## SMAD signaling promotes melanoma metastasis independently of phenotype switching

Eylül Tuncer<sup>1</sup>, Raquel R. Calçada<sup>1</sup>, Daniel Zingg<sup>1</sup>, Sandra Varum<sup>1</sup>, Phil Cheng<sup>2</sup>, Sandra N. Freiberger<sup>2</sup>, Chu-Xia Deng<sup>3</sup>, Ingo Kleiter<sup>4</sup>, Mitchell P. Levesque<sup>2</sup>, Reinhard Dummer<sup>2</sup>, and Lukas Sommer

### Supplemental Experimental Procedures

Supplemental Table 1

Supplemental Table 2

Supplemental Table 3

Supplemental Table 4

Supplemental Table 5

Supplemental Table 6

Supplemental Table 7

Supplemental Table 8

Supplemental Table 9

Supplemental Table 10

Supplemental References

Supplemental Figure Legends

Supplemental Figure 1

**Supplemental Figure 2** 

Supplemental Figure 3

Supplemental Figure 4

**Supplemental Figure 5** 

Supplemental Figure 6

Supplemental Figure 7

### **Supplemental Experimental Procedures**

### Administration of Tamoxifen and Analysis of Mice

Transgenic lines were crossed to the Rosa26 Cre reporter strain (R26R), which has a ubiquitously expressed transgene containing a STOP cassette flanked by loxP sites followed by the LacZ gene. The resulting mice Tyr::Nras<sup>Q61K</sup> Ink4a<sup>-/-</sup> Smad4<sup>lox/lox</sup> R26R::LacZ mice, Tyr::Nras<sup>Q61K</sup> Ink4a<sup>-/-</sup> Smad4<sup>lox/wt</sup> Tyr::CreERT<sup>2</sup> R26R::LacZ mice (control groups) and Tyr::Nras<sup>Q61K</sup> Ink4a<sup>-/-</sup> Smad4<sup>lox/lox</sup> Tyr::CreERT<sup>2</sup> R26R::LacZ mice (experimental group) were subjected to treatment with tamoxifen (T5648, Sigma Aldrich, Missouri, USA), which was diluted in ethanol and sunflower oil (1:9 ratio). Conditional ablation of Smad4 as well as Smad7 was achieved by intraperitoneal injections of tamoxifen (100  $\mu$ l, 1 mg d<sup>-1</sup> for 5 days) into 4-week-old mice and 4-months-old mice. Topical administration of 4-hydroxytamoxifen (4-OHT) (H7904, 98% Z-isomer, Sigma Aldrich, Missouri, USA) was performed by preparing a 50 mg/ml (130 mM) solution of 4-OHT in dimethyl sulfoxide; DMSO (M810802, Sigma Aldrich, USA) 4-weekold mice were treated with Veet cream to remove hair from 2 x 2 cm patch of skin on the dorsal flank. After the area was dried and topical administration of 50 mg/ml stock solution in DMSO was diluted into 100% ethanol and freshly applied (1 ml, for 3 days). Upon intraperitoneal (IP) Tamoxifen injections or topical 4-OHT administration, mice were monitored for tumor numbers and development. In combination with staining for the R26R::LacZ Cre-reporter allele, the macroscopic skin phenotype was analyzed histologically. Mice were examined regularly and sacrificed at an endpoint defined by adverse clinical symptoms including skin tumor size ( $\emptyset$  > 2mm), weight loss, or hunched back.

### **Quantification of Skin Melanomas and Metastases**

At day of sacrifice, skin melanoma numbers were counted. Non-recombined tumors were excluded for statistical analysis. Both in conditional *Smad4* and *Smad7* knockout mice (cKO), whole mount X-Gal (Invitrogen, California, USA) staining was used to assess the recombined tumors. Quantification of the percentage of mice bearing macro-metastases in each organ including lung, liver and spleen were visually examined under the binocular at necropsy and calculated by counting pigmented lesions at the organ surface. Affected lymph nodes (accessory axillary, proper axillary, sciatic and subiliac lymph nodes) were further assessed by immunohistostaining. PAX3, DCT and HMB-45 positivity was used to detect melanoma cells on lung, liver, and spleen on histological sections.

### Immunofluorescent Labeling

Cells were grown on cover slips, ethanol-fixed, and subjected to immunofluorescent labelling using primary antibodies (Supplemental Table 8) in blocking buffer (1% BSA in PBS and 0.05% Tween) overnight at 4°C and secondary antibodies (Supplemental Table 8 for 1h at room temperature. Nuclei were stained with Hoechst 33342 (14533, Sigma-Aldrich, USA), and cells were recorded with a DMI 6000B microscope (Leica).

### Hair Cycle Staging, Plucking

Morphogenetic and adult hairs were staged according to literature (1, 2). Plucking was performed to synchronize adult hairs. Briefly, mice were anesthetized, and hairs were removed in a 3 cm × 3 cm region on the back skin at every telogen stage. Hairs within this region were allowed to regenerate for 28 days after plucking procedure. TM was dissolved in corn oil or a

combination of ethanol and sunflower oil. TM treatment was performed by IP injection of adults with *Smad4<sup>lox/lox</sup> Tyr::CreERT<sup>2</sup> R26R::LacZ* genotype (experimental group). Control group harbored the same genotype and was not received any TM.

### Histologic Analysis and Immunohistochemistry

Mice were sacrificed by CO<sub>2</sub> inhalation. Samples were fixed in 4% (w/v) paraformaldehyde overnight. To achieve whole mount X-Gal staining, samples were fixed in 4% paraformaldehyde for only 20 min and subjected to X-Gal staining. Sections (5 µm) were stained with H&E, and serial sections were used for immunohistochemical analysis. Sections were deparaffinized and subjected to an antigen retrieval step using citrate buffer (S2369, Dako) (Rapid Microwave Histoprocessor, Milestone). Primary antibodies (Supplemental Table 8) were applied in blocking buffer (1% BSA in PBS and 0.05% Triton X-100) overnight at 4°C and visualized using secondary antibodies (Supplemental Table 8) in blocking buffer for 1h at room temperature. Antigen retrieval with heating in citric acid (pH 6.0) was done. Heavily pigmented skin slides were pre-treated with 0.1% KMnO<sub>4</sub> for 20 min followed by 0.5% oxalic acid for 12 min to increase the solution permeabilization. For visualization of β-Galactosidase and phospho-SMADs, biotin anti-chicken and biotin anti-rabbit secondary antibodies was combined with further signal amplification using horse radish peroxidase-streptavidin and the TSA Plus Cy3 Kit (1:50, NEL744001KT, PerkinElmer) according to manufacturers' protocol. Subsequently, nuclei were stained with Hoechst 33342 (14533, Sigma-Aldrich) slides were mounted with Fluorescent Mounting Medium (S3023, Dako). Immunohistochemical / fluorescent sections were analyzed using either a Mirax Midi Slide Scanner (Zeiss) or a DMI 6000B microscope (Leica). Recombination efficiency of the Rosa26 allele was examined in mice by counting the β-Gal fluorescent cells of each tumor and dividing by the total number of DAPI-positive cells. Analysis of metastases was performed by counting distinct melanoma markers in each lesion (in sections

from each level throughout the organ). Lung, spleen and liver metastases were analyzed based on the number of Pax3, Dct fluorescent cells. Groupings included single (1 cell), micro (11–100 cells), and macro (> 100 cells).

### Analysis of Proliferation and Apoptosis

To study tumor proliferation index, we investigated the incorporation of the thymidine analog 5ethynyl-2'-deoxyuridine (EdU). Prior to sacrifice under isoflurane anaesthesia, mice were injected IP with 50 mg EdU/kg body weight. EdU was immunohistochemically on formalin-fixed and paraffin-embedded sections according to the manufacturer's guidelines. (Click-iT® EdU Alexa Fluor® 488 Imaging Kit, C310337, Invitrogen, USA). Cell proliferation was also assessed by Ki67 immunostaining. To quantify cells undergoing apoptosis, cleaved caspase-3 staining was used (see Histologic Analysis). Ten high-power fields (40 magnification) from at least 3 independent mice were counted for positive staining. Quantitative analysis was performed by counting cells in 10 independent high-power fields (40×) per age-matched tissue section from six mice per group.

#### **Correlation Analysis**

Melanoma cell cultures were established from surplus material from primary cutaneous melanoma and melanoma metastases removed by surgery as previously described (3) This was performed at Dermatology Department of University of Zurich. Cell lines were correlated to their high SOX10 and high MITF expression as proliferative and high WNT5A high ZEB1 and SOX9 expression as invasive. Pearson's product moment correlation (r) was calculated for each gene expression values across all patient derived human melanoma cell lines. P-value was determined from the t statistic calculated from R value.

### Cell Growth, Cell Cycle Analysis and Ligand Treatments

The 501Mel cell line was obtained from the ATCC collection. The 501Mel cell line carries *BRAF*<sup>V600E</sup> mutation. M010817 cell line were described previously (4). The M010817 cell line has *NRAS*<sup>Q61R</sup> mutation (*BRAF* not mutated). Primary cells derived from *Tyr::Nras*<sup>Q61K</sup> *Ink4a*<sup>-/-</sup> induced tumors were cultured as previously specified (5). Cells were grown in RPMI-1640 medium supplemented with 10% FCS and 4 mM L-glutamine. Ligand treatment experiments were studied in serum-starved medium (0.5% FCS) (24 hours starved before ligand treatment). The effect of ligands on cell phenotype was determined by continuously adding human recombinant ligands that are indicated Supplemental Table 10 for 72 hours to cell monolayers at 70% confluency. To establish growth curves, cell counts were measured daily starting 12 h after transfection. For cell cycle analysis, the Click-iT EdU Alexa Fluor 647 Flow Cytometry Assay Kit (Invitrogen) was used. Cells were labelled with PI according to the manufacturer's protocol and the DNA content was measured using a BD FACS Canto II flow cytometer (BD Biosciences).

### **RNA Interference**

Silencing RNA (siRNA) transfection of human melanoma cells was carried out using jet PRIME siRNA Transfection Reagent (114-07, Polypus Transfection) solution according to the manufacturer's protocol. To achieve gene specific knockdown of SMAD4 and SMAD7, human melanoma cells were transfected with siRNA (25nM) (Invitrogen) 72 hours before RNA and protein isolation (Supplemental Table 9). As control, scrambled siRNAs with similar guanine cytosine (GC) content were also purchased from Invitrogen and used as negative controls. We confirmed the specificity of these sequences in BLAST. Growth medium was exchanged after 24h and cells were subjected to further assays.

### **Quantitative RT-PCR and RNA Sequencing**

Total RNA was prepared using RNeasy Mini Kit (74104, Qiagen) and the RNase-Free DNase Set (79254, Qiagen) according to manufacturer's guidelines, reverse transcribed with Maxima First Strand cDNA Synthesis Kit (K1641, Thermo Scientific) followed by an RNase H (EN0202, Thermo Scientific) digestion step. Real-time quantitative PCR (qPCR) was performed on a LightCycler 480 System (Roche) using LightCycler 480 SYBR Green I Master (4707516001, Roche). Control of genomic contamination was measured for each sample by performing the same procedure with or without reverse transcriptase. Primers used mentioned in (Supplemental Table 9). Relative quantitative RNA was normalized using the housekeeping genes  $\beta$ -actin and Gapdh. The entire procedure was repeated in three biologically independent samples. Results were presented as the fold change over controls isolated from the same experiments. Fold induction was calculated using the comparative Ct method (DDCt). Total RNA obtained from 3 control and 3 siRNA mediated knockdown samples. Sample quality check was done using Bio-Analyzer. Samples were subjected to sequencing on Illumina Hiseq platform at the Functional Genomics Center Zurich (http://www.fgcz.ch/). Differential gene expression analysis was performed using a minimum fold change of 1.5 and a False Discovery Rate inferior to 0.05. Gene ontology network analysis was performed with ClueGO (Version 2.3.2) and Cytoscape (Version 3.4.0). Clusters with less than 10 nodes were omitted.

