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SI Materials and Methods

We solve the ice flow using open source finite element
code Elmer/Ice [1]. Including lateral friction, conserva-
tion of momentum yields

∇ · σ = −ρ~g −K|~v|1/n−1~v, (1)

where ρ is the density, ~g is the gravitational acceleration
and σ is the Cauchy stress tensor

σ = 2νε̇− pI. (2)

Here, p is the pressure, I is the identity matrix, ε̇ is the
strain rate tensor and ν is the effective viscosity

ν =
1

2
A−

1
n ε̇

1−n
n

e (3)

where n = 3 is Glen’s exponent, ε̇e =

√
tr(ε̇2)

2 and A is
the Arrhenius factor. We assume that the ice is incom-
pressible so that conservation of mass is given by

∇ · ~v = 0. (4)

In addition, we solve for the evolution of the free top
surface elevation h through

∂h

∂t
+ vx

∂h

∂x
− vy = SMB, (5)

where SMB is the prescribed surface mass balance shown
in Supplementary Figure 2.

For systematic studies of surge propagation we use a
simplified approach for the basal hydrology. Instead of
manipulating both the water pressure and the the peak
friction coefficient C, we have modified C directly. This
is mathematically equivalent to assuming that the water
pressure pw is proportional to the normal stress σn. Even
though the value of the maximum basal shear stress C is
usually not known, we can set up the system close to the
stability threshold by modifying the water pressure. This
can be written as pw = fσn, we have that σN = (1−f)σn
so that

CσN = C(1− f)σn ≡ C∗σn. (6)

Here, we choose C∗ so that the system is close to the crit-
ical threshold, and so that the frictional characteristics
are qualitatively similar to the inversion of basal friction
by Jay-Allemand et al. [2]; C∗(x) = 0.25e−x/2000m+0.08.
We further neglect seasonal variations in basal water
pressure, so that a surge is triggered by changes in τb/σN
due to topography changes alone. The simulation is
stopped when the surge reaches the terminus. The pa-
rameters used in the simulations are given in table 1.

We performed systematic simulations with q ∈
[1.5, 2.0] and dc ∈ [0.1, 10]m. The systematic runs with
changed dc were restarted from simulations with dc = 1m
just after surge onset to reduce computational cost.To

measure the front velocity we used θ(x, t) and traced the
treshold value θthreshold = 0.25. Front velocity could in
principle be measured from most of the variables at the
glacier bed, but θ exhibits the sharpest transition at the
front tip (Supplementary Figure 6 and 7).

We also perform a second set of simulations using the
double-continuum hydrology model for subglacial water
pressure by de Fleurian et al. [3]. We refer to their paper
for a detailed description of the model, but give a brief
overview of the model here. The model assumes an inef-
ficient drainage system (IDS) and an efficient equivalent
porous layer (EPL). Initially the EPL is inactive. The
model solves the vertically integrated Darcy’s equations
for a confined aquifer for both layers

S
∂hw
∂t
−∇ · (T∇hw) = Q (7)

where Q is the source flux per unit surface, T is the
transmissivity, S is the storage coefficient of the porous
media, and hw is the water head. The storage coefficient
is given by

S = ρwφg

(
βw +

βs
φ

)
(8)

where βw is compressibility of water and βs is the com-
pressibility of the sediment. The water pressure can be
found from

pw = ρw(hw,IDS − y) (9)

where ρw is the water density. The EPL is activate once
the water head in the IDS reaches a the ice overburden

hw,IDS,max =
σN
ρwg

+ y (10)

Then, the water transfer from the IDS to the EPL is then
governed by a transfer function

Qt =
TS

LD
(hw,IDS − hw,EPL) (11)

where dIDS is the thickness of the IDS layer, and l is a
leakage length scale. Depending on wether the transfer is
from the EPL to the IDS or from the IDS to the EPL, S
and D with subscript IDS and EPL are used respectively.
The parameters used are given in table 1. The system
is initialized with transmissivity and source flux yielding
parabolic water pressure distribution which is similar to
what is found in Jay-Allemand et al. [2]. A steady state
system with a constant source 0.01m yr−1, and the surge
is triggered by an increase the source flux to 0.03m yr−1
lasting three months.

