Lunenfeld B. Frailty and the role of nutrition in older people. A review of the current literature. Acta Biomed. 2010;81 Suppl 1:37-45.

13. Hubbard RE, Lang IA, Llewellyn DJ, Rockwood K. Frailty, body mass index, and abdominal obesity in older people. J Gerontol A Biol Sci Med Sci. 2010;65(4):377-81.

14. Fulop T, Larbi A, Witkowski J, McElhaney J, Loeb M, Mitnitski A, et al. Aging, frailty and agerelated diseases. Biogerontology. 2010;11(5):547-63.

15. Abbatecola AM, Paolisso G. Is there a relationship between insulin resistance and frailty syndrome? Curr Pharm Des. 2008;14(4):405-10.

16. Xue Q-L. The Frailty Syndrome: Definition and Natural History. Clinics in Geriatric Medicine.27(1):1-15.

17. Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J Gerontol A Biol Sci Med Sci. 2004;59(3):255-63.

18. Yu R, Wu W-C, Leung J, Hu SC, Woo J. Frailty and Its Contributory Factors in Older Adults: A Comparison of Two Asian Regions (Hong Kong and Taiwan). International Journal of Environmental Research and Public Health. 2017;14(10):1096.

19. Hogan DB, Maxwell CJ, Afilalo J, Arora RC, Bagshaw SM, Basran J, et al. A Scoping Review of Frailty and Acute Care in Middle-Aged and Older Individuals with Recommendations for Future Research. Canadian Geriatrics Journal. 2017;20(1):22-37.

20. Lunney JR, Lynn J, Hogan C. Profiles of Older Medicare Decedents. Journal of the American Geriatrics Society. 2002;50(6):1108-12.

21. Sharabiani MT, Aylin P, Bottle A. Systematic review of comorbidity indices for administrative data. Med Care. 2012;50(12):1109-18.

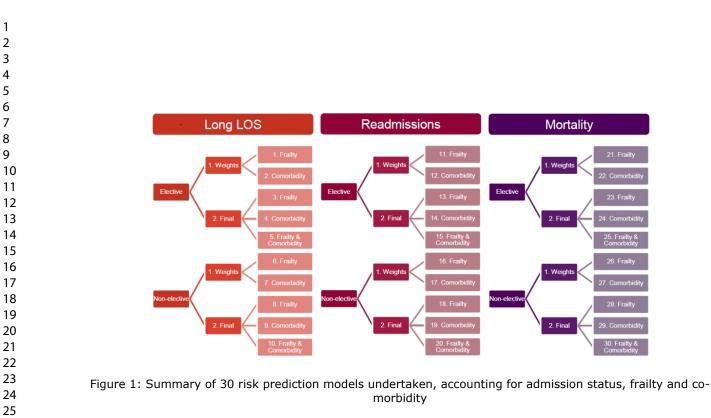
22. Eilertsen TB, Kramer AM, Schlenker RE, Hrincevich CA. Application of functional independence measure-function related groups and resource utilization groups-version III systems across post acute settings. Med Care. 1998;36(5):695-705.

2	
2	
4	23. Carpenter GI, Turner GF, Fowler RW. Casemix for inpatient care of elderly people:
5	rehabilitation and post-acute care. Casemix for the Elderly Inpatient Working Group. Age and
6	Ageing. 1997;26(2):123-31.
7	24. Eilertsen T, Kramer A, Schlenker R, Hrincevich C. Application of Functional Independence
8	Measure-Function Related Groups and Resource Utilization Groups-Version III Systems Across Post
9	Acute Settings. Med Care. 1998;36(5):695-705.
10	25. Poss J, Hirdes J, Fries B, McKillop I, Chase M. Validation of Resource Utilization Groups
11	Version III for Home Care (RUG-III/HC): Evidence From a Canadian Home Care Jurisdiction. Med Care.
12	2008;46(4):380-7.
13	26. Clegg A, Bates C, Young J, Ryan R, Nichols L, Ann Teale E, et al. Development and validation
14	
15	of an electronic frailty index using routine primary care electronic health record data. Age Ageing.
16	2016;45(3):353-60.
17	27. Bottle A, Aylin P, Bell D. Effect of the readmission primary diagnosis and time interval in
18	heart failure patients: analysis of English administrative data. European Journal of Heart Failure.
19	2014;16(8):846-53.
20	 McIsaac DI, Bryson GL, van Walraven C. Association of frailty and 1-year postoperative
21	mortality following major elective noncardiac surgery: A population-based cohort study. JAMA
22	Surgery. 2016;151(6):538-45.
23	29. Sternberg SA, Bentur N, Abrams C, Spalter T, Karpati T, Lemberger J, et al. Identifying frail
24	older people using predictive modeling. Am J Manag Care. 2012;18(10):e392-7.
25 26	30. Desai Mayur M, Bogardus Sidney T, Williams Christianna S, Vitagliano G, Inouye Sharon K.
26	Development and Validation of a Risk-Adjustment Index for Older Patients: The High-Risk Diagnoses
27 28	for the Elderly Scale. Journal of the American Geriatrics Society. 2002;50(3):474-81.
28 29	
29 30	31. Faurot KR, Funk MJ, Pate V, Brookhart MA, Patrick A, Hanson LC, et al. Using Claims Data to
31	Predict Dependency in Activities of Daily Living as a Proxy for Frailty. Pharmacoepidemiology and
32	drug safety. 2015;24(1):59-66.
33	32. Davidoff AJ, Hurria A, Zuckerman IH, Lichtman SM, Pandya N, Hussain A, et al. A Novel
34	Approach to Improve Health Status Measurement in Observational Claims-based Studies of Cancer
35	Treatment and Outcomes. Journal of geriatric oncology. 2013;4(2):157-65.
36	33. Dubois M-F, Dubuc N, Kröger E, Girard R, Hébert R. Assessing comorbidity in older adults
37	using prescription claims data. Journal of Pharmaceutical Health Services Research. 2010;1(4):157-
38	65.
39	34. Acute Care Toolkit 3: Acute medical care for frail older people. London: Royal College of
40	Physicians; 2012.
41	35. Soong J, Poots A, Scott S, Donald K, Bell D. Developing and validating a risk prediction model
42	for acute care based on frailty syndromes. BMJ Open. 2015;5(10):e008457.
43	
44	36. Soong J, Poots AJ, Scott S, Donald K, Woodcock T, Lovett D, et al. Quantifying the prevalence
45	of frailty in English hospitals. BMJ Open. 2015;5(10):e008456.
46	37. Bottle A, Middleton S, Kalkman Cor J, Livingston Edward H, Aylin P. Global Comparators
47	Project: International Comparison of Hospital Outcomes Using Administrative Data. Health Services
48	Research. 2013;48(6pt1):2081-100.
49	38. Bottle A, Aylin P. Comorbidity scores for administrative data benefited from adaptation to
50	local coding and diagnostic practices. J Clin Epidemiol. 2011;64(12):1426-33.
51	39. Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S. A comparison of goodness-of-fit tests for
52 52	the logistic regression model. Stat Med. 1997;16(9):965-80.
53 54	40. Fox J, Monette G. Generalized Collinearity Diagnostics. Journal of the American Statistical
54 55	Association. 1992;87(417):178-83.
55 56	41. Gilbert T, Neuburger J, Kraindler J, Keeble E, Smith P, Ariti C, et al. Development and
50 57	validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using
58	
59	electronic hospital records: an observational study. The Lancet. 2018;391(10132):1775-82.
60	
~~	