#### **Protein Isolation and Western Blotting**

Cells were lysed in RIPA buffer (89900, Thermo Scientific) including Halt Phosphatase and Protease Inhibitor Cocktail (78420, 87786, Thermo Scientific. SDS–PAGE was carried out with 20 µg of whole-cell protein lysate using 4–20% Mini-PROTEAN TGX Gels (456–1094, Bio Rad). The gels were blotted onto nitrocellulose membrane and blocked for 1h in Odyssey blocking

buffer (927-40000, LI-COR Biosciences). Primary antibodies (Supplemental Table 8 were applied in blocking buffer overnight at 4°C and visualized using secondary antibodies (Supplemental Table 8) for 45 min at room temperature. Blots were scanned and quantified with an Odyssey imaging system (LI-COR Biosciences). Quantified band intensities were normalized using either β-Actin or  $\alpha$ -Tubulin as housekeeping protein.

### **TCGA Analysis**

The RNA-seq and clinical data sets for skin cutaneous melanoma were downloaded on April 2016 from TCGA (http://cancergenome.nih.gov/). Normalized reads from the level 3 RNA-seq data were used for analysis. Specimens with top and bottom transcript levels for a gene of interest were used for analysis. Patient numbers were gradually increased from a minimum of top and bottom 11% (50 out of 470) to a maximum of top and bottom 11 % (50 out of 470) to optimize potential segregation of Kaplan–Meier curves.

### Attachment Assay Using Fibronectin-Coated Plates

Six well plates were coated with 1.25 Ag/mL of fibronectin (F1141-5MG, Sigma) in PBS overnight at 4C. Wells coated with bovine serum albumin served as negative controls. .10 X10<sup>4</sup> cells were seeded in each well at 37°C. After ligand treatment, suspension cells were collected and were seeded in each fibronectin-coated well at 37°C. Unattached cells were discarded, and the attached cells were gently washed with PBS. Cells were fixed with 1% formaldehyde for 10 min and stained with 0.5% crystal violet for 30 min and solubilized with methanol. The area was calculated using Cell Profiler Program.

#### **Analytical FACS**

Single-cell suspensions of each treatment were pulsed with EdU and stained with primary and fluorochrome-conjugated secondary antibodies are listed in Supplemental Table 8. Intracellular MITF staining was performed following live cell AXL staining. Cells were detected by BD FACS Canto II flow cytometer (BD Biosciences) and analyzed with BD FACS Diva software (BD Biosciences).

### Cell Sorting and Boyden Chamber Invasion Assay

Cells were transfected with siRNAs and cultured for 2 days with various factors using the same concentration as reported. After 48 hours of treatment, cells were harvested for flow sorting. For AXL flow sorting, cells were first washed with warm PBS, followed by an addition of 10mM EDTA to detach from flask. Cells were resuspended in cold PBS 2% FBS and kept on ice. Cells were counted, and 1,000,000 cells were transferred to 15 ml conical tubes (Falcon), spin down and resuspended in 100 µl of cold PBS 2% FBS alone (negative control) or with AXL antibody. Cells were incubated on ice for 30 min, then washed twice with cold PBS 2% FBS. Cells were pelleted and resuspended in 100 µl PBS 2% with Alexa 488-conjugated antibody Samples were acquired with a BD Aria III 5L flow cytometer (BD Biosciences). First, doublets were excluded based on forward and sideward scatter, then we gated on viable cells and sorted single cells (AXL<sup>+</sup> or AXL<sup>-</sup>). Data was analyzed using FACS Diva Version 6.2 using viable cells only and gates for AXL positivity were set using the unstained and secondary antibody only control. Subsequently Boyden Chamber invasion assays were done according to manufacturer's protocol. Briefly, 300,000 cells were subjected to matrigel-coated well inserts (354480, BD Biosciences) in empty medium (0% FCS and 0% L-Glutamine). Growth medium was used as chemoattractant for 24 h. Transvaded cells were 4% buffered formaldehyde fixed and visualized using Hoechst 33342. Membranes were mounted to glass slides, and cell numbers were quantified using a DMI 6000B microscope and CellProfiler version 3.0.

# Supplemental Table 1. GO Process

| NODE    | GOID       | GOTerm                                                  | P-Value              | % Genes                  | Nr. Genes |
|---------|------------|---------------------------------------------------------|----------------------|--------------------------|-----------|
| 1       | GO:0092561 | DNA-dependent DNA replication                           | 130.0F-6             | 19.11                    | 30.00     |
| 2       | GO:0092562 | DNA replication                                         | 13 0F-9              | 17 27                    | 57.00     |
| 3       | GO:0006259 | DNA metabolic process                                   | 1 3E-3               | 10.37                    | 107.00    |
| 4       | GO:0044774 | DNA replication initiation                              | 550 0E-6             | 32.56                    | 14 00     |
| 5       | GO:0044765 | Regulation of transcription involved in G1/S            | 1 2E-3               | 39.29                    | 11.00     |
| 6       | GO:0044774 | G1/S transition of mitotic cell cycle                   | 10 0F-6              | 16.80                    | 42.00     |
| 7       | GO:0044773 | cell cycle G1/S phase transition                        | 25 0E-6              | 16.00                    | 43.00     |
| 0       | GO:0044773 | cell cycle o hose transition                            | 20.0L=0<br>1 1⊑ 2    | 10.41                    | 43.00     |
| 0       | GO:0098778 | mitotic coll cycle phase transition                     | 1.1E-5<br>800.0E 6   | 12.24                    | 66.00     |
| 9<br>10 | GO.9007009 |                                                         | 090.0E-0             | 12.24                    | 126.00    |
| 10      | GO.8970810 | mitotic cell cycle process                              | 4.1E-12              | 13.40                    | 120.00    |
| 10      | GO.0000276 |                                                         | 2.UE-12              | 13.00                    | 135.00    |
| 12      | GO.0051726 | regulation of cell cycle                                | 11.0E-12             | 12.00                    | 135.00    |
| 13      | GO:0007346 | regulation of mitotic cell cycle                        | 32.0E-3              | 11.43                    | 59.00     |
| 15      | GO:0045786 | negative regulation of cell cycle                       | 14.0E-9              | 14.44                    | 80.00     |
| 16      | GO:0000075 | cell cycle checkpoint                                   | 430.0E-9             | 18.15                    | 45.00     |
| 17      | GO:0031570 | DNA integrity checkpoint                                | 1.7E-3               | 16.20                    | 29.00     |
| 18      | GO:0007049 | cell cycle                                              | 1.9E-15              | 11./2                    | 211.00    |
| 19      | GO:0007067 | mitotic nuclear division                                | 60.0E-9              | 15.07                    | 69.00     |
| 20      | GO:0022402 | cell cycle process                                      | 100.0E-12            | 11.69                    | 160.00    |
| 21      | GO:0000280 | nuclear division                                        | 450.0E-9             | 13.41                    | 81.00     |
| 22      | GO:0007088 | regulation of mitotic nuclear division                  | 290.0E-6             | 19.31                    | 28.00     |
| 23      | GO:0051301 | cell division                                           | 41.0E-6              | 12.63                    | 75.00     |
| 25      | GO:0051276 | chromosome organization                                 | 340.0E-6             | 11.84                    | 78.00     |
| 26      | GO:0071103 | DNA conformation change                                 | 14.0E-3              | 13.78                    | 39.00     |
| 27      | GO:000070  | mitotic sister chromatid segregation                    | 27.0E-3              | 16.78                    | 24.00     |
| 28      | GO:0007059 | chromosome segregation                                  | 49.0E-6              | 14.78                    | 51.00     |
| 29      | GO:0044427 | chromosomal part                                        | 15.0E-3              | 10.40                    | 88.00     |
| 30      | GO:0051783 | regulation of nuclear division                          | 36.0E-6              | 18.97                    | 33.00     |
| 31      | GO:0005694 | chromosome                                              | 4.2E-3               | 10.33                    | 99.00     |
| 32      | GO:0051304 | chromosome separation                                   | 44.0E-3              | 21.05                    | 16.00     |
| 33      | GO:0098609 | cell-cell adhesion                                      | 14.0E-3              | 9.65                     | 117.00    |
| 34      | GO:0030155 | regulation of cell adhesion                             | 49.0E-3              | 10.60                    | 73.00     |
| 35      | GO:0050865 | regulation of cell activation                           | 6.3E-3               | 11.76                    | 64.00     |
| 36      | GO:0001775 | cell activation                                         | 6.4E-6               | 11.42                    | 110.00    |
| 37      | GO:0045321 | leukocyte activation                                    | 1.7E-3               | 11.01                    | 87.00     |
| 38      | GO:0098602 | single organism cell adhesion                           | 18.0E-3              | 10.40                    | 86.00     |
| 39      | GO:0016337 | single organismal cell-cell adhesion                    | 24.0E-3              | 10.53                    | 81.00     |
| 40      | GO:0002682 | regulation of immune system process                     | 12.0E-3              | 9.37                     | 136.00    |
| 41      | GO:0051240 | positive regulation of multicellular process            | 5.8E-6               | 10.28                    | 155.00    |
| 42      | GO:0051094 | positive regulation of developmental process            | 40.0F-6              | 10.49                    | 129.00    |
| 43      | GO:0045597 | positive regulation of cell differentiation             | 9.1F-3               | 10.41                    | 92.00     |
| 45      | GO:0051241 | process                                                 | 43.0F-3              | 9.71                     | 104.00    |
| 46      | GO:0051239 | regulation of multicellular organismal process          | 180 0F-9             | 9.35                     | 258.00    |
| 47      | GO:0022008 | neurogenesis                                            | 40 0F-3              | 9.12                     | 138.00    |
| 48      | GO:0032101 | regulation of response to external stimulus             | 5 2E-3               | 10.88                    | 83.00     |
| 49      | GO:0050793 | regulation of developmental process                     | 3.5E-6               | 9 4 1                    | 222.00    |
| 50      | GO:0030154 | cell differentiation                                    |                      | 8 08                     | 339.00    |
| 50      | CO:0000104 | system development                                      | 10.0⊑-0<br>2 3⊑_12   | 0.00                     | 405.00    |
| 52      | GO:0048751 |                                                         | 2.3L-12<br>780 0E-12 | 9.00                     | 358.00    |
| 52      | CO:0040009 | cell development                                        | 6 8E-3               | 8.00                     | 177.00    |
| 53      | CO-0051120 | regulation of cellular component ergonization           |                      | 0. <del>34</del><br>8.57 | 206.00    |
| 54      | GO.0051128 | regulation of developmental presses                     | 17.UE-3              | 0.07                     | 200.00    |
| 55      | GO.0050793 | regulation of developmental process                     |                      | 9.41<br>10.00            | 222.00    |
| 57      | GU:0051240 | positive regulation of multicellular organismal process |                      | 10.20                    | 100.00    |
| 5/      | GO:0048513 | animai organ development                                | 43.UE-0              | 0.00<br>0.05             | ∠ŏ4.UU    |
| 58      | GO:0009888 |                                                         | 5.UE-6               | 9.85                     | 182.00    |
| 59      | GO:0009653 | anatomical structure morphogenesis                      | 100.0E-9             | 9.57                     | 241.00    |
| 59      | GO:0007399 | nervous system development                              | 100.0E-6             | 8.98                     | 205.00    |

