SUPPORTING INFORMATION

Functional characterization of a subtilisin-like serine protease from Vibrio cholerae

Matthew Howell^{1,2,†}, Daniel G. Dumitrescu^{1-3,†}, Lauren R. Blankenship^{1,2}, Darby Herkert^{1,2}, and Stavroula K. Hatzios^{1-3,*}

¹Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA ²Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA ³Department of Chemistry, Yale University, New Haven, CT 06511, USA [†]These authors contributed equally to this work. *Corresponding author: <u>stavroula.hatzios@yale.edu</u>

Table of Contents	Page No.
Supplementary Table S1. Strain list.	2
Supplementary Table S2. Plasmid list.	3
Supplementary Table S3. Primer list.	4
Figure S1. IvaP primary sequence	6
Figure S2. IvaP ^{S361A*} can be partially processed by other <i>V. cholerae</i> proteases	7
Figure S3. <i>ivaP</i> sequence alignment showing G-to-A mutation in V. cholerae Haiti	8
Figure S4. IvaP is similarly processed by stationary-phase cultures of <i>V. cholerae</i> C6706 and Haiti	9
Figure S5. Purification of mature IvaP	10
Figure S6. Hydrolysis of <i>N</i> -succinyl-Ala-Ala-Pro-Phe- <i>p</i> -nitroanilide by IvaP and Subtilisin	11 A
Figure S7. Multiple sequence alignment of bacterial subtilases	12
Figure S8. Purification of the IvaP I9 domain	13
Supplementary References	14

Strain	Genotype/Description ^a	Source/Reference
WT	WT EI Tor O1 clinical isolate of V. cholerae	1
	C6706 (Sm ^R)	
Δ	C6706 ∆ <i>ivaP</i>	2
S361A	C6706 <i>∆ivaP::</i> C6706 <i>ivaP</i> ^{S361A}	2
pBAD	C6706 <i>∆ivaP</i> pBAD33	This study
WT*	C6706 ∆ivaP pBAD33SP-His₀-ivaP(nt 70-1605)- FLAG	This study
S361A*	C6706 ∆ <i>ivaP</i> pBAD33 <i>SP-His</i> ₆ -ivaP ^{S361A} (nt 70- 1605)-FLAG	This study
WT-FLAG	C6706 ∆ <i>ivaP</i> pBAD33 <i>ivaP-FLAG</i>	This study
C9Y-FLAG	C6706 ∆ <i>ivaP</i> pBAD33 <i>ivaP</i> ^{C9Y} -FLAG	This study
S361A-His ₆	C6706 ∆ <i>ivaP</i> pBAD33 <i>ivaP^{s361A}-His</i> ₀	This study
lacZ::S361A	C6706 lacZ::PTAC:ivaP ^{S361A} -FLAG	This study
∆ lacZ::S361A	C6706 ∆ivaP lacZ::P _{TAC} :ivaP ^{S361A} -FLAG	This study
Haiti	WT EI Tor O1 clinical isolate of <i>V. cholerae</i> ,	3
	cholera outbreak (Sm ^R)	
Haiti Δ	Haiti ∆ <i>ivaP</i>	This study
Y9C	Haiti ∆ <i>ivaP::ivaP</i> ^{Y9C}	This study
E7946	WT EI Tor O1 clinical isolate (Sm ^R)	4
E7946 ∆	E7946 <i>∆ivaP</i>	This study
N16961	WT EI Tor O1 clinical isolate (Sm ^R)	5
DH5αλ <i>pir</i>	Escherichia coli cloning strain	
SM10λ <i>pir</i>	<i>E. coli</i> conjugation donor (Kan ^R)	6
OneShot™BL21(DE3)pLysS	E. coli OneShot™BL21(DE3)pLysS chemically	Thermo Fisher
	competent protein expression strain (Cm ^R)	
<i>E. coli</i> pET28b <i>His</i> ₆ -I9	E. coli OneShot™BL21(DE3)pLysS pET28bHis₀-	This study
	<i>ivaP(nt 70-402)</i> (note: <i>ivaP</i> gene encoding aa 24-	
	134 of IvaP)	

Supplementary Table S1. Strain list.