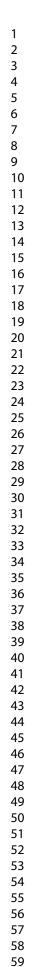
BMJ Open

42. Prytherch DR, Smith GB, Schmidt PE, Featherstone PI. ViEWS--Towards a national early warning score for detecting adult inpatient deterioration. Resuscitation. 2010;81(8):932-7.

43. Rudd AG, Lowe D, Hoffman A, Irwin P, Pearson M. Secondary prevention for stroke in the United Kingdom: results from the National Sentinel Audit of Stroke. Age and ageing. 2004;33(3):280-6.


44. Ruiz M, Bottle A, Long S, Aylin P. Multi-Morbidity in Hospitalised Older Patients: Who Are the Complex Elderly? . PLoS ONE. 2015;10(12).

45. Soong JTY, Poots AJ, Bell D. Finding consensus on frailty assessment in acute care through Delphi method. BMJ Open. 2016;6(10):e012904.


46. Banerjee J, Conroy S, Cooke MW. Quality care for older people with urgent and emergency care needs in UK. Emerg Med J. 2013.

47. Turner G. Recognising Frailty. British Geriatric Society; 2014.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

99x50mm (300 x 300 DPI)

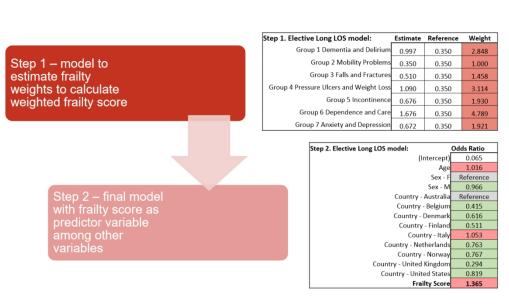
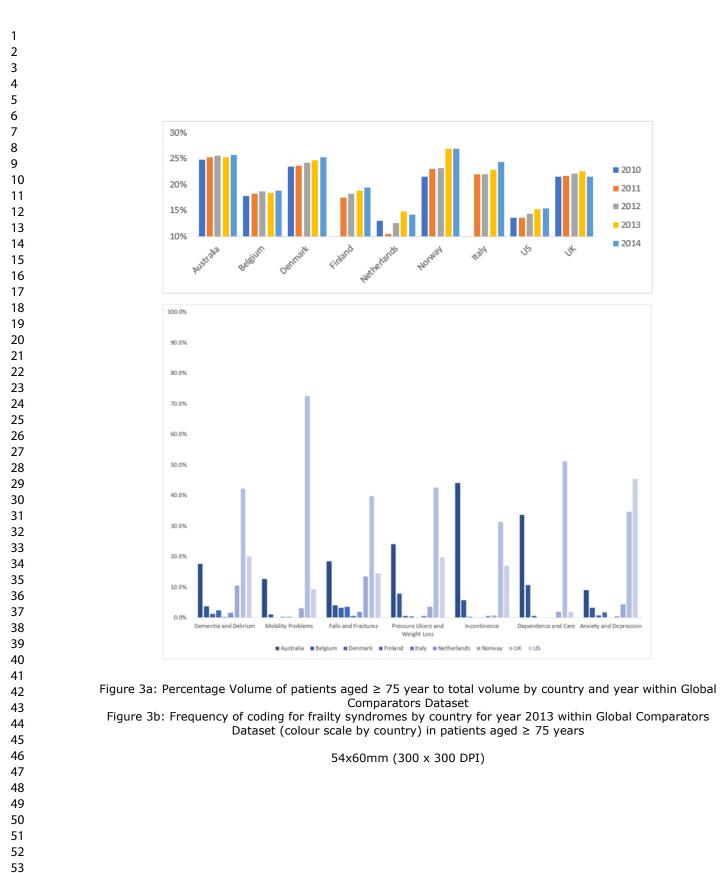



Figure 2: Example of 2-step multivariable logistic regression process for the outcome of upper quartile length of stay.