| NODE     | GOID       | GOTerm                                                   | P-Value          | <u>% Genes</u> | Nr. Genes |
|----------|------------|----------------------------------------------------------|------------------|----------------|-----------|
| 60       | GO:0009790 | embryo development                                       | 26.0E-3          | 9.89           | 100.00    |
| 61       | GO:0072359 | circulatory system development                           | 29.0E-6          | 11.07          | 111.00    |
| 62       | GO:0048646 | morphogenesis                                            | 500.0E-9         | 11.55          | 119.00    |
| 63       | GO:0072358 | cardiovascular system development                        | 320 0E-6         | 11 89          | 78.00     |
| 64       | GO:0012000 | blood vessel morphogenesis                               | 13 0F-3          | 11.55          | 62.00     |
| 65       | GO:0040514 | vasculature development                                  | 160 0E-6         | 12.06          | 78.00     |
| 66       | CO:0001568 | blood vossol dovelopment                                 | 250 0E 6         | 12.00          | 75.00     |
| 67       | GO.0001508 | and the liel cell migration                              | 200.00-0         | 12.04          | 75.00     |
| 07       | GO.0043542 |                                                          | 9.12-3           | 10.37          | 20.00     |
| 60       | GO:0010631 | epitnelial cell migration                                | 980.0E-0         | 15.51          | 38.00     |
| 69       | GO:0001667 | ameboldal-type cell migration                            | 3.4E-3           | 13.35          | 47.00     |
| 70       | GO:0090132 | epitnelium migration                                     | 1.2E-3           | 15.32          | 38.00     |
| /1       | GO:0090130 | tissue migration                                         | 830.0E-6         | 15.35          | 39.00     |
| 72       | GO:0040017 | positive regulation of locomotion                        | 2.5E-3           | 12.45          | 58.00     |
| 73       | GO:0030335 | positive regulation of cell migration                    | 1.0E-3           | 13.10          | 55.00     |
| 74       | GO:2000147 | positive regulation of cell motility                     | 2.8E-3           | 12.67          | 55.00     |
| 75       | GO:0016477 | cell migration                                           | 4.5E-12          | 12.17          | 157.00    |
| 76       | GO:0048870 | cell motility                                            | 280.0E-12        | 11.49          | 163.00    |
| 77       | GO:0040012 | regulation of locomotion                                 | 1.7E-3           | 10.83          | 91.00     |
| 78       | GO:2000145 | regulation of cell motility                              | 1.3E-3           | 11.11          | 86.00     |
| 79       | GO:0051272 | positive regulation of cellular component movement       | 1.3E-3           | 12.81          | 57.00     |
| 80       | GO:0051270 | regulation of cellular component movement                | 270.0E-6         | 11.14          | 94.00     |
| 81       | GO:0030334 | regulation of cell migration                             | 220.0E-6         | 11.63          | 84.00     |
| 82       | GO:0006928 | movement of cell or subcellular component                | 96.0E-12         | 10.79          | 203.00    |
| 83       | GO:0050900 | leukocyte migration                                      | 820.0E-6         | 13.38          | 53.00     |
| 84       | GO:0032879 | regulation of localization                               | 52.0E-6          | 9.02           | 233.00    |
| 85       | GO:0006935 | chemotaxis                                               | 1.2E-3           | 11.86          | 70.00     |
| 86       | GO:0042330 | taxis                                                    | 740.0F-6         | 12.01          | 71.00     |
| 87       | GO:0071621 | granulocyte chemotaxis                                   | 16 0F-3          | 18 75          | 21.00     |
| 88       | GO:0097530 | granulocyte migration                                    | 25 0E-3          | 17 74          | 22.00     |
| 89       | GO:0007529 | myeloid leukocyte migration                              | 6 1E-3           | 16.38          | 29.00     |
| an       | GO:0051020 | regulation of transport                                  | 32 0E-3          | 8 83           | 166.00    |
| 01       | CO:0001040 | secretion                                                | 2 0E-3           | 10.00          | 117.00    |
| 02       | GO:00+0900 | secretion by coll                                        | 2.9L-5           | 10.00          | 108.00    |
| 92       | GO:0002940 | anzyma linkad recentor protain signaling nathway         |                  | 10.30          | 106.00    |
| 93       | GO.0007107 | enzyme inneu receptor protein signaling pathway          | 1.7E-3<br>2.6E 6 | 0.11           | 258.00    |
| 94<br>05 | GO.0007100 | regulation of coll cycle process                         |                  | 9.11           | 200.00    |
| 95       | GO:0010564 | regulation of cell cycle process                         | 5.0E-3           | 11.40          | 69.00     |
| 90       | GO:0048518 | positive regulation of biological process                | 70.0E-9          | 8.31           | 455.00    |
| 97       | GO:0048522 | positive regulation of cellular process                  | 10.0E-9          | 8.56           | 418.00    |
| 98       | GO:0007165 | signal transduction                                      | 19.0E-6          | 7.94           | 478.00    |
| 99       | GO:0048584 | positive regulation of response to stimulus              | 1.1E-6           | 9.67           | 210.00    |
| 100      | GO:0048583 | regulation of response to stimulus                       | 1.6E-9           | 9.05           | 347.00    |
| 101      | GO:0023056 | positive regulation of signaling                         | 290.0E-6         | 9.62           | 159.00    |
| 102      | GO:0009967 | positive regulation of signal transduction               | 500.0E-6         | 9.75           | 147.00    |
| 103      | GO:1902533 | positive regulation of intracellular signal transduction | 1 28.0E-3        | 10.00          | 96.00     |
| 104      | GO:0042327 | positive regulation of phosphorylation                   | 26.0E-3          | 9.99           | 98.00     |
| 105      | GO:0050730 | regulation of peptidyl-tyrosine phosphorylation          | 41.0E-3          | 14.10          | 33.00     |
| 106      | GO:0050731 | positive regulation of tyrosine phosphorylation          | 8.6E-3           | 16.11          | 29.00     |
| 107      | GO:0043408 | regulation of MAPK cascade                               | 18.0E-3          | 10.71          | 77.00     |
| 108      | GO:0001934 | phosphorylation                                          | 17.0E-3          | 10.12          | 95.00     |
| 109      | GO:0071900 | kinase activity                                          | 20.0E-3          | 11.72          | 58.00     |
| 110      | GO:0023014 | phosphorylation                                          | 15.0E-3          | 10.10          | 97.00     |
| 111      | GO:0000165 | MAPK cascade                                             | 27.0E-3          | 10.06          | 93.00     |
| 112      | GO:0016310 | phosphorylation                                          | 190.0E-6         | 9.06           | 214.00    |
| 113      | GO:0051338 | regulation of transferase activity                       | 41.0E-3          | 9.84           | 98.00     |
| 114      | GO:0006793 | phosphorus metabolic process                             | 41.0E-3          | 8.11           | 266.00    |
| 115      | GO:0031401 | process                                                  | 41.0E-3          | 9.49           | 114.00    |
| 117      | GO:0036211 | protein modification process                             | 21.0F-3          | 7.98           | 315.00    |
|          | 0.0000211  | process moundation proceeds                              |                  |                | 0.000     |

| NODE | GOID       | GOTerm                                      | P-Value   | <u>%Genes</u> | Nr. Genes |
|------|------------|---------------------------------------------|-----------|---------------|-----------|
| 118  | GO:0042325 | regulation of phosphorylation               | 47.0E-6   | 10.11         | 147.00    |
| 119  | GO:0006796 | process                                     | 48.0E-3   | 8.10          | 265.00    |
| 120  | GO:0006464 | cellular protein modification process       | 21.0E-3   | 7.98          | 315.00    |
| 121  | GO:0051174 | regulation of phosphorus metabolic process  | 410.0E-6  | 9.54          | 162.00    |
| 122  | GO:0050790 | regulation of catalytic activity            | 49.0E-3   | 8.42          | 208.00    |
| 124  | GO:0023057 | negative regulation of signaling            | 22.0E-3   | 9.50          | 120.00    |
| 125  | GO:0035556 | intracellular signal transduction           | 120.0E-12 | 9.81          | 274.00    |
| 126  | GO:0010648 | negative regulation of cell communication   | 21.0E-3   | 9.53          | 120.00    |
| 127  | GO:0048585 | negative regulation of response to stimulus | 2.4E-3    | 9.59          | 139.00    |
| 129  | GO:0048523 | negative regulation of cellular process     | 51.0E-9   | 8.63          | 384.00    |
| 130  | GO:0070887 | cellular response to chemical stimulus      | 180.0E-6  | 8.79          | 246.00    |
| 131  | GO:0009966 | regulation of signal transduction           | 360.0E-9  | 9.24          | 265.00    |
| 132  | GO:0007154 | cell communication                          | 1.2E-6    | 7.96          | 518.00    |
| 133  | GO:1902531 | transduction                                | 57.0E-6   | 9.65          | 175.00    |
| 134  | GO:0070887 | cellular response to chemical stimulus      | 180.0E-6  | 8.79          | 246.00    |
| 135  | GO:0010033 | response to organic substance               | 6.5E-6    | 8.97          | 265.00    |
| 136  | GO:0071310 | cellular response to organic substance      | 100.0E-6  | 9.15          | 211.00    |
| 137  | GO:0033993 | response to lipid                           | 12.0E-3   | 10.21         | 96.00     |
| 138  | GO:0048519 | negative regulation of biological process   | 5.8E-9    | 8.62          | 413.00    |
| 139  | GO:0019220 | regulation of phosphate metabolic process   | 710.0E-6  | 9.49          | 161.00    |
| 140  | GO:0031399 | regulation of protein modification process  | 6.0E-3    | 9.16          | 159.00    |
| 141  | GO:0001932 | regulation of protein phosphorylation       | 170.0E-6  | 10.08         | 137.00    |
| 142  | GO:0045859 | regulation of protein kinase activity       | 15.0E-3   | 10.62         | 81.00     |
| 143  | GO:0043549 | regulation of kinase activity               | 17.0E-3   | 10.44         | 86.00     |
| 144  | GO:0010647 | positive regulation of cell communication   | 110.0E-6  | 9.74          | 160.00    |
| 145  | GO:0008285 | negative regulation of cell proliferation   | 680.0E-6  | 11.56         | 80.00     |

# Supplemental Table 2. Verfaillie Invasive Program

| Gene     | Log2 value | Gene    | Log2 value | Gene       | Log2 value | Gene    | Log2 value |
|----------|------------|---------|------------|------------|------------|---------|------------|
| ADAM19   | -2.3       | FOSL1   | 1.52       | NUAK2      | 1.392      | TGM2    | 1.306      |
| ADAMTS6  | 1.793      | FSTL3   | 1.519      | OASL       | 1.392      | THBS1   | 1.306      |
| ALPK2    | 1.775      | GLIPR1  | 1.517      | OSMR       | 1.389      | THSD4   | 1.306      |
| AMPD3    | 1.775      | GNAI2   | 1.517      | OXTR       | 1.388      | TMEM158 | 1.305      |
| ANGPTL4  | 1.772      | GRAMD1B | 1.515      | PCDH10     | 1.388      | TNFAIP2 | 1.305      |
| ARHGAP22 | 1.772      | HBEGF   | 1.514      | PDGFB      | 1.386      | UBE2E3  | 1.303      |
| ARL4C    | 1.767      | HMGA1   | 1.513      | PDLIM5     | 1.385      | VEGFA   | 1.303      |
| ASPH     | 1.76       | HRH1    | 1.51       | PDLIM7     | 1.384      | VEGFC   | 1.302      |
| ATP2B1   | 1.749      | HSPA5   | 1.509      | PLAUR      | 1.383      | WNT5A   | 1.299      |
| AXL      | 1.736      | HSPB7   | 1.5        | PLK2       | 1.383      | ZNF185  | 1.298      |
| BCL3     | 1.735      | HTR7    | 1.499      | PLOD2      | 1.383      |         |            |
| BDNF     | 1.731      | ID1     | 1.498      | POU2F2     | 1.381      |         |            |
| BIRC3    | 1.73       | IFI44L  | 1.488      | PVR        | 1.381      |         |            |
| CA9      | 1.729      | IGFBP3  | 1.485      | RASA3      | 1.378      |         |            |
| CCL5     | 1.725      | IGFBP6  | 1.484      | RELB       | 1.377      |         |            |
| CD274    | 1.721      | IGFN1   | 1.484      | RGS4       | 1.374      |         |            |
| CD96     | 1.714      | IL11    | 1.476      | RIN1       | 1.373      |         |            |
| CDH6     | 1.713      | IL1B    | 1.471      | RND3       | 1.371      |         |            |
| CLEC2B   | 1.703      | IL4I1   | 1.466      | RRAS2      | 1.371      |         |            |
| CNN2     | 1.696      | IL6     | 1.46       | S100A16    | 1.368      |         |            |
| COL13A1  | 1.695      | IL6ST   | 1.458      | S100A4     | 1.367      |         |            |
| COL1A1   | 1.669      | IL7R    | 1.457      | SCG2       | 1.362      |         |            |
| COL1A2   | 1.665      | IL8     | 1.457      | SCN2A      | 1.359      |         |            |
| CPA4     | 1.642      | INHBA   | 1,455      | SEC24D     | 1.358      |         |            |
| CPE      | 1.64       | IRS1    | 1.449      | SEMA4B     | 1.356      |         |            |
| CREB3L1  | 1.618      | ITGA2   | 1.447      | SERPINB2   | 1.354      |         |            |
| CSF1     | 1.617      | ITGA5   | 1.447      | SERPINB7   | 1.354      |         |            |
| CXCL1    | 1.616      | ITGB1   | 1.446      | SERPINE1   | 1.345      |         |            |
| CXCL3    | 1.601      | JUN     | 1.443      | SH3RF2     | 1.344      |         |            |
| CYP27C1  | 1.6        | KANK2   | 1.443      | SIAH2      | 1.341      |         |            |
| DCN      | 1.599      | KCTD1   | 1.443      | SKIL       | 1.338      |         |            |
| DDAH1    | 1.593      | KLF7    | 1.44       | SLC10A3    | 1.336      |         |            |
| DENND2A  | 1.592      | KRT18   | 1.44       | SLIT2      | 1.336      |         |            |
| DKK1     | 1.589      | KRT8    | 1.436      | SNED1      | 1.335      |         |            |
| DOCK2    | 1.589      | KRT80   | 1.435      | SOX9       | 1.335      |         |            |
| EDIL3    | 1.582      | LAMA3   | 1.43       | SPEG       | 1.335      |         |            |
| EFEMP2   | 1.582      | LAMB3   | 1.427      | SPOCD1     | 1.332      |         |            |
| EFHD2    | 1.579      | LASP1   | 1.426      | SPOCK1     | 1.331      |         |            |
| EFNB2    | 1.578      | LOXL2   | 1.423      | SPRED3     | 1.331      |         |            |
| ELL2     | 1.578      | LTBP1   | 1.42       | SRGN       | 1.326      |         |            |
| EPS8L2   | 1.576      | LTBP2   | 1.419      | SRPX2      | -2.359     |         |            |
| EXT1     | 1.568      | MAP4K4  | 1.418      | ST6GALNAC4 | -2.368     |         |            |
| FAM129B  | 1.563      | MPP4    | 1.417      | STC1       | -2.368     |         |            |
| FAM196B  | 1.563      | MT2A    | 1.417      | STEAP2     | -2.368     |         |            |
| FAM20C   | 1.561      | MYPN    | 1.415      | STX1A      | -2.375     |         |            |
| FAM84A   | 1.555      | NCEH1   | 1.411      | SYDE1      | -2.379     |         |            |
| FBN1     | 1.548      | NNMT    | 1.408      | SYT1       | -2.394     |         |            |
| FEZ2     | 1.548      | NPTX1   | 1.407      | TAGLN      | -2.395     |         |            |
| FGF5     | 1.547      | NR2F1   | 1.405      | TBX3       | -2.402     |         |            |
| FJX1     | 1.536      | NRP1    | 1.398      | TFPI       | -2.414     |         |            |
| FLNB     | 1.521      | NTNG1   | 1.395      | TGFBR2     | 1.307      |         |            |

