
Supplementary Information

Oxidative post-translational modification of EXECUTER1 is required for singlet oxygen sensing in plastids

Dogra, Li, Singh et al.

Supplementary Fig. 1 Light- and ${}^{1}O_{2}$ -dependent EX1 degradation is FtsH protease dependent. CL-grown 5-d-old transgenic seedlings of (a) *ftsh2 ex1* and (b) *ftsh2 ex1 flu* expressing *EX1-GFP* under the control of the 35S promoter were transferred to the dark (for 2, 4, 8 h) and then re-exposed to light (for 0.5, 1, 2 h) at the light intensity of 100 µmol·m⁻²·s⁻¹. Total protein was extracted and analyzed by western blot. Cytosolic UDP-glucose pyrophosphorylase (UGP) was used to show equal loading. EX1-GFP and UGPase were detected using antibodies against GFP, and UGP, respectively. (c) The levels of EX1-GFP in the dark or after re-exposing to light were compared to its abundances under CL conditions. Average intensity values of the protein bands were calculated using AzureSpot software v14.0 (AZURE). Data represents mean of three biological repeats. Error bars show standard error of the mean.

a _D	D
-----------------------	---

b

Sample	identi Prob	otein fication ability %)	Protein in total spectra (%)	Exclusive unique peptide count	Exclusive unique spectrum count	Total spectrum count	Coverage (%)
LDGKYV	KGGP	VVGF	VYWAPE YH	IFVMFFNRL	RLQA	▲ 64	3
<mark>ytsevi</mark> Frakig	R R Y E	LPHK	GLIPEE FO	K <mark>KPTDIEFY</mark> Sviarykgq	gr <mark>ladp</mark>		V P A G K V A V D G E L V I
<mark>MLKDVG</mark>	ELLS	LTLS	Q A Q N R Q Q I	SGLTK FRR	IDVTPS	LDPL DGL	Y I G A H G L
I D N N G G E K D L N V				<mark>. S G N Q P L K E</mark> G S R Q S R <mark>R R I</mark>	S L R S P A E N I <mark>M</mark> G D		<mark>SSFYLRL</mark> EKKISVK
FISKVI	EQIA	DEED	EENDLD II	EDIDVEDDT	KAEIDE	KNAD IEL	ESVTDEI
GKGNYK SSEDEE				PTMPSRTLT GFQSFLRDM	PGR <mark>FLT</mark> IPGVKV		T G N L A V E P G R V D K D
GISEDV	KDPF	GLIVO	QITAEH GR	RY <u>V</u> ARSYNP	R <mark>Q L S T S</mark>	AAGA PLF	EIFLTLD
<mark>SENVEK</mark> RLK <mark>VAI</mark>				VDDQDRLL YRALLEER	<mark>SVLK</mark> SQ YKDAVY		E D Y E D A A G L V G W W S
SGSNSS	SSSS	SDDNI	PR <mark>WDSA</mark> IO	dvlk saik	RFDSVL	SWYA TLD	NDDGEQG
CL M P S L S T	DDSO		SPAASA TS	SSRLTPSSK	RSFYPH		L C R C S S S
LDGKYV				H F V M F F N R L	G R <mark>L A D P</mark> R L Q A	GFKN PRW	VDGELVI
YTSEVI	HLKR	KFGQ	WKGGKE SI	K P T D I E F Y G V I A R Y K G Q	EYVEAV	KLTG DPY	V P A G K V A V D G E L V I
EKDLNV MLK <mark>DV0</mark>				G S R Q S R R <mark>R I</mark> L S G L T K F R R	ENIMGD IDVTPS		EKKISVK YIGAHGL
IDNNGG	REIA	VKFV	IGDIVD R	LSGNQPLKE	S L R S P A	NLES VEN	SSFYLR
S S E D E E F I S K V I				G F Q S F L R D M E D I D V E D D T	I P G V K V K A E I D E		PGR <mark>VDKD</mark> ESVTDEI
GKGNYK	KQAV			PTMPSRTLT	PGRFLT		TGNLAVE
R L K <mark>V A I</mark> G I S E D V				FYRALLEER Ryvarsynp	Y K D A V Y R <mark>Q L S T S</mark>		G L V G W W S E I F L T L D
S G S N S S S E N V E K				Q D V L K S A I K Q V D D Q D R L L	R F D S V L S V L K S Q		N D D G E Q G E D Y E D A A
MPSLST				SSRLTPSSK	RSFYPH		L C R C S S S
עט י							