115x60mm (300 x 300 DPI)

Appendix 1 ICD-1) and ICD-9 coding	l for frailty s	vndromes
			ynu on os

Appendix 1 I	CD-10	and ICD-9 coding for frailty syndror	nes	
Group	ICD -10	Description (ICD-10)	ICD-9	Description (ICD-9)
1. Dementia	F00	Dementia in Alzheimer's disease	2904	Arteriosclerotic dementia
and Delirium	F01	Vascular dementia	2941-	Dementia in other diseases and
	F02	Dementia in other diseases classified	2942 2930-	unspecified dementia Subacute delirium and delirium due to
	1.02	elsewhere	2931	conditions classified elsewhere
	F03	Unspecified dementia	V4031	Wandering in diseases classified elsewhere
	F05	Delirium not induced by alcohol and other	3310	Alzheimer's disease
	G30	psychoactive Alzheimer's disease	3312	Senile degeneration of brain
	G31	Senile degeneration of brain, not elsewhere	2900-	Senile and presenile dementia,
	1 G31	classified Circumscribed brain atrophy	2903 33119	dementia with delirium Other frontotemporal dementia
	0			
	F04	Organic amnesic syndrome, not induced by alcohol and other psychoactive substances	33182	Dementia with lewy bodies
	R41	Other symptoms and signs involving cognitive functions and awareness	2908- 2909	Other senile psychotic conditions
			2948-	Other persistent mental disorders due
			2949 2940	to conditions classified elsewhere Amnestic disorder in conditions
				classified elsewhere
2. Mobility Problems	R26	Abnormalities of gait and mobility	7812	Abnormality of gait
	R29 8	Other and unspecified symptoms and signs involving the nervous and musculoskeletal systems	78199	Other symptoms involving nervous and musculoskeletal systems
3. Falls and	S32	Fracture of lumbar spine and pelvis	8054-	Fracture of lumbar vertebra without
Fractures	S33	Dislocation, sprain and strain of joints and	8055 8064-	mention of spinal cord injury Fracture of lumbar spine with spinal
	S42	ligaments of lumbar spine and pelvis	8065 8056-	cord injury Fracture of sacrum and coccyx withou
	342	Fracture of shoulder and upper arm	8056- 8057	mention of spinal cord injury
	S43	Dislocation, sprain and strain of joints and ligaments of shoulder girdle	8066- 8067	Fracture of sacrum & coccyx with spinal cord injury
	S52	Fracture of forearm	808-	Fracture of pelvis and III-defined
	S53	Dislocation, sprain and strain of joints and	809 8392-	fractures of bones of trunk Dislocation, thoracic & lumbar
		ligaments of elbow	8393	vertebra
	S62	Fracture at wrist and hand level	83941 -	Dislocation, coccyx and sacrum
	S63	Dislocation, sprain and strain of joints and	83952 846	Sprains & strains of sacroiliac region
		ligaments at wrist and hand level		
	S72	Fracture of femur	8472- 8474	Sprain of lumbar, sacrum, coccyx
	S73	Dislocation, sprain and strain of joint and ligaments of hip	8485	Sprain of pelvic
	W0-	Falls	810-	Fracture of clavicle, scapula, humerus
	W1 M8	Osteoporosis with pathological fracture	812 831-	Dislocation of shoulder, elbow, wrist,
	0 M8	Osteoporosis without pathological fracture	835 840-	finger, hip Sprains & strains of shoulder, upper
	1		843	arm, elbow, forearm, wrist, hand, hip, thigh
	R29 6	Tendency to fall, not elsewhere classified	83961 & 83971	Dislocation, sternum
	R55	Syncope and collapse	8484	Sternum sprain
	R54	Senility	813- 817	Fracture of radius & ulna, carpal bone(s), metacarpal bone(s), phalanges of hand
	M9 66	Fracture of bone following insertion of orthopaedic implant, joint prosthesis, or bone	820- 821	Fracture of neck of femur and other parts of femur
		plate	E88	Falls
	1	1	1	1

1
1
2
3
4
•
5
6
7
/
8
č
9
10
11
12
13
14
1 -
15
17
10
18
19
20
21
۲١
21 22 23 24 25 26 27 28 29 30
23
24
24
25
26
27
27
28
29
30
31
32
33
34
35
35
36
50
37
38
39
40
42
43
44
45
46
47
48
49
50
51
52
52
53
54
55
56
57
58
59

