
Analysis strategy

We started by considering the time series referring to the entire population, without age
stratification, and we assessed which formulation of model (1) fitted our data best in
terms of AIC over all the study period. We first tested the usefulness of an
overdispersion parameter by comparing distributional assumptions (Poisson vs negative
binomial). Then, considering the mean is decomposed as µt = poptνt + λYt−1 + τXt−1,
we compared different expressions for the endemic component νt. Yearly seasonality for
weekly data is described through the general formulation
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where α is an intercept and γs and δs quantify the amplitude of the sine-cosine waves.
We first assessed the optimal number S of harmonic functions to be included, and in a
second stage we checked whether replacing the sine-cosine waves with rainfall and
temperature information better characterised differences across winters. Finally, we
extended the model to include multiple lags for covariates, relaxing the assumption of
temporal dependence limited to one week, as suggested by [1]. Denoting by Q the
number of lags considered, the mean was written as

µt = poptνt + λ

Q∑
q=1
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where wq(y) and wq(x) are normalized lag weights defined according to a geometric
structure, with parameters px and py shaping the respective exponential decays, i.e.

wq(y) =
py(1− py)

q−1∑Q
q=1 py(1− py)q−1

(3)

To avoid overfitting, we compared the performance of our different model
formulations in terms of one-step-ahead forecasts. Such performance is usually
measured in terms of scoring rules, where a score is intended as a penalty s(P, x), that
is a function of the observed counts x and predictive distribution P . When dealing with
count data, the logarithmic score log(s(P, x)) = −logPx is a standard choice: it is
simply a log transformation of the probability mass P at the observed count x [2,3].
Hence, for each choice of lags and endemic variables, we computed the logarithmic
scores for a set of forecasts and we took their mean as a summary measure.

The same model assessment procedure was replicated when looking at age-specific
counts: the model in equation (3) was simultaneously fitted to the five age groups,
initially assuming that all the coefficients could be age-specific. We first performed
model selection using AIC to evaluate whether some coefficients could be shared across
age groups: model fit was assessed in a sequential way, testing at each stage which of
the components led to a larger AIC reduction when associated with non age-specific
coefficients.
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