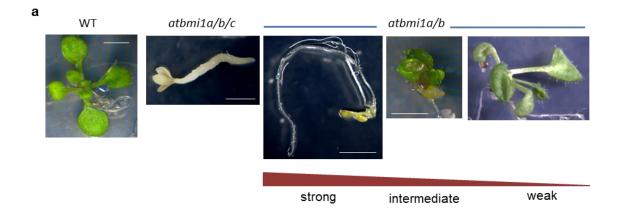
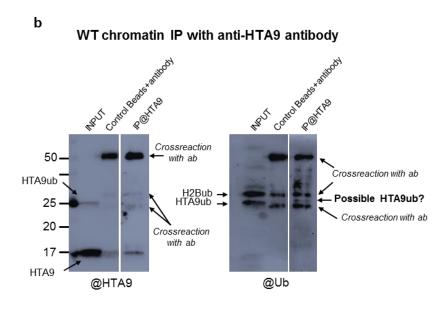
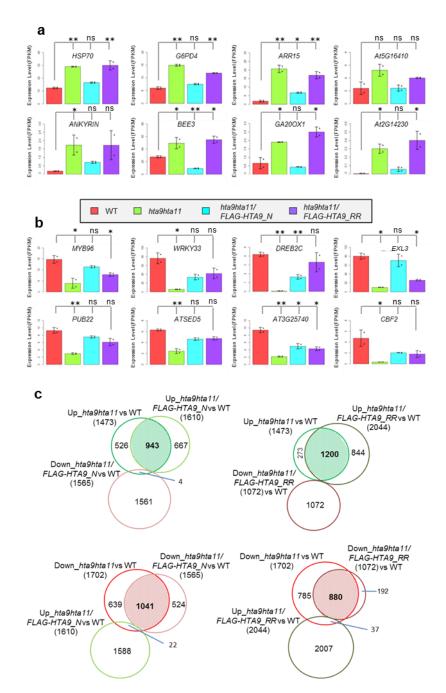

The repressive role of Arabidopsis H2A.Z in transcriptional regulation depends on AtBMI1 activity

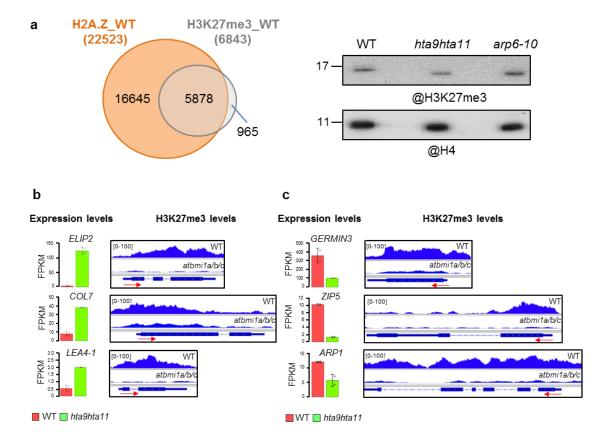

Gómez-Zambrano et al.



Supplementary Figure 1. Arabidopsis H2A.Z coding genes. (a) Expression levels of *HTA8*, *HTA9* and *HTA11* measured in FPKM in WT seedlings at 7 DAG. Error bars indicate standard deviation of n=2 biological replicates. (b) Percentage of total HTA9 representing modified HTA9. Error bars indicate standard deviation of n=4 independent WB experiments. Data points were indicated in the bar chart. (c) Protein sequence comparison of Arabidopsis HTA9 and human H2A.Z. In red are indicated the possible target lysine/s for monoubiquitination. Source data of Supplementary Figure 1b are provided as a Source Data file.



Supplementary Figure 2. Detection of HTA9 and FLAG-HTA9 forms in hta9hta11/FLAG-HTA9_N, hta9hta11/FLAG-HTA9_RK and hta9hta11/FLAG-HTA9_RR plants. (a) WB analysis of HTA9 and FLAG-HTA9 levels in WT, hta9hta11/FLAG-HTA9_N, hta9hta11/FLAG-HTA9_RK and hta9hta11/FLAG-HTA9_RR. The modified FLAG-HTA9 band is only detected in hta9hta11/FLAG-HTA9_N plants (asterisk). Some levels of HTA9 and modified HTA9 can be observed in mutant backgrounds as hta9 is a knockdown allele. (b) Detection of HTA9 and FLAG-HTA9 in WT, hta9hta11/FLAG-HTA9_N and hta9hta11/FLAG-HTA9_RR chromatin immunoprecipitated with anti-H3 antibody. Arrows indicate the bands recognized by the antibody. Source data of Supplementary Figures 2a and 2b are provided as a Source Data file.