			7330	Osteoporosis
			7331	Pathological fracture
			V1588	History of fall
			7802	Syncope and collapse
			797	Senility without mention of psychosis
			9964	Mechanical complication of internal orthopedic device implant and graft
4. Pressure Ulcers and Weight Loss	L89	Decubitus ulcer and pressure area	7072	Pressure ulcer
	R63 4	Abnormal weight loss	7070	Decubitus ulcer
	R63 6	Insufficient intake of food and water due to self neglect	7832	Abnormal Loss of Weight
	Z72 4	Inappropriate diet and eating habits	V691	Inappropriate diet and eating habits
5. Incontinence	R32	Unspecified urinary incontinence	7883	Incontinence of urine
	R15	Faecal incontinence	7876	Incontinence of feces
6. Dependence and Care	Z74	Problems related to care-provider dependency	V604	No other household member able to render care
	Z75	Problems related to medical facilities and other health care	V63	Unavailability of other medical facilitie for care
7. Anxiety and Depression	F38	Other mood [affective] disorders	2969	Other & unspecified affective psychoses
	F41	Other anxiety disorders	3000	Anxiety states
	F43	Reaction to severe stress, and adjustment disorders	308	Acute reaction to stress
	F44	Dissociative [conversion] disorders	309	Adjustment reaction
	F06 4	Organic anxiety disorder	3001	Hysteria
	F32	Depressive episode	2962	Major depressive disorder, single episode
	F33	Recurrent depressive disorder	2963	Major depressive disorder, recurrent episode
	F20 4	Post-schizophrenic depression	2965	Bipolar affective disorder, depressed
	F25 1	Schizoaffective disorder, depressive type	3004	Dysthymic disorder
	F31	Bipolar affective disorder	3090	Adjustment disorder with depressed mood
	F34 1	Dysthymia	3091	Prolonged depressive reaction
	F41 2	Mixed anxiety and depressive disorder	3092	Adjustment reaction with predominan disturbance of other emotions
	F43 2	Adjustment disorders	2968	Manic-depressive psychosis, other & unspecified
			2980	Depressive type psychosis
			3011	Affective personality disorder
			311	Depressive disorder, not elsewhere classified

Appendix 2: Odds Ratios for Frailty Score after adjustment for age, gender, country for the outcomes of in-hospital mortality, 30-day non-elective readmission and upper quartile length of stay (for country), by elective and non-elective population groups within the Global Comparators Dataset (Derivation)

In-hospital mortality

Table 12: Odds Ratios of Frailty Score for in-hospital mortality adjusted for age, gender country within each subgroup (elective and non-elective)

Elective

	Odds Ratio	Lower Cl	Upper Cl	P-value
(Intercept)	0.001	0.000	0.001	<0.001
Age	1.041	1.029	1.054	<0.001
Sex - F	Reference			
Sex - M	1.441	1.277	1.626	<0.001
Country - Australia	Reference			
Country - Belgium	1.039	0.836	1.292	0.730
Country - Denmark	0.913	0.668	1.248	0.569
Country - Finland	0.318	0.227	0.446	<0.001
Country - Italy	0.702	0.496	0.994	0.046
Country - Netherlands	1.413	1.107	1.803	0.005
Country - Norway	0.616	0.492	0.770	<0.001
Country - United Kingdom	0.566	0.467	0.686	<0.001
Country - United States	0.838	0.686	1.023	0.082
Frailty Score	1.277	1.247	1.308	<0.001

Non-elective

Frailty Score	1.277	1.247	1.308	<0.001
Non-elective				
	Odds Ratio	Lower Cl	Upper Cl	P-value
(Intercept)	0.002	0.002	0.003	<0.001
Age	1.040	1.037	1.043	<0.001
Sex - F	Reference			
Sex - M	1.305	1.265	1.346	<0.001
Country - Australia	Reference			
Country - Belgium	1.338	1.213	1.478	<0.001
Country - Denmark	1.480	1.371	1.598	<0.001
Country - Finland	0.936	0.864	1.015	0.109
Country - Italy	1.682	1.462	1.936	<0.001
Country - Netherlands	1.525	1.361	1.709	<0.001
Country - Norway	1.001	0.942	1.062	0.987
Country - United Kingdom	1.492	1.419	1.570	<0.001
Country - United States	0.897	0.844	0.953	<0.001
Frailty Score	1.109	1.103	1.116	<0.001

30-day non-elective readmission

Table 13: Odds Ratios of Frailty Score for 30-day non-elective readmission adjusted for age, gender country within each subgroup (elective and non-elective)

Elective

	Odds Ratio	Lower Cl	Upper Cl	P-value
(Intercept)	0.037	0.021	0.065	<0.001
Age	1.002	0.995	1.009	0.622
Sex - F	Reference			
Sex - M	1.159	1.087	1.236	<0.001
Country - Australia	Reference			
Country - Belgium	0.893	0.758	1.053	0.179
Country - Denmark	1.573	1.339	1.847	<0.001
Country - Finland	1.153	1.003	1.326	0.045
Country - Italy	0.500	0.391	0.640	<0.001
Country - Netherlands	1.174	0.988	1.395	0.068
Country - Norway	1.616	1.434	1.821	<0.001
Country - United Kingdom	1.094	0.975	1.228	0.125
Country - United States	1.323	1.168	1.498	<0.001
Admission History	1.453	1.411	1.495	<0.001
Frailty Score	1.106	1.060	1.154	<0.001
Non-elective		6		