^aivaP refers to the vc0157 gene of V. cholerae (NCBI Gene ID 2614886). The FLAG tag used in this study refers to the amino acid sequence DDDDKDDDDK. SP refers to the IvaP signal peptide, aa 1-23, encoded by nt 1-69 of the *ivaP* gene.

Supplementary Table S2. Plasmid list.

Plasmid	Description ^a	Source/Reference
pCVD442	Allele exchange vector	7
pCVD442∆ <i>ivaP</i>	Allele exchange vector for deletion of V.	2
	cholerae ivaP	
pCVD442 <i>ivaP^{Y9C}</i>	Allele exchange vector for chromosomal	This study
	replacement of <i>ivaP</i> with the C6706 <i>ivaP</i>	
	gene, which encodes a Cys at position 9 of	
	the IvaP protein	
pBAD33	Arabinose-inducible expression vector	8
pBAD33ivaP-FLAG	Expression vector for <i>ivaP-FLAG</i>	This study
pBAD33 <i>ivaP^{S361A}-FLAG</i>	Expression vector for <i>ivaP</i> ^{S361A} -FLAG	This study
	(note: used exclusively as a cloning	
	template in this study)	
pBAD33ivaP ^{C97} -FLAG	Expression vector for <i>ivaP^{csy}-FLAG</i>	This study
pBAD33ivaP ^{S301A} -His ₆	Expression vector for <i>ivaP</i> ^{s30} ^{7A} -His ₆	This study
pBAD33SP-His ₆ -ivaP-FLAG	Expression vector for SP-His ₆ -ivaP(nt 70- 1605)-FLAG	This study
pBAD33SP-Hise-ivaPS361A-FLAG	Expression vector for SP-Hise-ivaP ^{S361A} (nt	This study
	70-1605)-FLAG	,
pTD101	<i>lacZ</i> integration plasmid with <i>lacl_q</i> , P _{TAC} ,	Tobias Dörr, Cornell
	and a multiple cloning site	University (9)
pTD101 <i>ivaP^{S361A}-FLAG</i>	lacZ integration plasmid for chromosomal	This study
	replacement of <i>lacZ</i> with <i>ivaP</i> ^{S361A} -FLAG	
pET28b	IPTG-inducible expression vector	EMD Millipore
pET28b <i>ivaP-His</i> 6	Expression vector for <i>ivaP-His</i> ₆ (note: used	This study
	exclusively as a cloning template in this	
	study)	
pET28b <i>ivaP^{s361A}-His</i> 6	Expression vector for <i>ivaP</i> ^{5361A} -His ₆ (note:	This study
	used exclusively as a cloning template in	
	this study)	
$p \in 128bHis_{6}$ -ivaP(nt 70-1605)-His_{6}	Expression vector for His6-ivaP(nt /0-	This study
	1605)-His6 (note: ivaP gene encoding aa	
	24-535 OT IVAP; USED EXClusively as a	
	Cioning template in this study)	This study
p⊏1200HIS6-I9	Expression vector for HIS6-IVAP(nt /0-402)	i nis study
	(note. <i>IvaP</i> gene encoding predicted 19	
	uomain oi IvaP, aa 24-134 oi IvaP)	

^aThe FLAG tag used in this study refers to the amino acid sequence DDDDKDDDDK. SP refers to the IvaP signal peptide, aa 1-23, encoded by nt 1-69 of the *ivaP* gene.

Supplementary Table S3. Primer list.