Supplementary Figure 3. Loss of AtBMI1 function mutants and immunoprecipitation of possible HTA9ub. (a) *atbmi1a/b/c* mutants are stuck in an embryo maturating phase after germination, while *atbmi1a/b* double mutants display a wide range of phenotypes, showing strong to weak alterations after germination, the weak phenotypes can grow on soil and produce seeds ¹. Bars indicate 2 mm. (b) Detection of HTA9ub using anti-ubiquitin antibodies in WT chromatin immunoprecipitated with anti-HTA9 (right panel). A similar blot was probed with anti-HTA9 to verify the presence of HTA9ub and the position of the band (left panel). Source data of Supplementary Figure 3b are provided as a Source Data file.

Supplementary Figure 4. Expression levels of several misregulated genes in *hta9hta11* **in different genotypes.** (a) Expression levels in WT, *hta9hta11*, *hta9hta11/FLAG-HTA9_N* and *hta9hta11/FLAG-HTA9_RR* of representative upregulated genes in *hta9hta11* at 7 DAG determined by RNA-seq. (b) Expression levels in WT, *hta9hta11*, *hta9hta11/FLAG-HTA9_N* and *hta9hta11/FLAG-HTA9_RR* of representative downregulated genes in *hta9hta11* at 7 DAG determined by RNA-seq. Expression levels are indicated in FPKM. Error bars indicate standard deviation of n=2 biological replicates. Dots indicate the expression levels in each biological replicate. Significant differences as determined by Student's t-test are indicated (**P < 0.01; *P < 0.05; ns, not significant). (c) Genes commonly up (green, two upper panels) and downregulated (red, two bottom panels) in *hta9hta11* and *hta9hta11/FLAG-HTA9_R*.

Supplementary Figure 5. Representative *hta9hta11* **misregulated genes marked with H3K27me3 in WT that loss the marks in** *atbmi1a/b/c* **mutants.** (a) Left panel, Venn diagram showing overlap between H2A.Z enriched genes and H3K27me3 marked genes in WT seedlings. 85.9% of H3K27me3 marked genes are enriched in H2A.Z. Right panel, Global levels of H3K27me3 in WT, *hta9hta11* and *arp6-10*. (b) Expression levels of three upregulated genes in *hta9hta11* indicated in FPKM and ChIP-seq genome browser view of H3K27me3 levels at the genes in WT and *atbmi1a/b/c* mutants. (c) Expression levels of three downregulated genes in *hta9hta11* indicated in FPKM (and ChIP-seq genome browser view of H3K27me3 levels at the genes in WT and *atbmi1a/b/c* mutants. Dots indicate the expression levels in each biological replicate. Error bars indicate standard deviation of n=2 biological replicates. Source data of Supplementary Figure 5a are provided as a Source Data file.

Up_atbmi1a/b weak vs WT
Down_atbmi1a/b weak vs WT
2633
1452
514
2335
938

Down_atbmi1a/b/c vs WT 5014

Gene	Genotype	Expression levels (FPKM)
FBA2	WT	1433,3
	atbmi1a/b weak	1479,3
	atbmi1a/b/c	148,1
LHCB2	WT	1813,0
	atbmi1a/b weak	1748,5
	atbmi1a/b/c	34,4

Gene	Genotype	Expression levels (FPKM)
HSP70	WT	12,3
	atbmi1a/b weak	101,8
	atbmi1a/b/c	374,0
ELIP2	WT	2,9
	atbmi1a/b weak	224,1
	atbmi1a/b/c	255,0

Supplementary Figure 6. The levels of H2A.Z are higher at transcriptionally repressed genes. (a) Venn diagram showing the number of genes downregulated in *atbmi1a/b/c* but not in *atbmi1a/b weak.* (b) Gene expression levels of *FBA2* and *LHCB2* indicated in FPKM, which are genes downregulated in *atbmi1a/b/c* but not in WT *or atbmi1a/b* weak. (c) Gene expression levels of *HSP70* and *ELIP2* indicated in FPKM, which are upregulated in both *atbmi1a/b* weak and *atbmi1a/b/c* mutants.

b

С

Supplementary Table 1. Primers used in this work.