# Supplemental Table 3. Verfaillie Proliferative Program

| Gene     | Log2 value | Gene   | Log2value |
|----------|------------|----------|------------|----------|------------|----------|------------|--------|-----------|
| ABCB5    | -2.741     | EIF4EBP2 | 0.849      | MAD2L1BP | -0.811     | PSEN2    | -0.735     | USP6N  | 0.819     |
| ACO2     | 1.201      | EN2      | -0.865     | MAF      | 1.932      | RAB17    | -1.321     | VAT1   | 0.598     |
| ACSL1    | -0.925     | ENTHD1   | -1.783     | MAP3K1   | -0.788     | RAB3A    | -1.034     | VGF    | -3.011    |
| ADAM10   | 1.395      | ERBB3    | 0.718      | MAP6D1   | -0.724     | RASEF    | -0.987     | WDFY1  | 1.053     |
| ADCY2    | -1.200     | FAM101B  | -0.635     | MAPK4    | -1.326     | REEP6    | -1.015     | WIPF3  | -0.928    |
| AGPAT6   | 0.644      | FAM134B  | -2.127     | MAST1    | -0.605     | RGS1     | -2.628     | WIPI1  | -0.777    |
| ALDH3B2  | -0.851     | FAM149A  | 1.416      | MBP      | 0.897      | RHBDD3   | 0.580      | ZNF704 | 0.653     |
| AMDHD2   | 0.945      | FAM189A2 | 0.704      | MERTK    | -1.969     | RHPN1    | -1.097     |        |           |
| ANKRD44  | 0.912      | FAM53B   | 1.098      | MFAP3L   | -0.808     | SAMD5    | -1.027     |        |           |
| APOE     | 0.937      | FAM69C   | 1.118      | MGAT4A   | -0.909     | SASH1    | 0.840      |        |           |
| ARHGAP1  | -1.294     | FARP1    | 0.783      | MLIP     | 0.745      | SBK1     | 0.996      |        |           |
| ARNT2    | -1.362     | FARP2    | -0.610     | MMP8     | -1.891     | SCD      | -1.500     |        |           |
| ARSG     | -0.939     | FASN     | -0.721     | MOAP1    | -1.261     | SEC11C   | -0.601     |        |           |
| ASB4     | -0.600     | FCRLA    | -1.626     | MPPED2   | 1.331      | SEMA6D   | 1.095      |        |           |
| ASRGL1   | 0.581      | FRMD3    | -0.588     | MPZ      | 1.509      | SESN3    | 1.148      |        |           |
| AVPI1    | -0.978     | GALNT3   | 0.680      | MSI2     | 0.654      | SH3TC1   | -0.975     |        |           |
| BCAN     | 2.068      | GDPD5    | 1.108      | MYH10    | 0.734      | SIRPA    | 0.640      |        |           |
| BCL2     | 0.842      | GJB1     | -2.483     | MYLIP    | 0.900      | SLAIN1   | -1.214     |        |           |
| BIN3     | -0.635     | GK       | -0.835     | MYO10    | 0.620      | SLC16A6  | 1.923      |        |           |
| BIRC7    | -2.678     | GLUD2    | -1.583     | NAT8L    | -0.714     | SLC22A23 | -1.020     |        |           |
| C11orf96 | -2.728     | GOLGA7B  | -1.327     | NEDD9    | 0.591      | SLC23A2  | -0.782     |        |           |
| C1orf85  | 0.645      | GPM6B    | 0.7315     | NKAIN1   | -1.742     | SLC25A16 | 1.455      |        |           |
| CABLES1  | 1.209      | GPR153   | 0.896      | NR4A1    | -2.199     | SLC35F1  | -1.376     |        |           |
| CACNA1H  | -1.636     | GPR19    | 1.306      | NR4A3    | -1.890     | SLC39A11 | -0.875     |        |           |
| CDH19    | -1.061     | GREB1    | 0.9382     | NUP210   | -0.599     | SLC7A4   | -1.224     |        |           |
| CDH3     | -1.126     | HEY1     | -0.8471    | OSTM1    | -0.903     | SOX13    | -0.836     |        |           |
| CDC42    | 1.256      | HSD17B14 | 1.384      | PAEP     | -4.313     | SSH2     | 0.583      |        |           |
| CDKN1A   | 1.167      | HSF4     | 0.7608     | PARD6G   | 0.685      | ST6GAL1  | -1.283     |        |           |
| CDKN2B   | -1.569     | IGF1     | 1.405      | PAX3     | 0.652      | STX3     | -1.077     |        |           |
| CDKN1B   | 0.652      | IGSF8    | -1.184     | PDGFD    | -3.016     | STXBP1   | -1.453     |        |           |
| CDKN2C   | 2.055      | IL16     | 0.601      | PDK4     | -1.343     | TAB3     | 0.717      |        |           |
| CHST11   | -1.045     | IL6R     | -1.074     | PDZRN3   | 1.038      | TBC1D14  | 0.619      |        |           |
| CHST6    | -1.000     | INPP5F   | -0.7274    | PFKFB2   | -0.889     | TBC1D16  | 0.745      |        |           |
| CLCN7    | 0.756      | IRF4     | 1.126      | PHACTR1  | 0.595      | TCFL5    | 0.795      |        |           |
| COL9A3   | 0.681      | IRX6     | 0.9298     | PKNOX2   | 0.904      | TCTN3    | -1.101     |        |           |
| CPN1     | -0.653     | ISG20    | -2.45      | PLCL1    | 4.489      | TESK2    | -0.685     |        |           |
| CPVL     | -1.750     | ITGA7    | -2.521     | PLEKHG3  | 0.871      | TFAP2A   | 0.859      |        |           |
| CRYL1    | 0.932      | ITGAX    | -3.94      | PLP1     | 0.736      | TKTL1    | -1.384     |        |           |
| CTSH     | 1.218      | KBTBD11  | -1.072     | PLXNC1   | 0.798      | TLE1     | 1.228      |        |           |
| CXADR    | -1.849     | KCP      | -1.834     | PNLIPRP3 | -1.735     | TMC6     | -0.744     |        |           |
| CYP27A1  | 0.869      | KIAA1211 | 0.9392     | PNMAL1   | -1.267     | TMEM170  | -0.812     |        |           |
| DAAM1    | 0.588      | KI67     | 1.1340     | POLR3G   | -0.936     | TMEM229  | 1.244      |        |           |
| DENND1C  | -1.710     | KLF15    | -0.6169    | POU3F2   | -0.604     | TMEM33   | -1.342     |        |           |
| DHTKD1   | -0.787     | LCP2     | -3.637     | PPFIBP2  | 1.510      | TMEM64   | -0.721     |        |           |
| DLL3     | 0.632      | LDLRAD3  | 0.6759     | PPFIBP3  | 1.675      | TOP2A    | 1.376      |        |           |
| DUSP22   | 0.955      | LGI3     | -0.6352    | PPP1R14C | -1.140     | TP53     | 1.293      |        |           |
| EFR3B    | -0.610     | LONRF3   | -2.127     | PPP1R3D  | -0.786     | TPCN2    | 1.286      |        |           |
| EGLN3    | 0.993      | LRP2     | -0.7623    | PRKD3    | 0.677      | TPD52    | -1.621     |        |           |
| EGR3     | -5.208     | LZTS1    | 0.8597     | PRODH    | 3.501      | TRIB2    | -0.973     |        |           |
| EIF4EBP2 | 0.850      | MAD2L1B  | -0.8111    | PRSS33   | -1.873     | TRPM8    | -2.114     |        |           |
| EN2      | -0.866     | MAF      | 1.932      | PRUNE2   | -1.483     | TSPAN3   | -0.652     |        |           |