Primer	Sequence (5' to 3') ^a	Description
SKH-1	ATCCTACCTGACGCTTTTTATCG	Forward primer for sequencing pBAD33 constructs
SKH-35	GGCAAATTCTGTTTTATCAGACCGC	Reverse primer for sequencing pBAD33 constructs
SKH-55	CCAGCCCTCCTGTTTGAAGATG	Forward primer for sequencing pCVD442 constructs
SKH-56	ACTGAGAAGCCCTTAGAGCC	Reverse primer for sequencing pCVD442 constructs
SKH-147	ATAG TCTAGA GCCTTGCTAGCAATCAGGGAG GC	Forward primer for 5' flanking region of <i>ivaP</i> ; Xbal site
SKH-150	TGTA TCTAGA AGTGGCAACAATGGCTGTTGG AGG	Reverse primer for 3' flanking region of <i>ivaP</i> ; Xbal site
SKH-151	GCTGCTACATTAGGCAATCCACCCC	Forward primer for sequencing pCVD442 constructs containing 5' flanking region of <i>ivaP</i>
SKH-152	CATTACAGCGTCGTGCTGAGCATA	Reverse primer for sequencing pCVD442 constructs containing 3' flanking region of <i>ivaP</i>
SKH-163	CCGCTTATGTGATCGATACCGGTATTG	Forward primer for sequencing constructs containing <i>ivaP</i>
SKH-170	GAGTGGTACGGCGATGGCCTCACCCCATGT AGC	Forward primer for mutating Ser361 codon of <i>ivaP</i> (TCT) to Ala (GCG)
SKH-171	GGTGAGGCCATCGCCGTACCACTCATAGTC GTCG	Reverse primer for mutating Ser361 codon of <i>ivaP</i> (TCT) to Ala (GCG)
SKH-176	TGACGTCAGATCCTGGTGCGAAGA	Reverse primer for sequencing constructs containing <i>ivaP</i>
SKH-196	TACT CCATGG GCATGTTTAAAAAGTTTTTAAG CTTATGCATTGTTTCG	Forward primer for cloning <i>ivaP</i> into pET28b; Ncol site
SKH-197	TACT CTCGAG GTAGCGAGCCACCAAACTGAC ATTGT	Reverse primer for cloning <i>ivaP</i> into pET28b with a C-terminal His ₆ tag; Xhol site
SKH-198	TGCT CATATG CAACCCAATCAGCTTGTTGGC AAATCAT	Forward primer for cloning <i>ivaP(nt 70-1605)</i> into pET28b with an N-terminal His ₆ tag; Ndel site
SKH-199	TACT CTCGAG GTAGCGAGCCACCAAACTGAC ATTGT	Reverse primer for cloning <i>ivaP(nt 70-1605)</i> into pET28b with a C-terminal His ₆ tag; Xhol site
SKH-231	CTCCATACCCGTTTTTTTGGGCTAGCGAATTC GAGATGTTTAAAAAGTTTTTAAGCTTATGCAT TGTTTCG	Forward primer for cloning <i>ivaP</i> into pBAD33 via Gibson Assembly
SKH-232	TGCAGGTCGACTCTAGAGGATCCCCGGGTA CCGAGTCAGTGGTGGTGGTGGTGGTGCTC	Reverse primer for cloning <i>ivaP</i> with a C-terminal His ₆ tag into pBAD33 via Gibson Assembly
SKH-233	TGCAGGTCGACTCTAGAGGATCCCCGGGTA CCGAGTCATTTGTCATCATCGTCCTTATCATC ATCATCGTAGCGAGCCACCAAACTGACATTG T	Reverse primer for cloning <i>ivaP</i> into pBAD33 with a C-terminal FLAG tag via Gibson Assembly
SKH-236	CACCACCACCACCACCAACCCAATCAGC TTGTTGGCAAATCAT	Forward primer for adding an N- terminal His ₆ tag to <i>ivaP(nt 70-1605)</i>
SKH-239	GTTTTTTTGGGCTAGCGAATTCGAGATGTTTA AAAAGTTTTTAAGCTTATGCATTGTTTCGACG TTTTCCGTCGCAGCAACCTCAGCACTTGCCC ACCACCACCACCACCACCAACCCA	Forward primer for cloning <i>ivaP(nt 1-69)-His</i> ₆ - <i>ivaP(nt 70-1605)-FLAG</i> into pBAD33 via Gibson Assembly