DD	100	0.22	26	37	53	40
CL	100	0.32	34	59	98	53
MPSLSTPPS	NI.AFSPAASAT	SSRLTPSSKRSF	YPHRI.PDPTAT	CRCSSSSGSNS	SSSSSSDNPR	WDSA 70

 MPSLSTPPSQNLAFSPAASATSSRLTPSSKRSFYPHRLPDPTALCRCSSSSGSNSSSSSSSDDNPRWDSA
 70

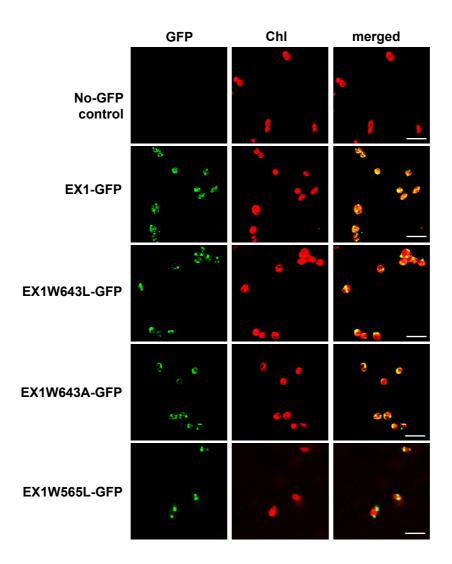
 IQDVLKSAIKRFDSVLSWYATLDNDDGEQGSENVEKIDDDWDWDRWKKHFDQVDDQDRLLSVLKSQLNRA
 140

 IKREDYEDAARLKVAIAATATNDAVGKVMSTFYRALLEERYKDAVYLRDKAGAGLVGWWSGISEDVKDPF
 210

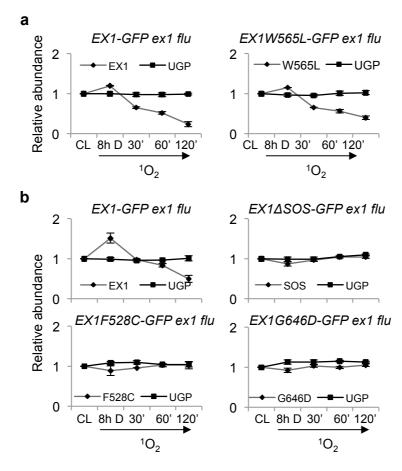
 GLIVQITAEHGRYVARSYNPRQLSTSAAGAPLFEIFLTLDGKGNYKKQAVYLKWKEIFPDVPTMPSRTLT
 280

 PGRFLTSPGRKEDTGNLAVESSEDEESDNSDDDSDLLEESSGFQSFLRDMIPGVKVKVMKVTAPGRVDKD
 350

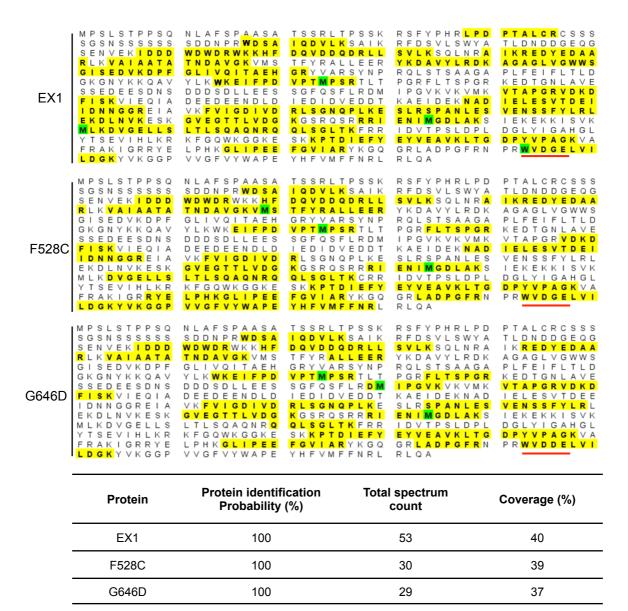
 FISKVIEQIADEEDEENDLDIEDIDVEDDTKAEIDEKNADIELESVTDEIIDNNGGREIAVKFVIGDIVD
 420

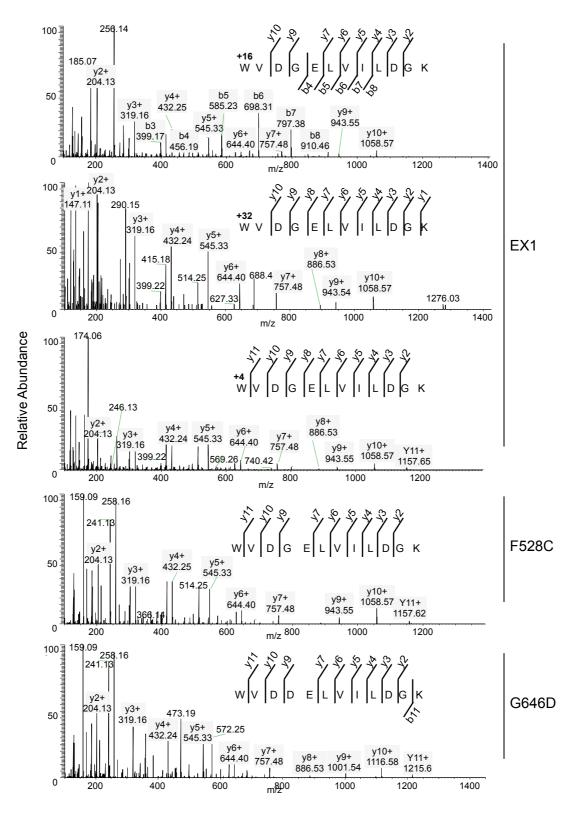

 RLSGNQPLKESLRSPANLESVENSSFYLRLEKDLNVKESKGVEGTTLVDGKGSRQSRRRIENIMGDLAKS
 490

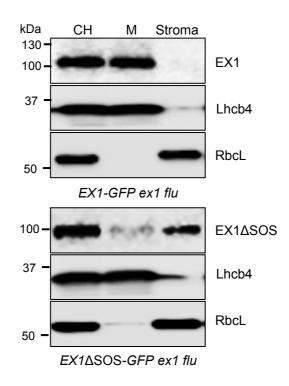
 IEKEKKISVKMLKDVGELLSLTLSQAQNRQQLSGLTKFRRIDVTPSLDPLDGLYIGAHGLYTSEVIHLKR
 560


 KFGQWKGGKESKKPTDIEFYEYVEAVKLTGDPYVPAGKVAFRAKIGRRYELPHKGLIPEEFGVIARYKGQ
 630

 GRLADPGFRNPRWVDGELVILDGKYVKGGPVVGFVYWAPEYHFVMFFNRLRLQA
 684


Supplementary Fig. 2 MS analysis showed a significant peptide coverage for EX1. **a** Peptide coverage of EX1 protein from dark-(DD) and light-(CL) grown seedlings as visualized in Scaffold viewer (Scaffold 4.0.7, Proteome Software Inc.). Peptides identified by tandem-MS analysis are shown in yellow. Oxidized Met (M) and Trp (W) residues are highlighted in green. Protein identification parameters are enlisted at the bottom. **b** EX1 protein contains 11 Trp residues (highlighted in bold), and all were covered in MS analysis (shown in grey background). Trp643 undergoing ${}^{1}O_{2}$ -induced oxidation is highlighted in red. UVR B/C and DUF3506 (SOS) domains are underlined.