Non-elective

	Odds Ratio	Lower Cl	Upper Cl	P-value
(Intercept)	0.112	0.091	0.136	<0.001
Age	0.998	0.996	1.001	0.201
Sex - F	Reference			
Sex - M	1.167	1.137	1.198	<0.001
Country - Australia	Reference			
Country - Belgium	0.803	0.722	0.893	<0.001
Country - Denmark	1.317	1.231	1.408	<0.001
Country - Finland	0.995	0.931	1.063	0.879
Country - Italy	0.760	0.646	0.893	0.001
Country - Netherlands	0.774	0.683	0.877	<0.001
Country - Norway	1.582	1.507	1.660	<0.001
Country - United Kingdom	1.362	1.302	1.425	< 0.001
Country - United States	1.274	1.211	1.340	<0.001
Admission History	1.315	1.303	1.326	<0.001
Frailty Score	1.056	1.031	1.082	<0.001

Upper Quartile Length of Stay (for country)

Table 14: Odds Ratios of Frailty Score for Upper Quartile Length of Stay (for country) adjusted for age, gender country within each subgroup (elective and non-elective)

Elective

	Odds Ratio	Lower Cl	Upper Cl	P-value
(Intercept)	0.065	0.045	0.094	<0.001
Age	1.016	1.011	1.020	<0.001
Sex - F	Reference			
Sex - M	0.966	0.927	1.008	0.112
Country - Australia	Reference			
Country - Belgium	0.415	0.376	0.457	<0.001
Country - Denmark	0.616	0.549	0.691	<0.001
Country - Finland	0.511	0.467	0.558	<0.001
Country - Italy	1.053	0.953	1.162	0.310
Country - Netherlands	0.763	0.691	0.843	<0.001
Country - Norway	0.767	0.713	0.825	<0.001
Country - United Kingdom	0.294	0.273	0.316	<0.001
Country - United States	0.819	0.765	0.878	<0.001
Frailty Score	1.365	1.347	1.382	<0.001

Non-elective

Country - United States	0.819	0.765	0.878	<0.001
Frailty Score	1.365	1.347	1.382	<0.001
Non-elective				
	Odds Ratio	Lower Cl	Upper Cl	P-value
(Intercept)	0.284	0.245	0.330	<0.001
Age	0.995	0.993	0.996	<0.001
Sex - F	Reference		\mathbf{N}	<0.001
Sex - M	1.055	1.034	1.076	<0.001
Country - Australia	Reference		1	<0.001
Country - Belgium	1.766	1.658	1.881	<0.001
Country - Denmark	1.570	1.492	1.652	<0.001
Country - Finland	1.705	1.628	1.786	<0.001
Country - Italy	2.270	2.074	2.484	<0.001
Country - Netherlands	2.268	2.112	2.435	<0.001
Country - Norway	1.303	1.254	1.353	<0.001
Country - United Kingdom	1.508	1.459	1.559	<0.001
Country - United States	1.434	1.382	1.488	<0.001
Frailty Score	1.199	1.194	1.205	<0.001

Appendix 3: Odds Ratios for Frailty Score after adjustment for age, gender, calendar year for the outcomes of in-hospital mortality, 30-day non-elective readmission and upper quartile length of stay (for country), by elective and non-elective population groups in Hospital Episode Statistics dataset (Validation)

In-hospital mortality

Table 15: Odds Ratios of Frailty Score for in-hospital mortality adjusted for age, gender and calendar year within each subgroup (elective and non-elective)

Elective

	Odds Ratio	Lower Cl	Upper Cl	Z-value	P-value
(Intercept)	0.001	0.001	0.001	-338.153	0.000
Age	1.051	1.050	1.051	206.705	0.000
Sex - F	Reference				
Sex - M	1.274	1.267	1.281	84.839	0.000
Calendar Year - 2012	Reference				
Calendar Year - 2013	0.938	0.931	0.945	-16.172	0.000
Calendar Year – 2014	0.851	0.844	0.857	-40.603	0.000
Calendar Year – 2015 0.865		0.858	0.871	-36.727	0.000
Frailty Score	1.173	1.171	1.174	279.196	0.000

Non-elective

	Odds Ratio	Lower CI	Upper Cl	Z-value	P-value	
(Intercept)	0.001	0.001	0.001	-353.600	0.000	
Age	1.055	1.055	1.056	227.822	0.000	
Sex - F	Reference					
Sex - M	1.233	1.226	1.240	73.302	0.000	
Calendar Year - 2012	Reference					
Calendar Year - 2013	0.936	0.929	0.944 🧹	-16.598	0.000	
Calendar Year – 2014	0.850	0.844	0.857	-40.640	0.000	
Calendar Year – 2015	0.869	0.862	0.876	-35.371	0.000	
Frailty Score	1.108	1.107	1.109	315.847	0.000	
					T	

BMJ Open

30-day non-elective readmission

Table 16: Odds Ratios of Frailty Score for 30-day non-elective readmission adjusted for age, gender and calendar year within each subgroup (elective and non-elective)

Elective

	Odds Ratio	Lower Cl	Upper Cl	Z-value	P-value
(Intercept)	0.055	0.054	0.057	-186.458	0.000
Age	1.011	1.010	1.011	58.247	0.000
Sex - F	Reference				
Sex - M	1.119	1.114	1.123	53.787	0.000
Calendar Year - 2012	Reference				
Calendar Year - 2013	0.994	0.989	1	-1.918	0.055
Calendar Year – 2014	1.015	1.009	1.021	5.090	0.000
Calendar Year – 2015	1.018	1.012	1.024	6.228	0.000
Previous Emergency	0,				
Admissions	1.443	1.440	1.445	379.358	0.000
Frailty Score	1.045	1.044	1.047	77.860	0.000
on-elective					
	Odde Patio		Linner Cl	7 value	D value

