SUPPORTING INFORMATION: E46K-like α-synuclein mutants increase lipid interactions and disrupt membrane selectivity

Matteo Rovere¹, Alex E. Powers¹, Julia C. Pitino¹, Luis Fonseca-Ornelas¹, Dushyant S. Patel¹, Alessandro Achille², Ralf Langen³, Jobin Varkey³, Tim Bartels^{1,4}*.

From the ¹Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston MA, 02115, USA; the ²Department of Computer Science, University of California, Los Angeles, Los Angeles CA, 90095, USA; the ³Zilkha Neurogenetic Institute, University of Southern California, Los Angeles CA, 90033, USA; ⁴the Dementia Research Institute, University College London, London, WC1E 6BT, UK

*To whom correspondence should be addressed: Dementia Research Institute, University College London, London, Gower Street, Cruciform Building Wing 2.4, WC1E 6BT, UK. Phone: +44-20-31086814; E-mail: <u>t.bartels@ucl.ac.uk</u>

Figures S1–S6 and Tables S1–S3.

FIGURE S1. Near-UV CD spectra of 90 μ M wt, K, 2K and 3K α Syn in 10 mM NH₄Ac, pH 7.40, measured at 25°C. Spectra are arbitrarily offset for easier comparison. No clear differences among the E46K-like mutants are observed.

FIGURE S2. *A*, Representative far-UV CD spectra from a titration of 9.7 μ M wt α Syn (in 9.7 mM NH₄Ac, 150 mM NaCl, pH 7.40) with 5.8 mM 70:30 POPC:DOPS SUVs, measured at 25°C. *B*, Titration curves obtained from raw CD data after extracting the molar ellipticity at 222 nm and graphing it against the lipid:protein molar ratio at each point of the titration. Datapoints are shown along with their SEM (from *n*=3-6 independent titrations) and their best fit with an *N* independent binding sites model (*see* Experimental Procedures). *C*, Histogram of the *N* values (along with their SEM, *n*=3-6) obtained from the best fit of the titration curves with an *N* independent binding sites model. Decreasing *N*s indicate increased binding (or "avidity", *see* Results).

FIGURE S3. *A*, Representative ITC binding isotherms of 5 μ M wt, K, 2K, and 3K α Syn (in 10 mM NH₄Ac, pH 7.40) with 6 mM 70:30 POPC:DOPS SUVs, measured at 25°C. Datapoints are shown along with their best fit with an *N* independent binding sites model (*see* Experimental Procedures and Table S3). *B*, Representative ITC binding isotherms of 5 μ M wt, K, 2K, and 3K α Syn (in 10 mM NH₄Ac, pH 7.40) with 6 mM 52.5:17.5:30 POPC:DOPS:cholesterol SUVs, measured at 25°C. 3K α Syn datapoints are shown along with their best fit with an *N* independent binding sites model (*see* Experimental Procedures and Table S3). *C*, Histogram of the *N* values (along with their SEM, *n*=3) obtained from the best fit of the titration curves with an *N* independent binding sites model. *E*, Histogram of the *k*_B values (along with their SEM, *n*=3) obtained from the *k*_B values (along with their SEM, *n*=3) obtained from the *k*_B values (along with their SEM, *n*=3) obtained from the *k*_B values (along with their SEM, *n*=3) obtained from the best fit of the titration curves with an *N* independent binding sites model. *E*, Histogram of the *k*_B values (along with their SEM, *n*=3) obtained from the best fit of the titration curves with an *N* independent binding sites model. *E*, Histogram of the *k*_B values (along with their SEM, *n*=3) obtained from the best fit of the titration curves with an *N* independent binding sites model. *E*, Histogram of the *k*_B values (along with their SEM, *n*=3) obtained from the best fit of the titration curves with an *N* independent binding sites model. *E*, Histogram of the *k*_B values (along with their SEM, *n*=3) obtained from the best fit of the titration curves with an *N* independent binding sites model.

FIGURE S4. Representative far-UV CD spectra from a titration of 9.7 μ M wt (*A*) and 3K (*B*) α Syn (in 9.7 mM NH₄Ac, 150 mM NaCl, pH 7.40) with 9.7 mM 70:30 POPC:DOPS LUVs, measured at 25°C. No binding is observed in "high-salt" conditions with wt α Syn. *C*, Titration curves obtained from raw CD data after extracting the molar ellipticity at 222 nm, subtracting the unfolded ellipticity signal at the same wavelength and graphing it against the lipid:protein molar ratio at each point of the titration. Datapoints are shown along with their SEM (from *n*=3 independent titrations) and the best linear regression of the first 7 datapoints ($[\Theta]_{222}$ - $[\Theta]_{coil} = a \cdot (lipid:protein molar ratio)+b)$. *D*, Histogram of the slopes -*a* (along with their SEM, *n*=3) obtained from the linear regression of the titration curves. Increasing slopes (-*a*) indicate increased binding propensity.