Supplementary Fig. 3 EX1 proteins carrying Trp643 substitutions are targeted to chloroplasts. Confocal images showing the localization of EX1-GFP, EX1W643A-GFP, EX1W643L-GFP, and EX1W565L-GFP in the chloroplasts of *N. benthamiana* leaves. Healthy leaves of 3-weeks-old *N. benthamiana* were infiltrated with Agrobacterium carrying 35S::*EX1-GFP*, 35S::*EX1W643A-GFP*, 35S::*EX1W643A-GFP*, and 35S::*EX1W565L-GFP*. The GFP signal was observed under confocal laser scanning microscope. Leaves without infiltration were used as negative controls.


Supplementary Fig. 4 Relative abundances of intact and modified EX1 proteins upon ${}^{1}O_{2}$ burst. The steady state levels of intact and modified EX1-GFP proteins upon dark- or after re-exposing to light were compared to their abundances under CL conditions as shown in (a) figures 4g and (b) 5e. The abundance of UGP was shown as equal loading control. Average intensity values of the protein bands were calculated using AzureSpot software v14.0 (AZURE). Data represents mean of three biological repeats. Errors bars show standard error of the mean.

Supplementary Fig. 5 Oxi-PTM analysis revealed Trp643 undergoes oxidation in EX1-GFP but not in EX1F528C-GFP and EX1G646D-GFP proteins. For oxidation analysis, 5-d-old transgenic seedlings of *EX1-GFP ex1 flu*, *EX1F528C-GFP ex1 flu*, and *EX1G646D-GFP ex1 flu* initially grown under CL condition were transferred in the dark, kept for 2 h, and re-exposed to light for 10 min. Total protein was extracted and the immune-reactive EX1-GFP proteins were enriched by using magnetic agarose beads conjugated with GFP antibody. Each protein sample was then subjected to PTM analysis. Peptide coverage of EX1 protein from EX1-GFP, EX1F528C-GFP and EX1G646D-GFP samples was visualized in Scaffold viewer. Peptides identified by tandem-MS analysis are shown in yellow. Oxidized Met (M) and Trp (W) residues are highlighted in green.

Supplementary Fig. 6 MS spectra of peptides carrying Trp643 in native and modified EX1 proteins. All three oxidized variants of Trp643 in peptide ⁶⁴³WVDGELVILDGK⁶⁵⁴ were detected in EX1-GFP. However, Trp643 remains unoxidized in peptides ⁶⁴³WVDGELVILDGK⁶⁵⁴ in EX1F528C-GFP and ⁶⁴³WVDDELVILDGK⁶⁵⁴ in EX1G646D-GFP.

Supplementary Fig. 7 SOS domain-deleted EX1 is unable to attach to the thylakoid membrane which is indispensible for perceiving ${}^{1}O_{2}$. EX1-GFP proteins reside in the thylakoid membrane whereas the majority of the EX1 Δ SOS-GFP were found in the stroma. Chloroplast (CH) isolated from 3-weeks-old plants of *EX1-GFP ex1 flu* and *EX1\DeltaSOS-GFP ex1 flu* and *EX1\DeltaSOS-GFP ex1 flu* were lysed and separated by centrifugation into membrane (M), and stroma fractions. Proteins were solubilized, separated by SDS-PAGE, and analyzed on western blots using specific antibodies against GFP, Lhcb4, and Rubisco large subunit (RbcL). Lhcb4 and RbcL serve as membrane and stroma controls, respectively.

Supplementary Table 1: MS-based PTM analysis identified various Trp oxidation products at Trp643 in peptide ⁶⁴³WVDGELVILDGK⁶⁵⁴.