Non-elective

	Odds Ratio	Lower Cl	Upper Cl	Z-value	P-value
(Intercept)	0.053	0.051	0.054	-191.317	0.000
Age	1.011	1.011	1.012	62.570	0.000
Sex - F	Reference				
Sex - M	1.121	1.117	1.126	54.752	0.000
Calendar Year - 2012	Reference				
Calendar Year - 2013	0.993	0.987	0.998	-2.526	0.012
Calendar Year – 2014	1.012	1.007	1.018	4.231	0.000
Calendar Year – 2015	1.015	1.010	1.021	5.218	0.000
Previous Emergency					
Admissions	1.439	1.436	1.442	376.406	0.000
Frailty Score	1.030	1.030	1.031	85.172	0.000

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Upper quartile length of stay

Table 17: Odds Ratios of Frailty Score for upper quartile length of stay adjusted for age, gender and calendar year within each subgroup (elective and non-elective)

Elective

	Odds Ratio	Lower Cl	Upper Cl	Z-value	P-value
(Intercept)	0.030	0.029	0.031	-258.331	0.000
Age	1.023	1.023	1.024	143.925	0.000
Sex - F	Reference				
Sex - M	0.940	0.937	0.944	-32.930	0.000
Calendar Year - 2012	Reference				
Calendar Year - 2013	0.975	0.970	0.980	-9.874	0.000
Calendar Year – 2014	0.891	0.886	0.895	-44.736	0.000
Calendar Year – 2015	0.872	0.868	0.877	-52.705	0.000
Frailty Score	1.193	1.192	1.193	593.715	0.000
on-elective					

Non-elective

	Odds Ratio	Lower Cl	Upper Cl	Z-value	P-value
(Intercept)	0.031	0.030	0.032	-255.862	0.000
Age	1.023	1.022	1.023	139.087	0.000
Sex - F	Reference				
Sex - M	0.948	0.944	0.951	-28.576	0.000
Calendar Year - 2012	Reference				
Calendar Year - 2013	0.979	0.974	0.984	-8.288	0.000
Calendar Year – 2014	0.896	0.891	0.900	-42.538	0.000
Calendar Year – 2015	0.878	0.874	0.883	-50.020	0.000
Frailty Score	1.055	1.055	1.055	602.049	0.000

BMJ Open

Author	Year	Country	Study population	Ν	Data Source	Outcome	Predictors	Model performance
Von Korff et al.(1)	1991	United States	Population based pharmacy data	122911	Administrative	Mortality and hospitalisation	Consensus based Chronic Disease Score(CDS)	
Rosen et al.(2)	2001	United States	Long-term facility resident (Veterans Affairs)	39839	Administrative (Patient Assessment File(PAF), Patient Treatment File(PTF), Extended Care File(ECF))	Decline in functional status	International Classification of Diseases, Ninth Revision Clinical Modification (ICD-9), demographics, treatments, activities of daily living	AUC for decline in functional status is 0.70
Desai et al.(3)	2002	United States	≥70 admitted to geriatric service	1376	Administrative (Management Information System)	Mortality	International Classification of Diseases system version 9 (ICD-9)	AUC 0.76 for mortality in derivation and AUV 0.68 in validation)
Kautter et al(4)	2004	United States	Medicare	17597	Administrative The Medicare Current Beneficiary Survey (MCBS)	Cost	ADLs, Long-term institution status, Age	
Roland et al.(5)	2005	United Kingdom	Individual patients aged ≥ 65, ≥ 75, and ≥ 85who had at least two emergency admissions	227206	Administrative (Hospital Episode Statistics)	Non-elective hospital readmission	Individual patients aged ≥ 65who had at least two emergency admissions	

Appendix 4 Case-mix adjustment for older persons utilising administrative data

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

							Deyo-Charlson, comorbidity	
Inoye et al.(6)	2008	United States	Primary care clinic	3919	Administrative	Non-elective hospital admission	score ≥ 2 , any prior hospitalization 6 or more primary care visits, ≥ 85 years unmarried status	AUC (
al.(6)	2008	States	CIINIC	3919	Administrative	Resource	unmarried status	
						utilisation		
						(number of	VES Frailty Score(13-item	
						physician visits	function-based self-report	
			Patients			in 3 months,	questionnaire The Adjusted	
			receiving			number of ED	Clinical Groups-diagnoses	
			Comprehensive			visits in a year,	based predictive model (ACG	
			Geriatric	6		and number of	Dx-PM) based on age, sex,	ACG pr
Sternberg			Assessment via		Administrative;	hospitalizations	diagnostic codes, and	frailty defi
et al.(7)	2012	Israel	OPD	221	and survey	in the year)	pharmacy data	VES – AL
					N/		Healthcare services, Berenson-	
							Eggers Type of Service	
							(BETOS) codes- American	
					Administrative		Medical Association's Current Procedural Terminology (CPT)	
					(Medicare) and Medicare		codes, or the CMS, Healthcare	
			US Medicare		Current		Common Procedure Coding	
			beneficiaries		Beneficiary		System (HCPCS level II) codes,	
Davidoff et		United	aged ≥ 65		Survey		demographic	AUC 0.9
al.(8)	2013	States	vears	14788	(MCBS),	Disability Status		disability
							AHRQ's (Agency for Healthcare	
							Research and Quality) Clinical	
					Administrative		Classification System	
					(Hospital	Non-elective	International Classification of	
Bottle et		United	Admitted with		Episode	hospital	Diseases system version 10	
al.(9)	2014	Kingdom	heart failure	84212	statistics)	readmission	(ICD-10)	
								AUC Mo
			US Medicare				Demographic measures,	0.74, A cardi
			beneficiaries				cardiovascular conditions,	catheteri
			aged ≥ 65			Mortality,	comorbidities, previous	0.79, Inc
Chrischilles		United	years admitted			cardiac	hospitalization, and Function	the Fl
	0044	Onicu	yours duringed	44440				