SKH-240	TGCAGGTCGACTCTAGAGGATCCC	Reverse primer for cloning <i>ivaP(nt 1-69)-His</i> 6- <i>ivaP(nt 70-1605)-FLAG</i> into pBAD33 via Gibson Assembly
SKH-246	CAGGAAACAGACCATGGAATTCGAGCTCGGT ACCCATGTTTAAAAAGTTTTTAAGCTTATGCA TTGTTTCG	Forward primer for cloning <i>ivaP</i> into pTD101 via Gibson Assembly
SKH-247	CTTGCATGCCTGCAGGTCGACTCTAGAGGAT CCCCTCATTTGTCATCATCGTCCTTATCATCA TCAT	Reverse primer for cloning <i>ivaP</i> with a C-terminal FLAG (i.e., 2XDDDDK) tag into pTD101 via Gibson Assembly
SKH-248	CTCGTATAATGTGTGGAATTGT	Forward primer for sequencing pTD101 constructs
SKH-249	TCAGGCTGAAAATCTTCTCT	Reverse primer for sequencing pTD101 constructs
SKH-255	CCCTTTACACATTTTAGGTCTTGCCTGC	Reverse primer for confirming integration of <i>ivaP</i> ^{S361A} -FLAG at <i>lacZ</i> locus
DD-3	AATTTTGTTTAACTTTAAGAAGGAGATATACA TGCACCACCACCACCACCAACCCAATCA GCTTGTTGGC	Forward primer for cloning <i>ivaP(nt 70-402)</i> into pET28b with an N-terminal His ₆ tag via Gibson Assembly
DD-4	TGATGATGATGATGATGGCTGCTGCCCATGT CAGATGATCGGATTAACCGTAATAATTT	Reverse primer for cloning <i>ivaP(nt 70-402)</i> into pET28b via Gibson Assembly
DMH-1	AGTTTTTAAGCTTATACATTGTTTCGACGTTTT CCG	Forward primer for mutating Cys9 codon of <i>ivaP</i> (TGC) to Tyr (TAC)
DMH-2	GTCGAAACAATGTATAAGCTTAAAAACTTTTT AAAC	Reverse primer for mutating Cys9 codon of <i>ivaP</i> (TGC) to Tyr (TAC)
LRB-12	GCTAGTTATTGCTCAGCGG	Reverse primer for sequencing pET28b constructs
LRB-13	TAATACGACTCACTATAGGG	Forward primer for sequencing pET28b constructs

^aEnzyme restriction sites appear in boldface text.

MFKKFLSLCIVSTFSVAATSALAQPNQLVGKSSPQQLAPLMKAASGKGIKNQYIVVLKQP TTIMSNDLQAFQQFTQRSVNALANKHALEIKNVFDSALSGFSAELTAEQLQALRADPNVD YIEQNQIITVNPIISASAN**AAQDNV**TWGIDRIDQRDLPLNR<mark>SYNYNYDGSGVTAYVIDTG</mark> IAFNHPEFGGRAKSGYDFIDNDNDASDCQGHGTHVAGTIGGAQYGVAKNVNLVGVRVLGC DGSGSTEAIARGIDWVAQNASGPSVANLSLGGGISQAMDQAVARLVQRGVTAVIAAGNDN KDACQVSPAREPSGITVGSTTNNDGRSNFSNWGNCVQIFAPGSDVTSASHKGGTTTMSGT SMASPHVAGVAALYLQENKNLSPNQIKTLLSDRSTKGKVSDTQGTPNKLLYSLTDNNTTP NPEPNPQPEPQPQPDSQLTNGKVVTGISGKQGELKKFYIDVPAGRRLSIETNGGTGNLDL YVRLGIEPEPFAWDCASYRNGNNEVCTFPNTREGRHFITLYGTTEFNNVSLVARY

Figure S1. IvaP primary sequence. The 23-amino-acid IvaP signal peptide predicted by the SignalP server (version 4.1) appears in red. The I9 domain of IvaP predicted by the Simple Modular Architecture Research Tool (version 8.0) is underlined (10). Tryptic peptides identified by activity-based proteomic analyses of *V. cholerae* C6706 biofilm culture supernatants are highlighted in yellow (2). The N-terminal peptide sequence of mature IvaP determined by Edman degradation analysis appears in boldface type.