| MITF Program  AXL Program  MITF Program  AXL Program    MLANA  3.361  UCN2  -3.425  PLK2  1.739  UBE2C  0.876    RAB38  3.208  SLC16A6  -3.194  JUN  1.300  GADD45A  0.783    ABCB5  3.008  TCN1  -2.173  CELF2  1.160  FSTL3  0.582    HMCN1  3.361  CITED1  -2.116  IRF4  1.120  UPP1  1.854    CDK2  3.252  ENO2  -2.054  APOE  0.937  FN1  1.250    SLC7A5  2.821  UPP1  -1.794  ELOVL2  0.860  GLRX2  0.654 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| MLANA  3.361  UCN2  -3.425  PLK2  1.739  UBE2C  0.876    RAB38  3.208  SLC16A6  -3.194  JUN  1.300  GADD45A  0.783    ABCB5  3.008  TCN1  -2.173  CELF2  1.160  FSTL3  0.582    HMCN1  3.361  CITED1  -2.116  IRF4  1.120  UPP1  1.854    CDK2  3.252  ENO2  -2.054  APOE  0.937  FN1  1.250    SLC7A5  2.821  UPP1  -1.794  ELOVL2  0.860  GLRX2  0.654                                                         |  |
| RAB38  3.208  SLC16A6  -3.194  JUN  1.300  GADD45A  0.783    ABCB5  3.008  TCN1  -2.173  CELF2  1.160  FSTL3  0.582    HMCN1  3.361  CITED1  -2.116  IRF4  1.120  UPP1  1.854    CDK2  3.252  ENO2  -2.054  APOE  0.937  FN1  1.250    SLC7A5  2.821  UPP1  -1.794  ELOVL2  0.860  GLRX2  0.654                                                                                                                  |  |
| ABCB5  3.008  TCN1  -2.173  CELF2  1.160  FSTL3  0.582    HMCN1  3.361  CITED1  -2.116  IRF4  1.120  UPP1  1.854    CDK2  3.252  ENO2  -2.054  APOE  0.937  FN1  1.250    SLC7A5  2.821  UPP1  -1.794  ELOVL2  0.860  GLRX2  0.654                                                                                                                                                                               |  |
| HMCN1  3.361  CITED1  -2.116  IRF4  1.120  UPP1  1.854    CDK2  3.252  ENO2  -2.054  APOE  0.937  FN1  1.250    SLC7A5  2.821  UPP1  -1.794  ELOVL2  0.860  GLRX2  0.654                                                                                                                                                                                                                                         |  |
| CDK2  3.252  ENO2  -2.054  APOE  0.937  FN1  1.250    SLC7A5  2.821  UPP1  -1.794  ELOVL2  0.860  GLRX2  0.654                                                                                                                                                                                                                                                                                                   |  |
| SLC7A5  2.821  UPP1  -1.794  ELOVL2  0.860  GLRX2  0.654                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| VAT1  2.818  PFKFB4  -1.671  CYP27A1  0.856  UBE2J1  0.709                                                                                                                                                                                                                                                                                                                                                       |  |
| PTPRZ1 2.786 ANGPTL4 1.043 LZTS1 0.856 RIN1 -0.709                                                                                                                                                                                                                                                                                                                                                               |  |
| MLPH 2.458 GLRX 1.103 TFAP2A 0.855 SLC16A3 0.731                                                                                                                                                                                                                                                                                                                                                                 |  |
| TFAP2A  2.56  GEM  1.168  PLP1  0.736  ZYX  0.774                                                                                                                                                                                                                                                                                                                                                                |  |
| TYR  2.36  IL18BP  1.251  ERBB3  0.718  P4HA2  0.775                                                                                                                                                                                                                                                                                                                                                             |  |
| CDH1 2.346 SPATA13 1.277 C1orf85 0.645 GBE1 0.818                                                                                                                                                                                                                                                                                                                                                                |  |
| TMEM98 1.987 FAM46A 1.292 SIRPA 0.640 NGFR 0.820                                                                                                                                                                                                                                                                                                                                                                 |  |
| GYG2 1.954 COL6A1 1.302 MYO10 0.620 C9orf89 0.821                                                                                                                                                                                                                                                                                                                                                                |  |
| SLC24A5 1.877 LOXL2 1.352 VAT1 0.598 SH3BGR3 0.832                                                                                                                                                                                                                                                                                                                                                               |  |
| MITF  1.65  ZCCHC6  1.374  STAM  0.589  SLC25A37  0.871                                                                                                                                                                                                                                                                                                                                                          |  |
| PIR  1.876  FGFRL1  1.391  SLC35B4 0.743  FOSL1  0.887                                                                                                                                                                                                                                                                                                                                                           |  |
| SNCA  1.765  FN1  1.478  OSTM1  -0.903  TIMP1  0.892                                                                                                                                                                                                                                                                                                                                                             |  |
| C1orf85 1.721 HAPLN3 1.492 IGSF8 -1.184 HPCAL1 0.900                                                                                                                                                                                                                                                                                                                                                             |  |
| IGSF8 1.718 COL6A2 1.531 DNAJA4 -1.938 FAM46A 0.923                                                                                                                                                                                                                                                                                                                                                              |  |
| GPR143  1.717  BACH1  1.555  FOSB  -3.104  DBNDD2  0.933                                                                                                                                                                                                                                                                                                                                                         |  |
| DNAJA4 1.678 CADM1 1.598 PHLDA2 0.953                                                                                                                                                                                                                                                                                                                                                                            |  |
| IGSF11 1.567 CRIP1 1.62 FGFRL1 1.026                                                                                                                                                                                                                                                                                                                                                                             |  |
| CHL1  1.423  SLC22A4  1.665  LOXL2  1.034                                                                                                                                                                                                                                                                                                                                                                        |  |
| <b>QPCT</b> 1.346 <b>NNMT</b> 1.717 <b>TNFRSF12</b> 1.073                                                                                                                                                                                                                                                                                                                                                        |  |
| TBC1D7  1.325  \$100A4  1.785  CD82  1.107                                                                                                                                                                                                                                                                                                                                                                       |  |
| JUN 1.45 AIM2 1.821 SEC14L2 1.134                                                                                                                                                                                                                                                                                                                                                                                |  |
| <b>SIRPA</b> 1.235 <b>PMAIP1</b> 1.836 <b>S100A6</b> 1.141                                                                                                                                                                                                                                                                                                                                                       |  |
| CYP27A1  1.235  IGFBP3  1.876  CDKN1A  1.167                                                                                                                                                                                                                                                                                                                                                                     |  |
| TNFRSF1  1.234  MAP1B  1.942  SERPINE1  1.191                                                                                                                                                                                                                                                                                                                                                                    |  |
| <b>SLC45A2</b> 1.16 <b>CD52</b> 2.071 <b>MT2A</b> 1.335                                                                                                                                                                                                                                                                                                                                                          |  |
| EXOSC4 1.168 SERPINE1 2.124 SLC2A1 1.338                                                                                                                                                                                                                                                                                                                                                                         |  |
| CAPN3 1.982 CHI3L1 2.139 ENO2 1.358                                                                                                                                                                                                                                                                                                                                                                              |  |
| LZTS1 1.152 AXL 2.242 CD109 1.368                                                                                                                                                                                                                                                                                                                                                                                |  |
| <b>S100B</b> 1.126 <b>NGFR</b> 2.259 <b>ER01L</b> 1.142                                                                                                                                                                                                                                                                                                                                                          |  |
| SLC19A2 1.123 CFB 2.456 AIM2 1.358                                                                                                                                                                                                                                                                                                                                                                               |  |
| ROPN1 0.765 STRA6 2.982 AXL 1.498                                                                                                                                                                                                                                                                                                                                                                                |  |
| FOSB 1.565 MAP1B 1.500                                                                                                                                                                                                                                                                                                                                                                                           |  |
| DOCK10 1.855 PLAUR 1.796                                                                                                                                                                                                                                                                                                                                                                                         |  |
| ELOVL2 2.346 NNMT 1.830                                                                                                                                                                                                                                                                                                                                                                                          |  |
| IL8 1.358                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| IGFBP3 1.358                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| GEM 3.632                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| UCN2 4.248                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| METTL7B 5.479                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| ANGPTL 1.358                                                                                                                                                                                                                                                                                                                                                                                                     |  |

# Supplemental Table 4. Overlapping genes with MITF and AXL Program

| Sample Treatment |                                              | Statistics | #Cells (200000) | Average |
|------------------|----------------------------------------------|------------|-----------------|---------|
| siCtrl           | EdU AXL <sup>nigh</sup> MITF <sup>low</sup>  | 3.19       | 684             | 3.53    |
| siCtrl           | EdU AXL <sup>high</sup> MITF <sup>low</sup>  | 3.48       | 696             |         |
| siCtrl           | EdU AXL high MITF low                        | 3.69       | 738             |         |
| siSmad7          | EdU AXL <sup>nigh</sup> MITF <sup>low</sup>  | 2.38       | 476             | 3.17    |
| siSmad7          | EdU AXL <sup>high</sup> MITF <sup>low</sup>  | 3.59       | 618             |         |
| siSmad7          | EdU AXL <sup>high</sup> MITF <sup>low</sup>  | 3.54       | 708             |         |
| siCtrl           | EdU AXL <sup>low</sup> MITF <sup>high</sup>  | 22.39      | 4378            | 20.26   |
| siCtrl           | EdU AXL <sup>low</sup> MITF <sup>high</sup>  | 18.78      | 3756            |         |
| siCtrl           | EdU AXL <sup>low</sup> MITF <sup>high</sup>  | 20.12      | 4024            |         |
| siSmad7          | EdU AXL <sup>Iow</sup> MITF <sup>high</sup>  | 18.72      | 3740            | 19.43   |
| siSmad7          | EdU AXL low MITF high                        | 19.11      | 3820            |         |
| siSmad7          | EdU AXL <sup>low</sup> MITF <sup>high</sup>  | 20.52      | 4100            |         |
| siCtrl           | EdU AXL <sup>nign</sup> MITF <sup>nign</sup> | 2.01       | 402             | 1.81    |
| siCtrl           | EdU AXL <sup>high</sup> MITF <sup>high</sup> | 1.98       | 396             |         |
| siCtrl           | EdU AXL <sup>high</sup> MITF <sup>high</sup> | 1.20       | 290             |         |
| siSmad7          | EdU AXL <sup>nigh</sup> MITF <sup>nigh</sup> | 1.95       | 380             | 2.08    |
| siSmad7          | EdU AXL <sup>high</sup> MITF <sup>high</sup> | 2.07       | 474             |         |
| siSmad7          | EdU AXL <sup>high</sup> MITF <sup>high</sup> | 2.21       | 542             |         |

# Supplemental Table 5. FACS for EdU/MITF/AXL staining under different treatments

| Sample Treatment     |                                              | Statistics | #Cells (200000) | Average |
|----------------------|----------------------------------------------|------------|-----------------|---------|
| siCtrl + TGFB2+ BMP7 | EdU AXL <sup>high</sup> MITF <sup>high</sup> | 6.39       | 1278            | 6.13    |
| siCtrl TGFB2+ BMP7   | EdU AXL <sup>high</sup> MITF <sup>high</sup> | 5.74       | 1096            |         |
| siCtrl TGFB2+ BMP7   | EdU AXL <sup>high</sup> MITF <sup>high</sup> | 6.51       | 1302            |         |
| siSMAD7 TGFB BMP7    | EdU AXL <sup>high</sup> MITF <sup>high</sup> | 9.56       | 1912            | 10.06   |
| siSMAD7 TGFB BMP7    | EdU AXL <sup>high</sup> MITF <sup>high</sup> | 11.48      | 2296            |         |
| siSMAD7 TGFB BMP7    | EdU AXL high MITFhigh                        | 9.14       | 1828            |         |
| siCtrl + TGFB BMP7   | EdU AXL low MITF high                        | 26.71      | 5342            | 25.28   |

| siCtrl +TGFB BMP7     | EdU AXL IOW MITF high                       | 28.95 | 5730 |       |
|-----------------------|---------------------------------------------|-------|------|-------|
| siCtrl +TGFB BMP7     | EdU AXL low MITF high                       | 20.47 | 4094 |       |
| siSMAD7+TGFB BMP7     | EdU AXL <sup>low</sup> MITF <sup>high</sup> | 25.89 | 5178 | 22.77 |
| siSMAD7+TGFB BMP7     | EdU AXL <sup>low</sup> MITF <sup>high</sup> | 20.12 | 4024 |       |
| siSMAD7+TGFB BMP7     | EdU AXL IOW MITF high                       | 22.31 | 4462 |       |
| siCtrl TGFB + BMP7    | EdU AXL <sup>high</sup> MITF <sup>low</sup> | 4.31  | 862  | 3.85  |
| siCtrl TGFB + BMP7    | EdU AXL <sup>high</sup> MITF <sup>low</sup> | 3.25  | 650  |       |
| siCtrl TGFB + BMP7    | EdU AXL <sup>high</sup> MITF <sup>low</sup> | 3.98  | 796  |       |
| siSMAD7+ TGFB2 + BMP7 | EdU AXL <sup>high</sup> MITF <sup>low</sup> | 10.70 | 2298 | 12.85 |
| siSMAD7+ TGFB2 + BMP7 | EdU AXL <sup>high</sup> MITF <sup>low</sup> | 9.65  | 1854 |       |
| siSMAD7+ TGFB2 + BMP7 | EdU AXL high MITF low                       | 13.25 | 2201 |       |

# Supplemental Table 6. MFI levels for MITF

| Samples              | <mark>Q1</mark> EdU <sup>⁺</sup> AXL <sup>⁻</sup> | <mark>Q2</mark> EdU <sup>⁺</sup> AXL <sup>⁺</sup> | Q3 <mark>EdU<sup>-</sup>AXL<sup>-</sup></mark> | Q4EdU <sup>-</sup> AXL <sup>+</sup> |
|----------------------|---------------------------------------------------|---------------------------------------------------|------------------------------------------------|-------------------------------------|
| No treatment         | 2548                                              | 1189                                              | 1547                                           | 1105                                |
| No treatment         | 2200                                              | 1140                                              | 1496                                           | 154                                 |
| No treatment         | 2148                                              | 1257                                              | 1440                                           | 1298                                |
| siCtrl               | 2479                                              | 1205                                              | 1385                                           | 1145                                |
| siCtrl               | 2319                                              | 1225                                              | 1350                                           | 1039                                |
| siCtrl               | 2079                                              | 1154                                              | 1278                                           | 1223                                |
| siSmad7              | 2371                                              | 1098                                              | 1584                                           | 1354                                |
| siSmad7              | 2230                                              | 1146                                              | 1503                                           | 1159                                |
| siSmad7              | 2183                                              | 1668                                              | 1445                                           | 1198                                |
| siCtrl+ TGF-β2+BMP7  | 2854                                              | 1539                                              | 1496                                           | 1014                                |
| siCtrl+ TGF-β2+BMP7  | 2793                                              | 1679                                              | 1357                                           | 1204                                |
| siCtrl+ TGF-β2+BMP7  | 2935                                              | 1300                                              | 1547                                           | 1158                                |
| siSmad7+TGF-β2+BMP7  | 2194                                              | 2553                                              | 1143                                           | 1053                                |
| siSmad7+TGF-β2+BMP7  | 2031                                              | 2403                                              | 1443                                           | 1125                                |
| siSmad7+ TGF-β2+BMP7 | 2217                                              | 2247                                              | 1284                                           | 1185                                |