BMJ Open

catheterisation

Administrative

related indicators(FRI)

improved

Page 35 of 41

 et al.(10)

States

with acute

			myocardial					prediction model
			infarction					
						Mortality, Non-		
			Individual			elective hospital		
			patients aged ≥		Administrative	readmission,		
			65 with		(Hospital	Hospital	≥ 65 years old, who have at	
Ruiz et		United	hospital		Episode	admission	least 3 simultaneous diagnoses	
al.(11)	2015	Kingdom	admission	2788900	Statistics)		of major clinical conditions.	
							demographics, International	
							Classification of Diseases,	
							Ninth Revision Clinical	
							Modification (ICD-9)	
							diagnosis/procedure and	
					Administrative		durable medical equipment	
					and Medicare		codes for frailty-associated	
			> 05		Current		conditions, (Current Procedural	
Faurot et		United	≥ 65		Beneficiary	Functional	Terminology (CPT) and Healthcare Common Procedure	
al.(12)	2015	States	community dwelling	6391	Survey (MCBS)	decline	Coding System (HCPC))	
al.(12)	2015	States	uweining	0391		uecime	International Classification of	
							Diseases, Ninth Revision	
							Clinical Modification (ICD-9)	
							diagnosis & claims for skilled	
							nursing facility: creation of four	
							categories: 1)Cancer 2)Chronic	
Hope et		United	>70 admitted to		Administrative		Organ Failure3)Frailty4) Robust	
al.(13)	2015	States	ICU	47427	(Medicare)	Mortality	-	
								AUC of 0.624-
								0.659 for
								inpatient
						Mortality, non-		mortality, 0.63-
			>65 non-			elective		0.654 for
•			elective	0.000		readmission,		institutionalisatio
Soong et	0045	United	admission to	2 099		functional	ICD-10 coded Frailty	and 0.57–0.63 f
al.	2015	Kingdom	hospital	252	Administrative	decline	Syndromes	30-day

 BMJ Open

								emergency readmission
Briggs et al.(14)	2016	Ireland	Patients admitted with dementia to single hospital	929	Administrative	Cost	International Classification of Diseases system version 10 (ICD-10)	
			5	T.	Administrative Discharge Abstract Database, Ontario Health Insurance			
McIsaac et	0010		>65 years Elective non-		Plan Database, Registered Persons Database	Inpatient	John's Hopkins Adjusted Clinical Groups (ACG, Johns Hopkins University) frailty- defining diagnoses indicator,	
al.(15) Kim et al.(16)	2016	Canada United States	cardiac surgery ≥ 65 community dwelling	202811	Administrative (Medicare) and Medicare Current Beneficiary Survey (MCBS)	Mortality, disability, mobility impairment, and recurrent falls	International Classification of Diseases, Ninth Revision Clinical Modification (ICD-9) (Current Procedural Terminology (CPT) and Healthcare Common Procedure Coding System (HCPC)) to create a frailty index	
Gilbert et al.(17)	2018	United Kingdom	>75 years elective and non-elective admissions to hospital	1 013 590	Administrative Hospital Episode Statistics	Mortality, long length of stay, non-elective readmission	ICD-10 Codes identified by cluster analysis for Bed days, Hospital costs, and ICD-10 coded Frailty Syndromes	AUC 0.60 for day mortalit 0.68 for lon hospital sta 0.56 for 30-d readmission

References

 1. Von Korff M, Wagner EH, Saunders K. A chronic disease score from automated pharmacy data. Journal of Clinical Epidemiology.45(2):197-203.

2. Amy R, Jeanne W, Bei-Hung C, Dan B, Carter R, Arlene A, et al. Risk Adjustment for Measuring Health Outcomes: An Application in VA Long term Care. American Journal of Medical Quality. 2001;16(4):118-27.

3. Desai Mayur M, Bogardus Sidney T, Williams Christianna S, Vitagliano G, Inouye Sharon K. Development and Validation of a Risk-Adjustment Index for Older Patients: The High-Risk Diagnoses for the Elderly Scale. Journal of the American Geriatrics Society. 2002;50(3):474-81.

4. Kautter J, Pope GC. CMS Frailty Adjustment Model. Health Care Financing Review. 2004;26(2):1-19.

5. Roland M, Dusheiko M, Gravelle H, Parker S. Follow up of people aged 65 and over with a history of emergency admissions: analysis of routine admission data. BMJ. 2005;330(7486):289-92.

6. Inouye S, Md MPH, Zhang Y, Jones R, Shi P, Cupples L, et al. Risk Factors for Hospitalization Among Community-Dwelling Primary Care Older Patients: Development and Validation of a Predictive Model. Med Care. 2008;46(7):726-31.