FLAG-HTA9 Fw	AAACCATGGATTACAAGGATGACGACGATAAGATGTCGGGGAAAGGT	
HTA9-N Rev	TTTGGATCCCTATTCCTTGGCGGATTTGTTGAT	
HTA9-RK Rev	TTTGGATCCCTATTCCTTGGCGGATCGGTTGAT	
HTA9-RR Rev	TTTGGATCCCTATTCCCGGGCGGATCGGTTGAT	
qRT-PCR-FTFw	CGAACGGTGATGCCTATAGTAG	
qRT-PCR-FT Rev	CACTCTCATTTTCCTCCCCCTCTC	
qRT-PCR-FLCFw	GCCACCTTAAATCGGCGGTTG	
qRT-PCR-FT Rev	CACAAAGTCTCTTGGCCAAAGAGAGAG	
qRT-PCR-ACT2Fw	GTAACATTGTGCTCAGTGGTGG	
qRT-PCR-ACT2 Rev	CTCGGCCTTGGAGATCCACATC	
qPCR-ELIP2 1Fw	TCGTTTAACATGCAGTCAGT	
qPCR-ELIP2 1Rev	GAGGAGACTGTGGCATTT	
qPCR-ELIP2 2Fw	GGTGTCGGGTGGTTTCTAGG	
qPCR-ELIP2 2Rev	CATAGCTCGGCGTCTGAAGT	
qPCR-LEA4-1 Fw	AGCCAAGGAGAAGATGGTGA	
qPCR-LEA4-1 Rev	CGTTGGTGCGCTATCTCTTT	
qPCR-COL7 Fw	GTTCTTCTCAAGGCCTCTCT	
qPCR-COL7 Rev	CCAACTAGCACGTGATCTCT	
qPCR-FBA21Fw	TTCCGGACTTTGCTGGTCTC	
qPCR-FBA2 1Rev	ATGTTCTGCTCGACGAGGAC	
qPCR-FBA22Fw	TTCCGGACTTTGCTGGTCTC	
qPCR-FBA22Rev	ATGTTCTGCTCGACGAGGAC	
qPCR-GER3 Fw	CTTTTGCCTCTGTTCAAGAC	
qPCR-GER3 Rev	GGCTTTAATGATGTTGGAAG	
qPCR LHCB2 1Fw	GAAGCAATGGCCACTTCAGC	
qPCR LHCB2 1Rev	CGGAGGAGATCGTTGGATGG	
qPCR LHCB2 2Fw	ACCCGTTGAACTTAGCGGAG	
qPCR LHCB2 2Rev	TAGCCACAGGGTCTGCAATG	
qPCR-ARP1 Fw	GTCCACCAATCTGTCACTCT	
qPCR-ARP1 Rev	CTCCTACGAACACTTTGGTC	
qPCR-ZIP5 Fw	CACAAAACGTCAAGCTCTTA	
qPCR-ZIP5 Rev	TTGCCTAGTAACGGAAACAT	
qPCR-ACT7 Fw	GCGATGTTTGAGTTTCAATAAACGCTGC	
qPCR-ACT7 Rev	CTCACCTTCACCATTCCAGTTCCA	
qPCR-HSP701Fw	TCTCTTAAAGCTCACAGACGAA2	
qPCR-HSP701Rev	CTGTCAGTGAAAGCAACGTAGG ²	
qPCR-HSP70 2Fw	GTCGAGTGTTGGCGAGAAGA	
qPCRHSP70 2Rev	CCGCTCACAAGCTGTCCTAA	
qPCR-FLC 1Fw	CTCCTCCGGCGATAAGTACG	
qPCR-FLC 1Rev	GCTGACGAGCTTTCTCGATG	
qPCR-FLC 2Fw	TCTGGTTATCGATTGCGATTCT	
qPCR-FLC 2Rev	GTTCTCTTGGATTTGTATATGCACG	

Supplementary References

- 1. Bratzel, F., López-Torrejón, G., Koch, M., Del Pozo, J. C. & Calonje, M. Keeping cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitination. *Curr. Biol.* **20**, 1853–1859 (2010).
- 2. Kumar, S. V. & Wigge, P. A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. *Cell* **140**, 136–147 (2010).