For the simulations we use a domain size of 25km and
a minimum ice thickness of 1m to avoid zero thickness
elements at the glacier front. The grid resolution is 10m
in the horizontal direction and we extrude the mesh with
20 layers for the main figures and 50m and 10 layers
for the systematic restarted runs for Supplementary Fig-
ure 6. The system is integrated forward in time with an
adaptive forward Euler time-integration scheme.
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Effective friction force with lateral friction

We add the friction force from lateral drag as an ad-
ditional body force. Elmer/Ice has this feature available
and it is documented in [4]. One has to supply a constant
K resulting in the body force due to lateral friction. K
can be (approximately) related to the glacier width 2W
through

K =
(n+ 1)1/n

W
n+1
n (2A)1/n

, (12)

under the assumption of no slip on the margins. Here,
n is Glen’s exponent, W is the glacier half width and
A is the Arrhenius factor. For a glacier moving at high
velocities, the velocity does not vary that much in the
vertical direction, and we can treat the problem as one-
dimensional. Then, we can approximate the lateral drag
as a friction coefficient:

µm =
τm
σN

=
K

ρg cos(φ)
v1/n, (13)

where φ is the glacier slope. The steady state friction
coefficient is given by equation 2

µb,ss =
τb,ss
σN

= C

(
χ

1 + αχq

)1/m

. (14)

With the one-dimensional approximation of the lateral
friction, the effective steady state friction force is then
given by

µtot =
τb,ss + τm

σN
= C

(
χ

1 + αχq

)1/m

+
K

ρg
v1/n, (15)

where we have approximated cos(φ) ' 1. From two-
dimensional simulations, we can approximate the stress
from the margins as a function of x as

τ̃m(x) = K

∫ ytop

ybottom

|~v(x, y)|1/ndy. (16)

Linear stability

The stability of a glacier within the rate-and-state
framework introduced here is not simply given by a sin-
gle point reaching the velocity weakening regime. For
nonzero dc, a critical nucleation length appears from lin-
ear stability analysis in line with classical rate-and-state
friction. However, in our case the nucleation length de-
pends on the nonlinear viscous stresses rather than the
shear modulus which is typically used in classical rate-
and-state theory. Ruina et al. [5] performed linear sta-
bility analysis of a generalized rate-and-state friction law
on the form

τb = F (θ, v)

θ̇ = G(θ, v).
(17)

For such system, if we assume that a slider is pushed by a
spring moving at a constant velocity with spring constant
k, we have that the instability criterion is

1

k

(
v

dc

)
∂τb,ss

∂v
+ 1 < 0. (18)

The stability criterion is most useful in terms of the
spring constant

k < kcritical → instability (19)

where

kcritical = − v

dc

∂τb,ss

∂v
. (20)

Note that for our sliding law, the instability can only oc-
cur for ∂τb,ss

∂v < 0, i.e. in the velocity weakening regime.
In addition, the spring constant has to be small enough.
From kcritical the usual approach is to approximate a crit-
ical nucleation length from the system shear modulus.
Dietrich uses the relation k ' G

L [6]. However, we are
dealing with ice, which is best approximated as nonlinear
viscous at long time scales. Then it is more appropriate
to approximate k as

k ' ε̇ν?

L
(21)

where ε̇ν? is the viscous stress in a patch of size L in the
velocity weakening regime. This gives a critical nucle-
ation length

Lcritical ' −
(

v

dcε̇ν?
∂τb,ss

∂v

)−1
. (22)

The critical nucleation length depends on temperature
through ice rheology, characteristic length scale dc, the
velocity of the sliding patch, as well as the steady state
basal shear stress parameters q, As, σN m and C through
the velocity derivative of τb,ss (equation 2). Although we
do not explore the concept of a nucleation length in detail
in this paper, it is important to bear in mind that the
stability criterion for the onset of a glacier surge is not
given by the sign of ∂τb,ss

∂v alone; a patch of size Lcritical
has to reach the velocity-weakening regime.