# Supplemental Table 7. Mouse Genotyping Primers

| Gene                  | Forward Sequence (5'-3') | Reverse Sequence (5'-3')    |
|-----------------------|--------------------------|-----------------------------|
| Cre                   | CTATCCAGCAACATTTGGGCCAGC | CCAGGTTACGGATATAGTTCATGAC   |
| Ink4 <sup>wt</sup>    | ATGATGATGGGCAACGTTC      | CAAATATCGCACGATGTC          |
| Ink4 <sup>-/-</sup>   | CTATCAGGACATAGCGTTGG     | AGTGAGAGTTTGGGGACAGAG       |
| N-Ras <sup>Q61K</sup> | GATCCCACCATAGAGGATT      | CTGGCGTATTTCTCTTACC         |
| Smad4 <sup>wt</sup>   | GGCACATTACATTTGCAGTCAG   | AGGAAAAACAGGGCTATGTAGAA     |
| Smad4 <sup>′ox</sup>  | GGCACATTACATTTGCAGTCAG   | GACCCAAACGTCACCTTCAC        |
| Smad7 <sup>wt</sup>   | TTCAGAGGCAGACCGAACCTCCAA | AGGATTGGGTCAGGGACAGAAGAGCA  |
| Smad7 <sup>lox</sup>  | TTCAGAGGCAGACCGAACCTCCAA | TCTCACCTTGCTCCTGCCGAGAAAGTA |
| LacZ                  | GGTCGGCTTACGGCGGTGATTT   | AGCGGCGTCAGCAGTTGTTTT       |

## Supplemental Table 8. Antibodies

| Primary Antibodies |                                 |         |                         |                                |  |  |  |
|--------------------|---------------------------------|---------|-------------------------|--------------------------------|--|--|--|
| Antigen            | Company/Location                | Source  | Application / Dilutions | Catalog/Clone<br>Number        |  |  |  |
| β-actin            | Sigma- Aldrich, Missouri, USA   | Mouse   | WB 1:10000              | A-5316 / AC-74                 |  |  |  |
| α-tubulin          | Sigma- Aldrich, Missouri, USA   | Mouse   | WB 1:10000              | T-6074 / D                     |  |  |  |
| β -Gal.            | Abcam, Cambridge, UK            | Chicken | IF 1:1000               | ab9361/polyclonal              |  |  |  |
| AxI                | Santa Cruz, Texas, USA          | Goat    | WB 1:50 IF 1:100        | sc-1096 / C-20                 |  |  |  |
| AXL                | Cell Signaling Technology, USA  | Rabbit  | FACS 1:1000             | C89E7/8661                     |  |  |  |
| Caspase3           | Cell Signaling Technology, USA  | Rabbit  | IF 1:200                | 9661/polyclonal                |  |  |  |
| DCT                | Santa Cruz Biotechnology, USA   | Goat    | IF 1:250                | sc-10451/polyconal             |  |  |  |
| Anti-<br>Melanoma  | Abcam Cambridge, UK             | Mouse   | IF 1:200                | ab732/HMB45,M2-<br>7C10,M2-9E3 |  |  |  |
| pSMAD2/3           | Santa Cruz, Texas, USA          | Goat    | IF 1:300                | sc-11769/polyclonal            |  |  |  |
| pSMAD2             | Cell Signaling Technology, USA  | Rabbit  | WB 1:50 IF 1:300        | 3101/polyclonal                |  |  |  |
| pSMAD1/5/8         | Cell Signaling Technology, USA  | Rabbit  | WB 1:50 IF 1:300        | 9511S/41D10                    |  |  |  |
| SMAD2              | Cell Signaling Technology, USA  | Rabbit  | WB 1:100                | 5339/D43B4                     |  |  |  |
| SMAD1              | Cell Signaling Technology, USA  | Rabbit  | WB 1:50                 | 9743                           |  |  |  |
| PAX3               | Invitrogen, California, USA     | Rabbit  | IF 1:300                | 38081/polyclonal               |  |  |  |
| SMAD7              | Santa Cruz, Texas, USA          | Goat    | IF 1:300                | sc-365846/B-8                  |  |  |  |
| SMAD7              | RD System, Minnesota, USA       | Mouse   | IF1:100                 | /293039MAB2029                 |  |  |  |
| SMAD4              | Abcam Cambridge, UK             | Rabbit  | IF 1:300                | ab40759/EP618Y                 |  |  |  |
| Ki67               | Abcam Cambridge, UK             | Rabbit  | IF 1:50                 | ab15580/polyclonal             |  |  |  |
| MITF               | Santa Cruz, Texas, USA          | Rabbit  | IF, FACS1:500           | sc-56726/D-5                   |  |  |  |
| Zeb1               | Bethyl Laboratories, Texas, USA | Mouse   | IF1:300                 | IHC-00419/polyclonal           |  |  |  |

| ZEB1        | Santa Cruz, Texas, USA         | Rabbit | IF1:200            | H102/polyclonal    |
|-------------|--------------------------------|--------|--------------------|--------------------|
| MITF        | Heinz Arnheiter, NIH,USA       | Mouse  | IF1:500 FACS1:1000 | clone 6D3,         |
| Cdkn2a(p16) | Santa Cruz, Texas, USA         | Mouse  | WB1:200            | sc-1661/F-12       |
| Cdkn1a(p21) | Santa Cruz, Texas, USA         | Rabbit | WB1:200            | sc-1064/polyclonal |
| Cdkn1b(p27) | Cell Signaling Technology, USA | Mouse  | WB1:200            | 2552/polyclonal    |
| Cdkn1c(p57) | Cell Signaling Technology, USA | Rabbit | WB1:200            | 2557/polyclonal    |
| Cdkn2c(p18) | Cell Signaling Technology, USA | Rabbit | WB1:200            | DCS118/2896        |

| Secondary Antibodies |                                               |         |               |                            |  |
|----------------------|-----------------------------------------------|---------|---------------|----------------------------|--|
| Antigen              | Company                                       | Source  | Application   | Catalog Number             |  |
| Alexa 546            | Jackson ImmunoResearch,<br>Cambridgeshire, UK | Mouse   | IF,FACS:1:250 | Cat#A-1103/IgG H+L         |  |
| Alexa 488            | Jackson ImmunoResearch,<br>Cambridgeshire, UK | Rabbit  | IF1:250       | Cat#711-545-152/lgG<br>H+L |  |
| Alexa 488            | Jackson ImmunoResearch,<br>Cambridgeshire, UK | Goat    | IF,FACS:1:250 | Cat#705-545-147/lgG<br>H+L |  |
| Alexa-647            | Jackson ImmunoResearch,<br>Cambridgeshire, UK | Donkey  | IF 1:250      | Cat#715-605-150/lgG<br>H+L |  |
| Biotin-SP<br>IgG     | Jackson ImmunoResearch,<br>Cambridgeshire, UK | Donkey  | IF 1:300      | Cat#711-065-052            |  |
| Biotin-SP<br>IgG     | Chemicon, Osaki, Japan                        | Chicken | IF 1:300      | Cat#AP194B/IgGL            |  |
| Streptavidin<br>HRP  | Jackson ImmunoResearch,<br>Cambridgeshire, UK | Goat    | IF 1:300      | Cat#016-030-084/IgG H      |  |
| IRDye-<br>800CW      | Li-COR Biosciences, Lincoln, USA              | Donkey  | WB 1:10000    | Cat#926-32214/IgG H+L      |  |
| IRDye-<br>680LT      | Li-COR Biosciences, Lincoln, USA              | Mouse   | WB 1:10000    | Cat#926-68023/IgG H+L      |  |

## Supplemental Table 9. siRNAs and Primer sequences

Forward and reverse primer sequences used in qPCR and the sequences of the siRNAs aimed against the different SMADs

## Human(siRNA)

| Gene             | Company                                                 | Target Exon | siRNA    | Catalog Number |
|------------------|---------------------------------------------------------|-------------|----------|----------------|
|                  |                                                         |             | Location |                |
| siSMAD7 #1       | Life Technologies, California,<br>USA                   | Human 3,4   | 1028     | Cat#HSS106264  |
| siSMAD7 #2       | Life Technologies, California,<br>USA                   | Human 4     | 1426     | Cat#HSS180976  |
| siSMAD4 #1       | Life Technologies, California, USA Life Technologies    | Human 9,10  | 1582     | Cat#HSS106255  |
| siSMAD4 #2       | Life Technologies, California,<br>USA Life Technologies | Human 4     | 1088     | Cat#HSS180972  |
| siControl Med.GC | Life Technologies, California,<br>USA Life Technologies | Human       |          | Cat#129353003  |

## Human (RT-PCR Primers)

| Primers provided by Microsynth, Balgach, Switzerland |                           |                           |  |  |
|------------------------------------------------------|---------------------------|---------------------------|--|--|
| Genes                                                | Forward Sequence (5'-3')  | Reverse Sequence (5'-3')  |  |  |
| ACTIN                                                | AGAGCTACGAGCTGCCTGAC      | AGCACTGTGTTGGCGTACAG      |  |  |
| AXL                                                  | GCTGTCAGACGATGGGATG       | CCATTCCGCGTAGCACTAA       |  |  |
| GAPDH                                                | AATCCCATCACATCTTCC        | CATCACGCCACAGTTTCC        |  |  |
| ZEB1                                                 | TGCACTGAGTGTGGAAAAGC      | TGGTGATGCTGAAAGAGACG      |  |  |
| TWIST1                                               | ACCATCCTCACACCTCTGCATT    | TGCAGGCCAGTTTGATCCCAGTAT  |  |  |
| ZEB2                                                 | CGCTTGACATCACTGAAGGA      | CTTGCCACACTCTGTGCATT      |  |  |
| SNAIL2                                               | AGCAAGAAGTCGAGCGAAGA      | CAGCTTGAGCGTCTGGATCT      |  |  |
| CDH1                                                 | CTGCTGCCACCAGATGATGA      | CTGTGCAGCTGGCTCAAATC      |  |  |
| CDH271                                               | CCT ACGGCTACTACCAGGATG    | CACACGGTGTTCTGCTTGT       |  |  |
| MITF                                                 | CAGGCATGAACACACATTCAC     | TCCATCAAGCCCAAGATTTC      |  |  |
| VIM                                                  | GAGAACTTTGCCGTTGAAGC      | GCTTCCTGTAGGTGGCAATC      |  |  |
| FN1                                                  | AAACCAATTCTTGGAGCAGG      | CCATAAAGGGCAACCAAGAG      |  |  |
| AXL                                                  | GCTGTCAGACGATGGGATG       | CCATTCCGCGTAGCACTAAT      |  |  |
| CDK2                                                 | TTCTGCCATTCTCATCGGGT      | AGGAGGATTTCAGGAGCTCG      |  |  |
| CDKN1A                                               | GACCATGTGGACCTGTCACT      | GGAGTGGTAGAAATCTGTCATGC   |  |  |
| CDKN1B                                               | TAATTGGGGCTCCGGCTAAC      | AGAAGAATCGTCGGTTGCAG      |  |  |
| CDKN1C                                               | CAAGAGATCAGCGCCTGAGA      | CTCTTTGGGCTTTGGCTCAC      |  |  |
| CDKN2A                                               | AGGTCCCTCAGAAATGATCGG     | CAGCCAGCTTGCGATAACCA      |  |  |
| CDKN2B                                               | GGATCCCAACGGAGTCAACC      | CCAACGGAGACTCCTGTACAAA    |  |  |
| CDKN2C                                               | CGACTAATTCATCTTTTCCTGATCG | GGGATTTCCAAGTTTCATAACCTGC |  |  |

