
Mathematical model derivation 

Here we describe the derivation of the mathematical model of single layer cell migration of 
Arciero et al. [1]. 

The cell layer is represented as a 2D compressible fluid, and the variable ρ describes the tissue 
density as a function of position x=(x,y) and t. The law of conservation of mass, 

 ∂ρ
∂t
+∇⋅ ρv( ) = q,  (1) 

where v is the velocity of the cell layer, includes the growth term q which may generally depend on 
space x, time t, or density ρ, and describes the net rate of change in the number of cells within the layer. 

Balance of linear momentum implies 

 
ρ
∂v
∂t
+ ρ v ⋅∇( )v = f +∇⋅T,  (2) 

where the tensor T represents the stresses within the cell layer and f accounts for the force of adhesion 
of the cell layer to the substrate. f is the result of the action exerted on a material element by the 
substrate, i.e. the negative of traction force. It is assumed that the f is negatively proportional to the cell 
layer velocity, 

 f = −bv,  (3) 

where b is a constant of adhesion. The cell layer is assumed to behave as a compressible inviscid fluid 
with the constitutive equation 

 T = −p(ρ)I,  (4) 

where p is the pressure within the cell layer. The pressure depends on the tissue density and is taken to 
be positive when cells are compressed and negative when cells are stretched. Assuming acceleration is 
negligible and substituting Eqs. 3 and 4 into Eq. 2 we obtain the equation 

 bv = − ʹp (ρ)∇ρ,  (5) 

which is the relation between the velocity of cells and the gradient of tissue density; it resembles 
Darcy’s law describing the flow of fluid through a porous medium. 

Substituting Eq. 5 into Eq. 1 results in the governing equation that describes the evolution of 
tissue density, 

 ∂ρ
∂t

=
1
b
∇⋅ ρ ʹp (ρ)∇ρ( )+ q.  (6) 

Given the presence of lamellipodia on the edge of the ectoderm, i.e. tissue boundary ∂Ω1
t,  we 

assume there is a constant force per unit length F (see Table 1 and Fig 2A-B) exerted outward at the 
tissue boundary that is equal in magnitude to that of the force of the cells in the interior. To express this 
boundary condition in mathematical notation, a function describing the forces within the tissue is 
necessary. In Arciero et al. [1], various constitutive relations for function p(ρ) were considered, but the 
main relation studied was 



 p(ρ) = k ln ρ / ρunstressed( ),  (7) 

where ρunstressed is a parameter described in Table 1, as it gave appropriate behavior at both large and 
small densities. Substituting the constitutive relation in Eq. 7 into Eq. 6 gives the governing equation 

 ∂ρ
∂t

=
k
b
Δρ + q.  (8) 

Notice that the Laplacian that appears in the governing equation is due to the constitutive 
relation chosen for the pressure and hence the governing equation should not be thought of as reaction-
diffusion equation. The Laplacian does not arise from any underlying diffusion process or Brownian 
motion and k/b should not be interpreted as a diffusion constant (Arciero et al. [1]). 

One boundary condition imposed on the boundary of the cell layer is that there is a constant 
force per unit length F outward directed against the substrate due to lamellipodia, which requires 
setting p = −F at the boundary [1,2] in Eq. 7 and then solving for ρ, resulting in 

 ρ = ρunstressede
−F /k,                                     on ∂Ω1

t.  (9) 

Another boundary condition imposed on the boundary of the cell layer is a Stefan condition, 
which describes the speed of the moving edge. This condition comes from Eq. 5 evaluated at Eq. 9 and 
is 

 
v ⋅n1 = −

k
b

1
ρunstressed

eF /k∇ρ
⎛

⎝
⎜

⎞

⎠
⎟⋅n1,                   on ∂Ω1

t.  (10) 

where v(x,t) is the velocity of the layer and n1(x,t) is the outward unit normal to the tissue boundary 
∂Ω1

t. 

On the edge of the computational domain ∂Ω2, we assume that there is no flux of cells, i.e. cells 
are unable to move beyond this boundary, and so we have the Neumann boundary condition 

 ∇ρ ⋅n2 = 0,                         on ∂Ω2,  (11) 

where n2(x,t) is the outward unit normal to the edge of the computational domain ∂Ω2.  

By segmenting cells in confocal images of the epithelial layer of a representative animal cap 
explant labeled with a GFP-membrane tag, we measured the tissue density in the epithelial layer at the 
initial imaging time point to be 0.0047 cells/µm2, so we take the initial condition to be 

 ρ(x, 0) = 0.0047,                         in Ω0.  (12) 
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