FIGURE S5. *A*, Hydropathy plot of the primary sequence of wt α Syn (1-140), calculated using the hydropathy index values of Kyte and Doolittle and averaged over a 21-residue moving window. The hydrophobicity of the primary sequence of α Syn highlights its key features: the amphipathic N-terminal region (1-95), with the slightly hydrophobic NAC domain (61-95, highlighted in gray), and the polar, negatively charged C-terminus (96-140). *B*, Fast Fourier Transform (FFT) analysis of the hydrophobicity of the N-terminus (1-95) of wt α Syn (again, the hydropathy index values of Kyte and Doolittle were used). The FFT shows a sharp maximum corresponding to the periodicity of an 11/3 helix (measured as number of residues per helix turn).

FIGURE S6. *A*, Schiffer-Edmundson helical wheel diagram of wt α Syn's N-terminal region (3-68), with the amino acids color-coded according to their polarity (Blue: positively charged aa, Red: negatively charged aa, Yellow: polar aa, White: neutral aa, Black: apolar aa). E61 is shown to be slightly closer to the membrane surface and thus comparatively better positioned to establish ionic bonds with the negatively charged lipid heads upon E-to-K mutation. *B*, Helical net diagram of the segment 30-66 of wt α Syn, color-coded as in *A*. In addition to the helical orientation, the local environment of E61 is also different from E35 and E46, suggesting that the rearrangement of electrostatic and/or hydrogen bonds upon E-to-K mutation could explain an increased 11/3 helix stability and membrane avidity.

TABLE S1 (.xlsx). ¹H-¹⁵N HSQC spectral parameters (assigned chemical shifts and chemical shift perturbations) for Figs. 2-3.

	Hydrodynamic Radius (nm)
POPC:DOPS SUVs (sonicated)	16.4±0.9
POPC:DOPS:cholesterol SUVs (sonicated)	17.8±0.1
POPC:DOPS LUVs (extruded, 0.1 µm)	48±2

TABLE S2. DLS-measured hydrodynamic radii (along with their SEM, n=3) of freshly-prepared 5 mM 70:30 POPC:DOPS SUVs, 52.5:17.5:30 POPC:DOPS:cholesterol SUVs and 70:30 POPC:DOPS LUVs (extruded through a 0.1-µm polycarbonate membrane), measured at 20°C.