Scaling relation: Sliding velocity - front propagation speed

The propagation speed in a one-dimensional model is
given by

vfront '
∂x

∂t
=
∂v

∂t
/
∂v

∂x
(23)

where the derivatives are taken at the front tip. ∂v/∂t
can be found from the equation relating basal shear
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stress, velocity, and θ (equation 1), combined the state
evolution law (equation 3).

∂v

∂t
=

∂

∂t
(
τb
θ

)mAs, (24)

which can be rewritten as

∂v

∂t
= −mθ−m−1 ∂θ

∂t
Asτ

m
b (25)

At the tip, we can approximate τb ' θ(
vslip
As

)1/m. This
gives us the relation for the velocity derivative

∂v

∂t
' −mθ−1vslip

∂θ

∂t
. (26)

We then insert for the state evolution law and find

∂v

∂t
' m

v2slip
dc

θ − θ†(vslip)

θ
. (27)

If the timescale of the velocity increase is short compared
to the evolution of frictional strength, we can approxi-
mate θ ' 1. If we further assume that θ† is small behind
the surge front, we end up with the proportionality

∂v

∂t
∼
v2slip
dc

(28)

Next, assume that the velocity gradient at the front tip
can be approximated by the sliding velocity at the tip
multiplied by a decaying function that f = f(x) that has
dimension length−1

∂v

∂x
' vslipf(x), (29)

The scaling relation for the front propagation speed is
then

vfront '
∂x

∂t
=
∂vx
∂t

/
∂vx
∂x
∼ vslip
dcf(x)

. (30)

Even though the function f(x) is unknown, we can scale
the sliding velocity with dc in order to collapse the data.

Scaling relation: Surge front ice thickness - Front
propagation speed

The thickness change can be understood from a sim-
ple conservation of mass argument. During a surge, the
velocity in the vertical direction is fairly constant, so we
use a one-dimensional argument. Conservation of mass
for a slice at position x yields

y(t)

(
dvx(x)

dx

)
dt = vy(t)dt, (31)

where we consider the propagation to occur along the
x-coordinate. Assume that dvx(x)/dx is nonzero with

average value to vslip/∆x in spatiotemporal interval ∆x,
∆t where vfront = ∆x/∆t, we have that

∆y = y(
∆x

vfront
)− y(0) '

∫ ∆x
vfront

0

y(t)
vslip
∆x

dt, (32)

which gives

∆y ' y(0)
(
e

vslip
vfront − 1

)
(33)

This means that the elevation change in the full system
is governed by vslip/vfront.
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Variable Description Value (set 1) Value (set 2) Unit
A Ice rheology rate factor 15.47 158.3 [yr−1MPa−3]
As Basal shear stress prefactor 100 100 [m yr−1MPa−3]
C Peak friction coefficient – 0.3

C∗ Peak friction coefficient assuming pw ∝ σn ∈ [0.08, 0.25] –
dc Characteristic length scale ∈ [0.1, 10] ∈ [0.1, 1.0] [m]
g Gravitational acceleration 9.81 9.81 [m s−2]
K Lateral friction constant 2.98× 10−5 [m−

4
3 yr

1
3 MPa]

m Basal shear stress exponent 3 3

n Glen’s exponent 3 3

q Sliding law postpeak exponent ∈ [1.5, 2.0] ∈ [1.7, 2.0]

SMB Surface mass balance [m yr−1]
vb Basal velocity [m yr−1]
vs Surface velocity [m yr−1]
vslip Sliding velocity (100m behind surge front) [m yr−1]
vfront Surge front propagation velocity [m yr−1]
y0 Initial glacier thickness [m]
∆y Change in glacier thickness [m]
θ State parameter (Degree of cavitation)
θ† Steady state θ
ρ Density 915 915 [kg m−3]
σn Normal stress [Pa]
σN Effective normal stress [Pa]
τb Basal shear stress [Pa]
τ̃m Shear stress from margins [Pa]
τtot Driving stress [Pa]
µb,ss Steady state basal friction coefficient
µm Approximate friction coefficient from margins
µtot Total friction coefficient
TIDS IDS transmissivity – 10−2x[m]