Figure S2. IvaP^{S361A*} can be partially processed by other *V. cholerae* proteases. (A) Western blot analysis of *V. cholerae* C6706 culture supernatants from $\Delta ivaP$ (Δ) biofilms or stationary-phase cultures of S361A*. Cultures of S361A* were supplemented with ethanol to decrease proteolysis of IvaP^{S361A*} as described under "Experimental procedures". Equal protein amounts of Δ and S361A* supernatants were co-incubated for 1 h at 37 °C prior to analysis. (B) Western blot analysis of stationary-phase culture supernatants from $\Delta ivaP$ *V. cholerae* C6706 expressing empty vector (pBAD), IvaP^{S361A*} (S361A*), or IvaP* (WT*). Cultures were supplemented with either benzamidine (Benz) or vehicle control (water) as described under "Experimental procedures". These analyses were repeated three times with consistent results.

IvaP_C6706 IvaP_Haiti	ATGTTTAAAAAG1 ATGTTTAAAAAG1 ***********	TTTTTAAGCTTATGO TTTTTAAGCTTATAO	CATTGTTTCGACGTTTTCCGTCGCAGCAACCT CATTGTTTCGACGTTTTCCGTCGCAGCAACCT CATTGTTTCGACGTTTTCCGTCGCAGCAACCT CATTGTTTCGACGTTTTCCGTCGCAGCAACCT	CA 60 CA 60 **
IvaP_C6706 IvaP_Haiti	GCACTTGCC GCACTTGCC *****	69 69		

Figure S3. *ivaP* sequence alignment showing G-to-A mutation in V. cholerae Haiti. Nucleotide sequences encoding the 23-amino-acid IvaP signal peptide from V. cholerae C6706 and V. cholerae Haiti (nt 1-69 of *ivaP*) were aligned using Clustal Omega (version 1.2.4). The G-to-A mutation is highlighted in red.

Figure S4. IvaP is similarly processed by stationary-phase cultures of *V. cholerae* C6706 and Haiti. Western blot (left) and in-gel fluorescence (right) analysis of FP-TAMRA-labeled supernatants from stationary-phase cultures of Δ , WT, and S361A *V. cholerae* C6706 and WT and Y9C *V. cholerae* Haiti. These analyses were repeated three times with consistent results.

Figure S5. Purification of mature IvaP. Mature IvaP was purified from the culture supernatants of *V. cholerae* C6706 $\triangle ivaP$ expressing pBAD33*ivaP-FLAG* by anion-exchange chromatography. The purified protein was resolved by SDS-PAGE and visualized by Coomassie staining or labeled with 2 µM FP-TAMRA for 1 h at room temperature prior to Western blot and in-gel fluorescence analysis.

Figure S6. Hydrolysis of *N*-succinyl-Ala-Ala-Pro-Phe-*p*-nitroanilide by IvaP and Subtilisin A. IvaP (10 nM) or Subtilisin A (10 nM) from *Bacillus licheniformis* was incubated with the colorimetric substrate *N*-succinyl-Ala-Ala-Pro-Phe-*p*-nitroanilide (Suc-AAPF-nPA; 0.1 to 6 mM) at room temperature in 100 mM Tris-HCl, pH 8. Initial velocity (V_o) values were calculated by measuring product absorbance at 410 nm. Michaelis-Menten parameters were calculated using GraphPad Prism (version 7.0). Data represent the mean \pm S.D. (error bars) of three independent experiments.