CD	N		k _B		$-[\Theta]_{helix}^{222} (deg \cdot cm^2 \cdot dmol^1)$		
wt PC:PS SUVs	157±5		$(7\pm 4) \cdot 10^4$		$(3.59 \pm 0.07) \cdot 10^6$		
K PC:PS SUVs	151±4 (n.s.)		$(8\pm 4)\cdot 10^4$ (n.s.)		$(3.83\pm0.08)\cdot10^6$ (n.s.)		
2K PC:PS SUVs	148±4 (n.s.)		$(8\pm 4)\cdot 10^4$ (n.s.)		$(3.74\pm0.05)\cdot10^{6}$ (n.s.)		
3K PC:PS SUVs	128±3 (**)		$(1.1\pm0.5)\cdot10^4$ (n.s.)		$(3.5\pm0.1)\cdot10^6$ (n.s.)		
wt PC:PS:chol SUVs	164±3		$(8\pm 2)\cdot 10^4$		$(3.15\pm0.05)\cdot10^6$		
K PC:PS:chol SUVs	165±3 (n.s.)		$(8\pm3)\cdot10^4$ (n.s.)		$(3.73\pm0.04)\cdot10^{6}$ (**)		
2K PC:PS:chol SUVs	167±3 (n.s.)		$(6\pm 2)\cdot 10^4$ (n.s.)		$(3.44\pm0.04)\cdot10^{6}$ (n.s.)		
<i>3K</i> PC:PS:chol SUVs	133±3 (**	±3 (***) (9±		⁴ (n.s.)	(3.2	$(3.2\pm0.2)\cdot10^{6}$ (n.s.)	
wt PC:PS SUVs+NaCl	90±2	(4±2)		·10 ⁴		N/A	
K PC:PS SUVs+NaCl	83±4 (n.s	(n.s.) (5±4)·10) ⁴ (n.s.)		N/A	
2K PC:PS SUVs+NaCl	69±2 (**) (1.3±0.9)·		10^{5} (n.s.)		N/A	
<i>3K</i> PC:PS SUVs+NaCl	72±2 (*)	(6±3)·10) ⁴ (n.s.)		N/A	
wt PC:PS LUVs	$(8.2\pm0.2)\cdot10^2$ (1		(1.0±0.2	$(.2) \cdot 10^3$		$.54\pm0.06)\cdot10^{6}$	
K PC:PS LUVs	$(6.3\pm0.3)\cdot10^2$ (**)		$(1.4\pm0.5)\cdot10^3$ (n.s.)		$(2.65\pm0.09)\cdot10^6$ (n.s.)		
2K PC:PS LUVs	$(3.9\pm0.3)\cdot10^2$	$(3.9\pm0.3)\cdot10^2$ (****)		$(1.3\pm0.4)\cdot10^{3}$ (n.s.)		$(2.85\pm0.07)\cdot10^{6}$ (*)	
3K PC:PS LUVs	$(2.6\pm0.2)\cdot10^2$ ($0^2 (****)$ (3±1)		³ (n.s.)	(2.9	$(2.93\pm0.06)\cdot10^{6}$ (*)	
ITC	N		k_B - ΔH (ca		mol ¹)	ΔS (cal·mol ¹ ·K ⁻¹)	
wt PC:PS SUVs	163±5	$(2.5\pm0.1)\cdot10^4$		290±2		19.1±0.1	
K PC:PS SUVs	163±2 (n.s.)	$(2.17\pm0.08)\cdot10^4$ (n.s.)		338±3 (*)		18.7±0.1 (n.s.)	
2K PC:PS SUVs	147±1 (*)	$(2.5\pm0.2)\cdot10^4$ (n.s.)		290±2 (n.s.)		19.1±0.2 (n.s.)	
3K PC:PS SUVs	133±2 (***)	$(2.7\pm0.3)\cdot10^4$ (n.s.)		$(3.7\pm0.1)\cdot10^2$ (***)		19.0±0.3 (n.s.)	
3K PC:PS:chol SUVs	95±8 (N/A)	$(2.3\pm0.3)\cdot10^4$ (N/A)		$(1.7\pm0.1)\cdot10^2$ (N/A)		19.3±0.3 (N/A)	
CLEARANCE KINETICS	$t_{1/2}^{ m slow(abs)}~({ m s}^{-1})$	$t_{1/2}^{\text{fast (abs)}}$ (s ⁻¹)		$t_{1/2}^{\rm slow(CD)}({ m s}^{-1})$		$t_{1/2}^{\text{fast (CD)}}$ (s ⁻¹)	
wt PC:PG MLVs	(818.3, 939.7)	(88.5, 102.2)		(926.0, 1046.0)		(125.6, 145.9)	
K PC:PG MLVs	(712.3, 806.5)	(61.7, 70.6)		(615.2, 666.7)		(72.2, 84.9)	
2K PC:PG MLVs	(305.3, 458.8)	(79.5, 113.3)		(300.9, 356.3)		(38.4, 64.8)	
<i>3K</i> PC:PG MLVs	(289.4, 343.9)	(23.6, 35.6)		(419.1, 52	3.9)	(46.8, 67.2)	

TABLE S3. Summary table of the best-fit model parameters. CD-monitored (222-nm ellipticity) titrations of wt, K, 2K, and 3K α Syn with 70:30 POPC:DOPS SUVs, 52.5:17.5:30 POPC:DOPS:cholesterol SUVs, 70:30 POPC:DOPS SUVs in 150 mM NaCl, and 70:30 POPC:DOPS LUVs; best fits obtained with an *N* independent binding sites model (*n*=3, SEMs are shown). ITC binding isotherms of wt, K, 2K, and 3K

 α Syn with 70:30 POPC:DOPS SUVs and 3K α Syn with 52.5:17.5:30 POPC:DOPS:cholesterol SUVs; best fits obtained with an *N* independent binding sites model (*n*=3, SEMs are shown). Vesicle clearance kinetics of 90:10 POPC:POPG MLV dispersions by wt, K, 2K, and 3K α Syn, monitored both by absorbance at 500 nm and by CD (222-nm ellipticity); best fits obtained with a two-phase exponential decay model (95% CIs are shown). Statistical significance was determined by ordinary one-way ANOVA followed by Sidak's multiple comparisons test (vs. wt α Syn), with a single pooled variance; n.s. p>0.05, * p≤0.05, ** p≤0.01, *** p≤0.001.