# Human (RT-PCR Primers)

| Primers provided by Microsynth, Balgach, Switzerland |                          |                          |  |
|------------------------------------------------------|--------------------------|--------------------------|--|
| Genes                                                | Forward Sequence (5'-3') | Reverse Sequence (5'-3') |  |
| TYRP1                                                | CCGAAACACAGTGGAAGGTT     | TCTGTGAAGGTGTGCAGGA      |  |
| DCT                                                  | AGC AGTATGGCTGGAGCA CT   | AGCAGTATGGCTGGAGCACT     |  |
| PMEL                                                 | AATCCCATCACATCTTCC       | CATCACGCCACAGTTTCC       |  |
| MC1A                                                 | TGCACTGAGTGTGGAAAAGC     | TGGTGATGCTGAAAGAGACG     |  |
| MITF                                                 | ATGCTGGAAATGCTAGAATACA   | CTAACACGCATGCTCCGTTT     |  |
| SILV                                                 | CGCTTGACATCGATAAGGA      | ACTTGCCACACTCTGTGCATT    |  |
| OCA                                                  | AGCAAGAAGTCGAGCGAAGA     | CAGCTTGAGCGTCTGGATCT     |  |

# Mouse (RT-PCR Primers)

| Genes  | Forward Sequence (5'-3')      | Reverse Sequence (5'-3')      |
|--------|-------------------------------|-------------------------------|
| Actin  | GACGGGGTCACCCACACTGTGCCCATCTA | CTAGAAGCATTTGCGGTGGACGATGGAGG |
| Gapdh  | AATCCCATCACATCTTCC            | CATCACGCCACAGTTTCC            |
| Zeb1   | TGCACTGAGTGTGGAAAAGC          | TGGTGATGCTGAAAGAGACG          |
| Twist1 | ACCATCCTCACACCTCTGCATT        | TGCAGGCCAGTTTGATCCCAGTAT      |
| Zeb2   | CGCTTGACATCACTGAAGGA          | CTTGCCACACTCTGTGCATT          |
| Snail2 | AGCAAGAAGTCGAGCGAAGA          | CAGCTTGAGCGTCTGGATCT          |
| Cdh1   | CTGCTGCCACCAGATGATGA          | CTGTGCAGCTGGCTCAAATC          |
| Cdh271 | TGCTGTTGCTGCTTCTGG            | CTCACACGGTCTGGTTG             |
| Vim    | GAGAACTTTGCCGTTGAAGC          | GCTTCCTGTAGGTGGCAATC          |
| Bmp7   | ATTTCAGCCTGGACAACGAG          | AGACGGCCTTGTAGGGGTAG          |
| Nodal  | ACTTTGCTTTGGGAAGCTGA          | AGGAGGGTCAAGTTCCAGGT          |
| Tgfβ2  | TGCCAGTGGTGATCAGAAAA          | TCCATTTCCATCCAAGATCC          |
| Fn1    | AAACCAATTCTTGGAGCAGG          | CCATAAAGGGCAACCAAGAG          |
| Cdkn1a | ACGGTGGAACTTTGACTT CG         | CAG GGC AGA GGA AGT ACT GG    |
| Cdkn1b | AGTCAGCGCAAGTGGAATTT          | GGTCCTCAGAGTTTGCCTGA          |
| Cdkn1c | CTGACCTCAGACCCAATTCC          | CTAGA GACCGGCTAGT TC          |
| Cdkn2a | CCGCTGCAGACAGACTGG            | CCATCATCATCACCTGAATCG         |
| Cdkn2b | TTACCAGACCTGTGCACGAC          | GCAGATACCTCGCAATGTCA          |
| Cdkn2c | CTGGAGTTCCAGGCGATGT           | CCTCCATCAGGCTAATGACC          |

# Supplemental Table 10. Ligands, Chemicals, Cell lines

| Ligands | Company                        | Source | Application / Dilutions | Catalog Number  |
|---------|--------------------------------|--------|-------------------------|-----------------|
| TGF-β1  | R&D Systems, Minnesota,<br>USA | Human  | 10 ng/µl                | Cat#240-B-010   |
| TGF-β2  | PeproTech, London, UK          | Human  | 5-10 ng/µl              | Cat#100-35B     |
| ACTIVIN | R&D Systems, Minnesota,<br>USA | Human  | 50 ng/µl                | Cat#338-AC-010  |
| NODAL   | R&D Systems, Minnesota,<br>USA | Human  | 100 ng/µl               | Cat#3218-ND-025 |

| BMP2 | PeproTech, London, UK          | Human | 50 ng/µl  | Cat#120-02 |
|------|--------------------------------|-------|-----------|------------|
| BMP4 | R&D Systems, Minnesota,<br>USA | Human | 50 ng/µl  | Cat#314-BP |
| BMP7 | R&D Systems, Minnesota,<br>USA | Human | 100 ng/µl | Cat#354-BP |

| Chemicals                       | Company                  | Catalog/ Cas Number              |
|---------------------------------|--------------------------|----------------------------------|
| Agarose                         | AppliChem                | Cat# A8963; CAS# 9012-36-6       |
| Antibody Diluent                | Dako                     | Cat# S0809                       |
| Bovine Serum Albumin (BSA)      | Sigma-Aldrich            | Cat# A4503; CAS# 9048-46-8       |
| Crystal violet solution         | Sigma-Aldrich            | Cat# HT90132; CAS# 548-62-9      |
| Dimethyl sulfoxide (DMSO)       | Sigma-Aldrich            | Cat# D2650; CAS# 67-68-5         |
| DNase I                         | Roche                    | Cat# 10104159001; CAS# 9003-98-9 |
| Ethanol absolut                 | VWR Chemicals            | Cat# 20821.296; CAS# 64-17-5     |
| Falcon Cell Strainers, 40 µm    | Thermo Fisher Scientific | Cat# 352340                      |
| Fetal Cow Serum (FCS)           | Thermo Fisher Scientific | Cat# 16140                       |
| Fibronectin                     | Sigma-Aldrich            | Cat# F1141                       |
| Fluorescent Mounting Medium     | Dako                     | Cat# S3023                       |
| Formaldehyde Solution,37%       | Sigma-Aldrich            | Cat# F8775; CAS# 50-00-0         |
| Fungizone Antimycotic           | Thermo Fisher Scientific | Cat# 15290                       |
| Glycine                         | Sigma-Aldrich            | Cat# G8898; CAS# 56-40-6         |
| Glycogen                        | Sigma-Aldrich            | Cat# G0885; CAS# 9005-79-2       |
| L-Glutamine                     | Thermo Fisher Scientific | Cat# 25030                       |
| Halt                            | Thermo Fisher Scientific | Cat# 78440                       |
| HEPES                           | Sigma-Aldrich            | Cat# H4034; CAS# 7365-45-9       |
| Hoechst 33342                   | Sigma-Aldrich            | Cat# 14533; CAS# 23491-52-3      |
| Horseradish Peroxidase-         | Jackson ImmunoResearch   | Cat# 016-030-084                 |
| 4-Hydroxytamoxifen (4-SOHT)     | Sigma-Aldrich            | Cat# H7904; CAS# 68047-06-3      |
| Isoflurane                      | Piramal Healthcare       | Cat# 430024079                   |
| Isopropanol                     | Merck Millipore          | Cat# 1096341000; CAS# 67-63-0    |
| Laemmli Sample Buffer, 4X       | Bio-Rad                  | Cat# 1610747                     |
| Liberase, DH Research Grade     | Roche                    | Cat# 05401054001                 |
| LightCycler 480 Multiwell Plate | Roche                    | Cat# 04729692001                 |
| Medium, DMEM                    | Thermo Fisher Scientific | Cat# 41965                       |
| Medium, DMEM/F-12               | Thermo Fisher Scientific | Cat# 21041                       |
| Medium, RPMI 1640               | Thermo Fisher Scientific | Cat# 42401                       |
| 2-Mercaptoethanol               | Sigma-Aldrich            | Cat# M3148; CAS# 60-24-2         |
| Methanol                        | Merck Millipore          | Cat# 106009; CAS# 67-56-1        |
| 4-20% Mini-PROTEAN TGX          | Bio-Rad                  | Cat# 4561094, 4561096            |
| NewBlot Nitro Stripping Buffer, | LI-COR Biosciences       | Cat# 928-40030                   |
| Nitrocellulose/Filter Paper     | Bio-Rad                  | Cat# 1620215                     |
| Nonidet P 40 Substitute         | Sigma-Aldrich            | Cat# 74385; CAS# 9016-45-9       |
| Nuclease S7                     | Roche                    | Cat# 10107921001; CAS# 9013-53-0 |
| Odyssey Blocking Buffer         | LI-COR Biosciences       | Cat# 927-40000                   |
| Penicillin-Streptomycin         | Thermo Fisher Scientific | Cat# 15070                       |
| Phenol-Chloroform-Isoamyl       | Sigma-Aldrich            | Cat# P3803                       |
| Phosphate Buffered Saline       | Thermo Fisher Scientific | Cat# 10010                       |
| Polybrene                       | Santa Cruz Biotechnology | Cat# sc-134220                   |
| Potassium chloride              | Sigma-Aldrich            | Cat# P9333; CAS# 7447-40-7       |
| PRI-724, Canonical WNT          | Selleckchem              | Cat# S8262; CAS# 847591-62-2     |
| Protein A-Sepharose CL-4B       | GE Healthcare            | Cat# 17-0780-01                  |
| Protein LoBind Tubes            | Eppendorf                | Cat# 0030108116                  |
| Proteinase K, recombinant PCR   | Roche                    | Cat# 03115828001                 |

| RIPA Buffer                  | Thermo Fisher Scientific | Cat# 89900                  |
|------------------------------|--------------------------|-----------------------------|
| RLT Buffer                   | Qiagen                   | Cat# 79216                  |
| RNase H                      | Thermo Fisher Scientific | Cat# EN0202                 |
| Roti-Histofix, 4%            | Carl Roth                | Cat# P087.3                 |
| SHH, Recombinant human       | PeproTech                | Cat# 100-45                 |
| Sodium acetate, anhydrous    | Sigma-Aldrich            | Cat# W302406; CAS# 127-09-3 |
| Sodium chloride              | Sigma-Aldrich            | Cat# 71380; CAS# 7647-14-5  |
| Sodium deoxycholate          | Sigma-Aldrich            | Cat# 30970; CAS# 302-95-4   |
| Sodium dodecylsulfate        | AppliChem                | Cat# A2263; CAS# 151-21-3   |
| Sucrose                      | Sigma-Aldrich            | Cat# S0389; CAS# 57-50-1    |
| Sunflower seed oil           | Sigma-Aldrich            | Cat# S5007; CAS# 8001-21-6  |
| Tamoxifen (TM)               | Sigma-Aldrich            | Cat# T5648; CAS# 10540-29-1 |
| Target Retrieval Solution,   | Dako                     | Cat# S2369                  |
| Tetradecanoylphorbol 13-     | Sigma-Aldrich            | Cat# P1585; CAS# 16561-29-8 |
| Tris Hydrochloride           | AppliChem                | Cat# A3452; CAS# 1185-53-1  |
| Tris/Glycine Buffer, 10X     | Bio-Rad                  | Cat# 1610734                |
| Tris/Glycine/SDS Buffer, 10X | Bio-Rad                  | Cat# 1610732                |
| Triton X-100                 | Sigma-Aldrich            | Cat# T8787; CAS# 9002-93-1  |
| Trypsin-EDTA, 0.25%          | Thermo Fisher Scientific | Cat# 25200                  |
| TWEEN 20                     | Sigma-Aldrich            | Cat# P1379; CAS# 9005-64-5  |
| Wax strips                   | Veet                     | N/A                         |

| Cell lines                                                 | Source                 | Catalog Number               |
|------------------------------------------------------------|------------------------|------------------------------|
| Human: A375 cell line                                      | ATCC                   | Cat# CRL-1619; RRID:         |
| Human: SK-MEL-28 cell line                                 | ATCC                   | Cat# HTB-72; RRID: CVCL_0526 |
| Human: 501Mel cell line                                    | (4)                    | RRID: CVCL_4633              |
| Human: 888Mel cell line                                    | (4)                    | RRID: CVCL_4632              |
| Human: M010817 short-term cell culture                     | URPP Live Tumor Cell   | N/A                          |
| Human Melanocytes                                          | URPP Human cells       | N/A                          |
| Mouse Melan-a                                              | Ximbio                 | Cat# 153599                  |
| Mouse: RIM-3 short-term cell culture                       | (5)                    | N/A                          |
| Mouse: Tyr::Cre <sup>ERT2</sup> : B6.Cg-                   | The Jackson Laboratory | Cat# 012328; RRID:           |
| Tg(TyrCre/ERT2)13Bos/J                                     |                        | IMSR_JAX:012328              |
| Mouse: R26R-LSL-LacZ: B6;129S4-                            | The Jackson Laboratory | Cat# 003309; RRID:           |
| Gt(ROSA)26Sor <sup>tm1Sor</sup> /J                         |                        | IMSR_JAX:003309              |
| Mouse: Smad7 <sup>tm1.1Ink</sup> B6.Cg-Thy1                | (6)                    | MGI: 1100518                 |
| Mouse: <i>Tyr::Nras<sup>Q61K</sup></i> : Tg(Tyr NRAS*Q61K) | (7)                    | MGI: 3768645                 |
| Mouse: Ink4a <sup>-/-</sup> : Cdkn2a <sup>tm1Rdp</sup>     | (8)                    | MGI: 1857942                 |
| Mouse: Smad4 <sup>tm2.1Cxa</sup> /J                        | (9)                    | MGI: 894293                  |

### **Supplemental References**

1. Müller-Röver S et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. *J. Invest. Dermatol.* 2001;117(1):3–15.

2. Paus R et al. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. *J. Invest. Dermatol.* 1999;113(4):523–532.

3. Raaijmakers MIG et al. A new live-cell biobank workflow efficiently recovers heterogeneous melanoma cells from native biopsies. *Exp. Dermatol.* 2015;24(5):377–380.