Oxidation status	Mass shift	Observed mass (m/ z)	Charge state	Actual mass (Da)	Error (ppm)	Probability (%)	Mascot ion score
No	0	672.37	2+	1342.72	0.0026	100	62.2
Mono (OIA)	+16	680.36	2+	1358.71	1.4	100	43.1
Di (NFK)	+32	688.36	2+	1374.71	4.7	100	63.8
Di* (KYN)	+4	674.36	2+	1346.71	-0.0011	100	64.7

OIA: oxindolylalanine, NFK: *N*-formylkynurenine, KYN: Kynurenine

Supplementary Table 2: MS-based PTM analysis identified ${}^{1}O_{2}$ -induced oxidation at Trp643 side chains in EX1 but not in EX1 proteins carrying F528C and G646D substitutions.

Protein	Sequence	Residue modified	Mass shift	Observed mass (m/ z)	Charge state	Actual mass (Da)	Error (ppm)	Probability (%)
EX1	⁶⁴³ W ^{ox} VDGELVILDGK ⁶⁵⁴	Trp643	+16	680.36	2+	1358.71	3.0	98
EX1	643W0xVDGELVILDGK654	Trp643	+32	688.36	2+	1374.70	-0.68	100
EX1	⁶⁴³ W ^{ox} VDGELVILDGK ⁶⁵⁴	Trp643	+4	674.36	2+	1346.71	1.2	100
EX1F528C	643WVDGELVILDGK654	No	0	672.36	2+	1342.71	-0.91	100
EX1G646D	643WVDDELVILDGK654	No	0	701.37	2+	1400.37	-0.59	100

Gene ID	Gene name	Primer sequence (5' to 3')	Primer length	Product size (bps)	Used for		
AT3G18780 ACT2		F: TATGTATGTCGCCATCCAA	19	76			
AT3G18780	AC12	R: ACCAGAATCCAGCACAATA		70			
AT2G38470	WRKY33	F: GAAACAAATGGTGGGAATGG	20	217			
AT2G36470	WRN 133	R: TGTCGTGTGATGCTCTCTCC	20	217	aRT-PCR		
AT3G56710	SIB1	F: CGACTTTTCTCACCACGACA	20	235	YKI-FCK		
A13G50710	3161	R: TCGGAGGAAGGGGAATAGAT	20	235			
AT2G41180	WRKY40	F: GTCAAGACGCCGCTGATCTA	20	166			
A12G41180	WRN 140	R: GCCGACATCTGAGGAGCATT	20	100			
AT2C10700	4070	F: CTGGGATTTGTAAAGCAGCTG	21	265			
AT3G18780	ACT2	R: TCAAGTTCCATGGAGCAAAAG	21	265			
AT4022020		F: ATGCCTTCCTTATCCACCCCG	20	2450	RT-PCR		
AT4G33630	EX1-GFP	R: CCATTAACATCACCATCTAAT	21	2159			
		F: GGGGACAAGTTTGTACAAAAAAGCAGGCTATGCCTT CCTTATCCACCCCG	20	EX1			
		R: GGGGACCACTTTGTACAAGAAAGCTGGGTCGGCTTG AAGCCTCAGGCGGTT	21				
		F1: CGTAATCCGAGAGCGGTAGATGGCGAG	27	643A	Cloning and AA substitution and domain deletion [1 st PCR: F & R1, F1 and R; 2 nd PCR: F + R using mixture of purified primary products]		
		R1: CTCGCCATCTACCGCTCTCGGATTACG	27	043A			
AT4G33630	EX1	F1: CGTAATCCGAGATTGGTAGATGGCGAG	27	6421			
		R1: CTCGCCATCTACCAATCTCGGATTACG	27	643L			
		F1: CAAATTTGGCCAGTTGAAAGGTGG	24				
		R1: CCACCTTTCAACTGGCCAAATTTG	24	565L			
		F1: CTCAAAACCGTCAACAGGGCAAGTATGTAAAAGG	34	4505			
		R1: CCTTTTACATACTTGCCCTGTTGACGGTTTTGAG	34	ΔSOS			

Supplementary Table 3: List of primers used in this study.