IvaP	EQLQALRADPNVDYIEQNQIITVNPIISASANAAQDNVTWGIDRID	153
Tk-SP	KDLLIIAGLMDTGYFGNAQLSGVQFIQEDYVVKVAVET <mark>E</mark> GLDESAAQVM	150
Tk Su	NAVGKLKKMPGVEKVEFDHQAVLLGKPSWLGGGSTQPAQTIPWGIERVK	118
SubA	EALKEVKNDALAQTVPYGIPLIK	117
SubE	KAVKELKKDEYA <mark>Q</mark> SVPYGISQIK	118
IvaP	QRDLPLNRSYNYNY-DGSGVTAYVIDTGIAFNHPEFGGRAKSGYDFIDND-NDAS	206
Tk-SP	ATNMWNLGY-DGSGITIGIIDTGIDASHPDLQGKVIGWVDFVNGKTTPY-	198
Tk Su	APSVWSITDGSVSVIQVAVLDTGVDYDHPDLAANI-AWCVSTLRGKVSTKLRDCA	172
SubA	ADKVQAQGF-KGANVKVAVLDTGIQASHP <mark>D</mark> LNVVG-GASFVAGEAY-NT	163
SubE	APALHSQGY-TGSNVKVAVIDSGIDSSHP <mark>D</mark> LNVRG-GASFVPSETNPYQ	165
IvaP	DCOGHGTHVAGTIGGAOYGVAKNVNLVGVRVLGCDGSGSTEAIARGIDWVAON	259
Tk-SP	DDNGHGTHVASIAAGTGAASNGKYKGMAPGAKLVGIKVLNGOGSGSISDIINGVDWAVON	258
Ťk Šu	DONGHGTHVIGTIAALNNDIGVVGVAPGVOIYSVRVLDARGSGSYSDIAIGIEQAILG	230
SubA	DGNGHGTHVAGTVAALDNTTGVLGVAPSVSLYAVKVLNSSGSGTYSGIVSGIEWATT-	220
SubE	DGSSHGTHVAGTIAALNNSIGVLGVAPSASLYAVKVLDSTGSGQYSWIINGIEWAIS-	222

Figure S7. Multiple sequence alignment of bacterial subtilases. Amino acid sequences of VC0157 from *V. cholerae* (IvaP; UniProt accession number Q9KVI8), subtilisin-like serine protease from *Thermococcus kodakarensis* (Tk-SP; UniProt accession number Q5JIZ5), subtilisin from *Thermococcus kodakarensis* (Tk Su; UniProt accession number P58502), Subtilisin Carlsberg from *Bacillus licheniformis* (SubA; UniProt accession number P00780), and Subtilisin E from *Bacillus subtilis* (SubE; UniProt accession number P04189) were aligned using Clustal Omega (version 1.2.4). Residues highlighted in red participate in calcium binding in SubE (11).

Coomassie Stain

Figure S8. Purification of the IvaP I9 domain. A 111-amino-acid region of IvaP (aa 24-134) containing the predicted I9 domain was expressed with an N-terminal His₆ tag in *Escherichia coli*, purified by Ni-NTA affinity chromatography, and visualized following SDS-PAGE by Coomassie staining.

Supplementary References

1) Mandlik, A., *et al.* (2011) RNA-Seq-based monitoring of infection-linked changes in *Vibrio cholerae* gene expression. Cell Host Microbe *10*, 165-174.

2) Hatzios, S. K., *et al.* (2016) Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nat Chem Biol *12*, 268-274.

3) Chin, C. S., *et al.* (2011) The origin of the Haitian cholera outbreak strain. N Engl J Med *364,* 33-42.

4) Miller, V.L., *et al.* (1989) Identification of *toxS*, a regulatory gene whose product enhances *toxR*-mediated activation of the cholera toxin promoter. J Bacteriol *171*, 1288-1293.

5) Dörr, T. D., *et al.* (2016) A cell wall damage response mediated by a sensor kinase/response regulator pair enables beta-lactam tolerance. Proc Natl Acad Sci USA *113*, 404-409.

6) Miller, V. L. and Mekalanos, J. J. (1988) A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in *Vibrio cholerae* requires *toxR*. J Bacteriol *170*, 2575-2583.

7) Donnenberg, M. S. and Kaper, J. B. (1991) Construction of an *eae* deletion mutant of enteropathogenic *Escherichia coli* by using a positive-selection suicide vector. Infect Immun *59*, 4310-4317.

8) Guzman, L. M., *et al.* (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol *177*, 4121-4130.

9) Weaver, A. I., *et al.* (2018) Genetic determinants of penicillin tolerance in *Vibrio cholerae*. Antimicrob Agents Chemother *62*, e01326-18.

10) Letunic, I. and Bork, P. (2018) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res *46*, D493-D496.

11) Jain, S. C., *et al.* (1998) The crystal structure of an autoprocessed Ser221Cys-subtilisin E-propeptide complex at 2.0 Å resolution. J Mol Biol *284*, 137-144.