4. Rubinfeld B et al. Stabilization of beta-catenin by genetic defects in melanoma cell lines.. *Science* 1997;275(5307):1790–1792.

5. Zingg D et al. The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. *Nat. Commun.* 2015;6(May 2014):6051.

6. Kleiter I et al. Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis. *Brain* 2010;133(Pt 4):1067–81.

7. Ackermann J et al. Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. *Cancer Res.* 2005;65(10):4005–11.

8. Serrano M et al. Role of the INK4a locus in tumor suppression and cell mortality. *Cell* 1996;85(1):27–37.

9. Yang X, Li C, Herrera PL, Deng CX. Generation of Smad4/Dpc4 conditional knockout mice. *Genesis* 2002;32(2):80–81.

### Supplemental Figure 1



Supplemental Figure 1 Melanocyte-specific deletion of Smad4 causes hair graying without affecting proliferation rate. (A-C) Breeding and plucking strategy used to analyze the effect of the lack of Smad4 in Tyr::Cre<sup>ERT2</sup> mice. (D) Quantification of the percentage of recombined hair follicles analyzed by  $\beta$ -Gal expression (cKO, n=7 and 300 hair follicles per animal). (E) Back skin pictures of representative mice at d90 and d128 after plucking. Adult Smad4<sup>lox/lox</sup> Tyr::Cre<sup>ERT2</sup> mice treated with TM by IP injection at the first telogen cycle exhibit white hairs within the plucked region upon hair regrowth. There are no white hairs in similarly treated control mice (**F**) IF staining for Smad4, Dct, and  $\beta$ -Gal protein on back skin sections of control and cKO animals. Bright field images (left panels) reveal reduced pigmentation of cKO hair follicle bulbs in an equation (G) Percentage of hair follicle bulbs containing  $\beta$ -Gal-positive Dctexpressing melanocytes at the anagen V/IV stage and percentage of  $\beta$ -Gal-positive cells per Dct-expressing hair follicle bulb at the anagen V/IV stage (n=300 hair follicles quantified from three different mice for each genotype). (H,I) Immunostaining for Dct (yellow) and EdU (green) showing proliferation of cells of the melanocytic lineage in the hair follicle bulb (n=3). (J) Appearance of human melanocyte pellets after treatment with siCtrl and siSMAD4, respectively. (K) Percentage of EdU-positive human melanocytes after SMAD4 knockdown. (L) RT-qPCR analysis of pigmentation-related genes in two human melanocyte cell lines (siCtrl vs siSMAD4#1). Data represented as the mean ± SD. ns. non-significant, P< 0.01\*\*, P< 0.001\*\*\*. gPCR results are means ± SD of three biological replicates. (G,I,K,L) P values calculated with unpaired Student's t-test. P1, postnatal day; d, days; HB, hair bulb.

### Supplemental Figure 2



Supplemental Figure 2 Knockdown of SMAD4 alters expression of cell cycle regulators in human and mouse melanoma cell lines. (A,B) RT-qPCR analysis of cell cycle regulators in the indicated human melanoma cell lines. (C,D) Western blot analysis of the cell cycle inhibitors CDKN2A (p16<sup>INK4a</sup>) and CDKN2C (p18<sup>INK4c</sup>) in M010817 and 501Mel whole cell extracts treated with siSMAD4. The immunoblots presented were derived from replicate samples run on parallel gels. Data represented as the mean  $\pm$  SD. ns. non-significant, P< 0.01<sup>\*\*</sup>, P< 0.001<sup>\*\*\*</sup>. qPCR results are means  $\pm$  SD of three biological replicates. (A,B) P values calculated with unpaired Student's t-test.



### Supplemental Figure 3

Supplemental Figure 3 BMP7 signaling promotes melanoma cell growth (A) Log2 fold change of ligand mRNAs in primary tumors derived from *Tyr::Nras*<sup>Q61K</sup> *Ink4<sup>-/-</sup>* mice (n=7). (**B,C**) Cell cycle analysis of M010817 and 501Mel cells exposed to various TGF-B/BMP ligands as described in Supplemental Table 8. Bars represent the percentage of cells distributed in S phase. (D) Quantification of cell-substrate adherence of melanoma cells. (E) Clustering of RNAseq-based expression data revealing invasive and proliferative cell states in vitro. Samples in the invasive cluster have high expression of the following genes: WNT5A, AXL, ZEB1, SOX9, and TGFB2. Genes with high expression in the proliferative sample cluster include BMP7 (OP1) and known markers of the melanocyte lineage and melanoma, such as SOX10 and MITF. Correlations of RNA-seq expression data was as follows: BMP7 and MITF r= 0.43 \*\*\*p<0.001, BMP7 and SOX10 r=0.39 \*\*\*p<0.001, TGF-B2 and ZEB1 r=0.33 \*\*p<0.01, TGF-B2 and AXL r=0.55 \*\*\*p<0.001, TGF-β2 and WNT5A r=0.63, TGF-β2 and SOX9 r=0.29, \*\*p<0.01. (F,G) pSMAD2/3 and pSMAD1/5/ were detected in melanoma cells upon ligand treatment by using Western blot analysis. (G,H) Quantification of Western blot analysis, phosphorylation levels of SMAD2/3 and SMAD1/5/8 were determined by using phospho-SMAD specific antibodies and normalized to total SMAD2 and SMAD1/5 levels, respectively. Data are represented as a mean of three independent experiments ± SD. P<0.01\*\*, P<0.001\*\*\*. P values calculated with oneway ANOVA followed by comparisons to the control group with Bonferroni correction, adjusted  $\alpha = 0.05/5 = 0.01$ , unpaired Student's t-test (**A-D**) or Pearson correlation test (**E**). Data represented as a mean of three independent experiments  $\pm$  SD. P<0.001<sup>\*\*\*</sup>. For (**H**), P values were calculated with unpaired Student's t-test.

### Supplemental Figure 4



130 140 141

Supplemental Figure 4 Low SMAD7 levels are associated with altered cell adhesion and cell cycle programs in human melanoma cells. (A) An example illustrating co-expression of SMAD7 with S100A in primary melanoma. (B) Quantification of percentage of SMAD7<sup>+</sup>/S100A<sup>+</sup>double positive cells in superficial and deep sites nodules in human melanoma (n=20 nodules/patient). (C) pSMAD2/3 and pSMAD1/5 were detected in melanoma cells by using Western blot analysis. (D) qRT-PCR analysis for knockdown efficiency for SMAD7 mRNA expression and quantification of Western blot analysis. SMAD7 levels, phosphorylation levels of SMAD2/3 and SMAD1/5 were determined by normalizing to total SMAD2 and SMAD1/5 levels, respectively. (E) Representative IF images for pSMAD levels. (F) Extended version of gene ontology analysis (Figure 3F) based on differentially regulated genes upon SMAD7 knockdown (each individual node labeled with numbers shows an enriched GO term (P<0.05\*) (corrected with Bonferroni step down procedure). BP, biological process; MF, molecular function; CC, cellular component. Individual enriched GO terms are given in Supplemental Table 1. Data are represented as a mean of three independent experiments ± SEM. (**B,D**) P<0.05\*, P<0.01\*\*, P<0.001\*\*\*. P values calculated with unpaired Student's t-test (E) Data represented as a mean of three independent experiments ± SEM. P<0.001\*\*\*.



Е

### Supplemental Figure 5







Supplemental Figure 5. Loss of SMAD7 boosts pro-invasive TGF- $\beta$  signaling in the presence of pro-proliferative BMP7. (A) Growth curves and (B) cell numbers of 501 Mel cells treated as described in Figure 4 (n=1). (C) Quantification of S phase cells measured 3 days post ligand treatment through PI and EdU staining (n=3). (D) Quantification of cell-substrate adherence capacity of 501Mel cells upon various treatments. The percentage of BMP7/TGF- $\beta$ 2/siSMAD7-treated cells in suspension increased as compared to BMP7/TGF- $\beta$ 2-treated cells (n=3). (E) Matrigel based invasion assays of siControl and siSmad7-depleted M010817 cells with combinatorial treatments. After invading cells had been counted in five random microscopic fields in each assay, the results were normalized and are presented as an invasion index. Data are represented as a mean of three, two or single independent experiments ± SD. P values calculated with one-way ANOVA followed by comparisons to the control group with Bonferroni correction (adjusted  $\alpha$  = 0.05/5 = 0.01). P< 0.01\*\*, P < 0.001\*\*\* (A-E).

Supplemental Figure 6





-1.5 +1.5

Supplemental Figure 6. Loss of Smad7 boosts pro-invasive NODAL signaling in the presence of pro-proliferative BMP7. (A,B) Quantification of S phase cells measured 3 days post ligand treatment through PI and EdU staining. Treatment with BMP7 resulted in escape of cells from the NODAL-mediated cell cycle arrest and increase in the proliferation rate. SMAD7 knockdown along with BMP7/NODAL treatment results in decreased percentage of cells in S phase as compared to BMP7/NODAL treatment. (C,D) Quantification of cell-substrate adherence capacity of human melanoma cells upon various treatments. (E) Heat map shows qRT-PCR analysis for selected EMT genes under ligand treatments with two biological and three technical replicates. Data represented as a mean  $\pm$  SD. P values calculated with one-way ANOVA followed by comparisons with the control group with Bonferroni correction (adjusted  $\alpha = 0.05/5 = 0.01$ ). P< 0.01\*\*\*, P < 0.001\*\*\* (A-E).

## Supplemental Figure 7





F





Supplemental Figure 7. Reduced Smad7 expression promotes massive metastatic spread of melanoma in vivo. (A) Immunofluorescent staining for Smad7 and Dct on back skin sections at 6 months of age. Melanocytic cells are recombined and show decreased levels of Smad7 (n=6). (B) Quantification of the recombination efficiency by analyzing the percentage of Dct/ $\beta$ -Gal<sup>+</sup> double-positive cells upon intraperitoneal injection or local application of 4-hyroxytamoxifen (4-OHT) to the back skin of 3-week-old mice (n=3). (C) Representative hematoxylin and eosin staining of lung and spleen sections of control and cKO mice at the day of sacrifice. X-Gal staining (blue) illustrates presence of recombined metastatic cells in distant organs. (D) Immunofluorescent staining for pSmad2/3, pSmad1/5 and Dct of primary tumors at 6 months (n=6). Control and cKO primary tumors were quantified for active TGF- $\beta$  signaling by detecting the nuclear localization of pSmad2/3 or pSmad1/5 (n=6). (E) Quantification of active TGF-β signaling by quantifying the number of melanocytic Dct<sup>+</sup> cells displaying nuclear localization of pSmad2/3 and pSmad1/5/8, respectively, in primary tumors at 6 months (n=6). (F) Kaplan-Meier curves comparing overall survival between 4-OHT treated animals and control animals (n=8). Data represented as a mean of three independent experiments  $\pm$  SD. P values calculated with unpaired Student's t-test (B), log-rank (Mantel-Cox) test (F). P< 0.05\*, P< 0.01\*\*, P< 0.001\*\*\*. Scale Bars: 50µm (**A**,**D**).