6(x[m]−10000)

106 + 20
67

e−x[m]/6700
+ 1.0 [m yr−2]

TEPL EPL transmissivity – 2.5× 105 [m yr−2]
Q Source flux – ∈ [0.01, 0.03] [m yr −1]
S Storage coefficient – [m−1]
hw Water head – [m]
ρw Water density – 1000 [kg m−3]
βw Water compressibility – 5.04× 10−4 [MPa −1]
βs Sediment compressibility – 10−2 [MPa −1]
φIDS IDS porosity – 0.4
φEPL EPL porosity – 0.8
DIDS IDS thickness – 1.0 [m]
DEPL EPL thickness – 5.0 [m]
L Leakage length scale – 2.0 [km]

Supplementary Table 1: List of variables. Set 1 assumes proportionality between water pressure and normal stress, while set 2
uses a full hydrology model.
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Supplementary Figure 1: Initial glacier geometry used in the simulations in this paper. To model a realistic glacier geometry,
we parametrize the Variegated glacier geometry data from 1973 [2].The bottom geometry follows y = 2000me−x/6700m while
the thickness follows y = 61.5m+ 0.066x− 3.6× 10−6x2 with a smoothed step function to avoid negative thickness at the front.
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Supplementary Figure 2: Qualitative features of the sliding law introduced in this paper when used on a rigid slider with
enforced velocity. The slider subject to step changes in velocity of [1, 0.1, 2, 10, 1]m/yr (b). A change in velocity results in a
direct effect according to equation 1 (a). Then the friction coefficient approaches the steady state value (c) according to the
state evolution law. Qualitatively, this response matches recent experimental observations (not shown) [7, 8]. Parameters used:
As = 100m MPa−3yr−1, dc = 1m, σN = 1MPa, C = 0.2, n = 3, m = 3, q = 2.0.
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Supplementary Figure 3: (a): Flow velocities during the Variegated glacier surge from Jay-Allemand et al. [2]. The red crosses
marks the front tip where the errorbars are based on our confidence in determining the surge front position and velocity. We
have evaluated the surge speed in as the difference between the front positions and used linear interpolation for the sliding
speed in the center of the interval (black crosses). (b): The front and sliding speed as a function of x. (c): Relation between
front speed and sliding speed. The data from this figure is used to test the scaling relation between sliding speed and front
speed in the main text.
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Supplementary Figure 4: (a): Evolution of glacier topography during the Variegated glacier surge from Jay-Allemand et al.
[2]. The black lines show the geometry from 09/1981 used to determine y0. The dashed black line show the geometry from
1973 for reference. (b): Change in elevation from the initial geometry. The black crosses show the thickness at the surge front
where the errorbars that are used show our confidence in determining the position and elevation change. (c): Relative elevation
change ∆y/y0 as a function of x, where we use the profile from The data from this figure is used to test the scaling relation
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Supplementary Figure 5: Sensitivity of front propagation to changes in dc and q. (a): The front propagation speed vfront (solid
lines) and sliding speed vslip (dashed lines) as a function of x for different values of dc for q = 2.0 with colors corresponding
to (b). In (b), vfront and vslip are plotted as functions of dc. The errorbars show the minimum and maximum values. (c):
The front propagation speed vfront (solid lines) and sliding speed vslip (dashed lines) as a function of x for different values of q
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Supplementary Figure 6: Spatiotemporal evolution of basal variables during a surge with dc = 1.0m and q = 2.0. (a): Basal
shear stress. (b): Depth. (c): Surface velocity. (d): Stress from margins. (e): Effective normal stress. (f): State parameter.
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Supplementary Figure 7: Spatiotemporal evolution of basal variables during a surge with dc = 10.0m and q = 2.0. (a): Basal
shear stress. (b): Depth. (c): Surface velocity. (d): Stress from margins. (e): Effective normal stress. (f): State parameter.
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Supplementary Figure 8: Spatiotemporal evolution of basal variables during a surge using the full hydrology model with
dc = 1.0m and q = 2.0. (a): Normal stress. (b): Water pressure. (c): Basal shear stress. (d): Depth. (e): Surface velocity. (f):
Stress from margins. (g): Effective normal stress. (h): State parameter.