7. Sternberg SA, Wershof Schwartz A, Karunananthan S, Bergman H, Mark Clarfield A. The identification of frailty: a systematic literature review. J Am Geriatr Soc. 2011;59(11):2129-38.

8. Davidoff AJ, Hurria A, Zuckerman IH, Lichtman SM, Pandya N, Hussain A, et al. A Novel Approach to Improve Health Status Measurement in Observational Claims-based Studies of Cancer Treatment and Outcomes. Journal of geriatric oncology. 2013;4(2):157-65.

9. Bottle A, Aylin P, Bell D. Effect of the readmission primary diagnosis and time interval in heart failure patients: analysis of English administrative data. European Journal of Heart Failure. 2014;16(8):846-53.

10. Chrischilles E, Schneider K, Wilwert J, Lessman G, O'Donnell B, Gryzlak B, et al. Beyond Comorbidity: Expanding the Definition and Measurement of Complexity Among Older Adults Using Administrative Claims Data. Medical Care. 2014;52:S75-S84.

11. Ruiz M, Bottle A, Long S, Aylin P. Multi-Morbidity in Hospitalised Older Patients: Who Are the Complex Elderly? . PLoS ONE. 2015;10(12).

12. Faurot KR, Funk MJ, Pate V, Brookhart MA, Patrick A, Hanson LC, et al. Using Claims Data to Predict Dependency in Activities of Daily Living as a Proxy for Frailty. Pharmacoepidemiology and drug safety. 2015;24(1):59-66.

13. Hope Aluko A, Gong Michelle N, Guerra C, Wunsch H. Frailty Before Critical Illness and Mortality for Elderly Medicare Beneficiaries. Journal of the American Geriatrics Society. 2015;63(6):1121-8.

14. Briggs R, Coary R, Collins R, Coughlan T, O'Neill D, Kennelly SP. Acute hospital care: how much activity is attributable to caring for patients with dementia? QJM. 2016;109(1):41-4.

15. McIsaac DI, Bryson GL, van Walraven C. Association of frailty and 1-year postoperative mortality following major elective noncardiac surgery: A population-based cohort study. JAMA Surgery. 2016;151(6):538-45.

16. Kim DH, Schneeweiss S, Glynn RJ, Lipsitz LA, Rockwood K, Avorn J. Measuring Frailty in Medicare Data: Development and Validation of a Claims-Based Frailty Index. The Journals of Gerontology: Series A. 2017:glx229-glx.

17. Gilbert T, Neuburger J, Kraindler J, Keeble E, Smith P, Ariti C, et al. Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: an observational study. The Lancet. 2018;391(10132):1775-82.

BMJ Open

For peer review only For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

TRAPOD^{Page}^{40 of 41}

TRIPOD Checklist: Prediction Model Development and Validation

Section/Topic	ltem		Checklist Item	Paç
Title and abstract				
Title	1	D;V	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.	2
Abstract	2	D;V	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	3
Introduction				
Background and objectives	3a	D;V	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	5
	3b	D;V	Specify the objectives, including whether the study describes the development or validation of the model or both.	5
Methods				
Source of data	4a	D;V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.	6
	4b	D;V	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	6-
Participants	5a 5b	D;V D;V	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres. Describe eligibility criteria for participants.	7
	50 5c	D,V D;V	Give details of treatments received, if relevant.	N
Outcome	6a	D;V	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	G
	6b	D;V	Report any actions to blind assessment of the outcome to be predicted.	N
Predictors	7a	D;V	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.	8-9 Apr
	7b	D;V	Report any actions to blind assessment of predictors for the outcome and other predictors.	N
Sample size	8	D;V	Explain how the study size was arrived at.	7
Missing data	9	D;V D	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	7
Statistical analysis methods	10a		Describe how predictors were handled in the analyses. Specify type of model, all model-building procedures (including any predictor selection),	
	10b 10c	D V	and method for internal validation. For validation, describe how the predictions were calculated.	8-
			Specify all measures used to assess model performance and, if relevant, to compare	
	10d	D;V	multiple models.	1
	10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	N
Risk groups	11	D;V	Provide details on how risk groups were created, if done.	N
Development vs. validation	12	V	For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors.	6-
Results				1
Participants	13a	D;V	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	11,
	13b	D;V	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	1
	13c	V	For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and outcome).	15-
Model development	14a	D	Specify the number of participants and outcome events in each analysis.	11- Aj
	14b	D	If done, report the unadjusted association between each candidate predictor and outcome.	2. N
Model specification	15a	D	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	11- Aj 2-
	15b	D	Explain how to the use the prediction model.	N
Model performance	16	D;V	Report performance measures (with CIs) for the prediction model.	15-
Model-updating	17	V	If done, report the results from any model updating (i.e., model specification, model performance).	N
Discussion				
Limitations	18	D;V	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	1
Interpretation	19a	V	For validation, discuss the results with reference to performance in the development data, and any other validation data.	16
	19b	D;V	Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.	16- Ар
Implications	20	D;V	Discuss the potential clinical use of the model and implications for future research.	18-
Other information Supplementary		1	Provide information about the availability of supplementary resources, such as study	۸ -
information	21 22	D;V D;V	protocol, Web calculator, and data sets. Give the source of funding and the role of the funders for the present study.	Ap 1-
Funding	22	D,V	Give the source of furnaling and the role of the funders for the present study.	- 19

TRIPOD Checklist: Prediction Model Development and Validation

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document.

tor peer terien ont