12

0 5 10 15 20 25x [m]

0.0

0.5

1.0

1.5

ti
m

e
 [
y
r]

g

0

2000

4000

6000

v s
 [

m
/y

r]

0 5 10 15 20 25x [m]

0.0

0.5

1.0

1.5

ti
m

e
 [
y
r]

e

100

200

300

400

d
e

p
th

 [
m

]

0 5 10 15 20 25x [m]

0.0

0.5

1.0

1.5

ti
m

e
 [
y
r]

c

0

0.2

0.4

0.6

b
 [

M
P

a
]

0 5 10 15 20 25x [m]

0.0

0.5

1.0

1.5

ti
m

e
 [
y
r]

a

0

2

4

n
 [

M
P

a
]

0 5 10 15 20 25x [m]

0.0

0.5

1.0

1.5
ti
m

e
 [
y
r]

h

0

0.5

1

0 5 10 15 20 25x [m]

0.0

0.5

1.0

1.5

ti
m

e
 [
y
r]

f

0

0.2

0.4

C
 

N
 [

M
P

a
]

0 5 10 15 20 25x [m]

0.0

0.5

1.0

1.5

ti
m

e
 [
y
r]

d

0

0.05

0.1

0.15

m
 [

M
P

a
]

0 5 10 15 20 25x [m]

0.0

0.5

1.0

1.5

ti
m

e
 [
y
r]

b

0

1

2

p
w

 [
M

P
a

]

Supplementary Figure 9: Spatiotemporal evolution of basal variables during a surge using the full hydrology model with
dc = 1.0m and q = 1.7. (a): Normal stress. (b): Water pressure. (c): Basal shear stress. (d): Depth. (e): Surface velocity. (f):
Stress from margins. (g): Effective normal stress. (h): State parameter.



13

[1] Gagliardini, O. et al. Capabilities and performance of
elmer/ice, a new-generation ice sheet model. Geoscien-
tific Model Development 6, 1299–1318 (2013).

[2] Jay-Allemand, M., Gillet-Chaulet, F., Gagliardini, O. &
Nodet, M. Investigating changes in basal conditions of
variegated glacier prior to and during its 1982-1983 surge.
The Cryosphere 5, 659–672 (2011).

[3] Fleurian, B. d. et al. A double continuum hydrological
model for glacier applications. The Cryosphere 8, 137–
153 (2014).

[4] Gagliardini, O., Durand, G., Zwinger, T., Hindmarsh, R.
& Le Meur, E. Coupling of ice-shelf melting and buttress-
ing is a key process in ice-sheets dynamics. Geophysical
Research Letters 37 (2010).

[5] Ruina, A. Slip instability and state variable friction laws.
Journal of Geophysical Research: Solid Earth 88, 10359–
10370 (1983).

[6] Dieterich, J. H. Modeling of rock friction: 1. experimen-
tal results and constitutive equations. Journal of Geo-
physical Research: Solid Earth 84, 2161–2168 (1979).

[7] Zoet, L. et al. The effects of entrained debris on the
basal sliding stability of a glacier. Journal of Geophysical
Research: Earth Surface 118, 656–666 (2013).

[8] McCarthy, C., Savage, H. & Nettles, M. Temperature
dependence of ice-on-rock friction at realistic glacier con-
ditions. Phil. Trans. R. Soc. A 375, 20150348 (2017).


	SI Materials and Methods
	Effective friction force with lateral friction
	Linear stability
	Scaling relation: Sliding velocity - front propagation speed
	Scaling relation: Surge front ice thickness - Front propagation speed


	References

