## Identification of Loci and Candidate Genes Responsible for Pod Dehiscence in Soybean via Genome-wide Association Analysis across Multiple Environments

## Running title: GWAS for pod dehiscence in soybean

Dezhou Hu<sup>1†</sup>, Guizhen Kan<sup>1†</sup>, Wei Hu<sup>1</sup>, Yali Li<sup>1</sup>, Derong Hao<sup>2</sup>, Xiao Li<sup>1</sup>, Hui Yang<sup>1</sup>, <sup>3</sup>, Zhongyi Yang<sup>1</sup>, Xiaohong He<sup>1</sup>, Fang Huang<sup>1</sup>\* and Deyue Yu<sup>1, 3</sup>\*

Correspondence: Deyue Yu Email: dyyu@njau.edu.cn

Fang Huang Email: fhuang@njau.edu.cn

<sup>†</sup> These authors have contributed equally to this work

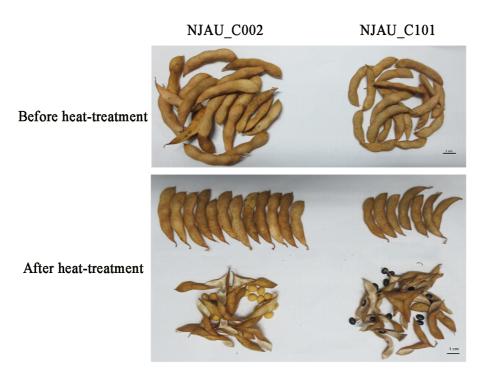



Figure S1. The phenotype of pod dehiscence between two soybean accessions (NJAU\_C002 and NJAU\_C101) before and after heat-treatment.

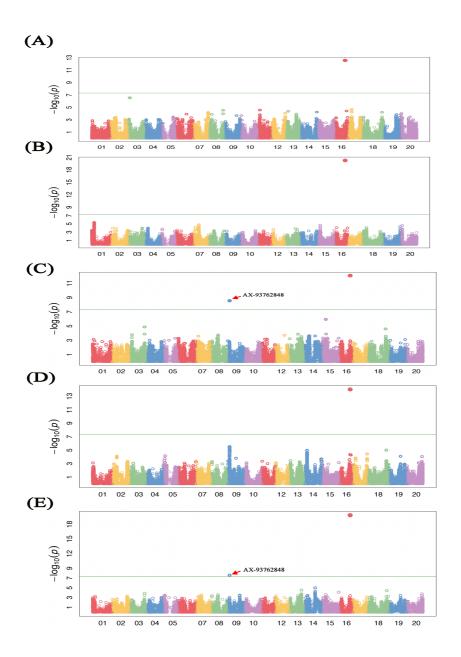
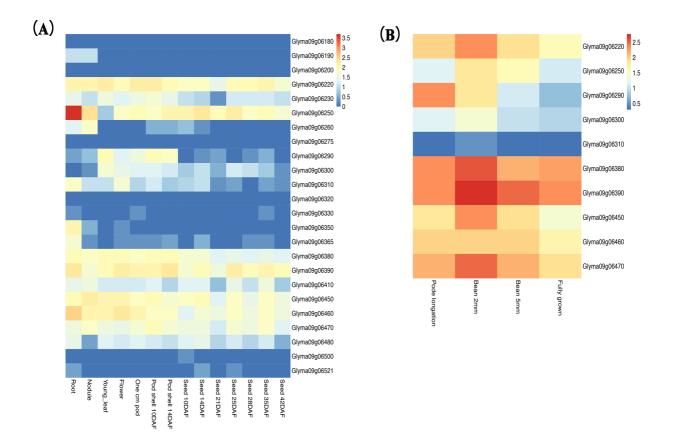
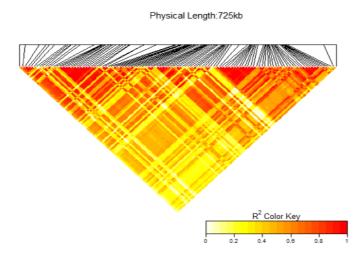




Figure S2. The Manhattan plots for pod dehiscence using MMLM model in the following environments: (A) Env1; (B) Env2; (C) Env3; (D) Env4; (E) Env5. The SNP indicated by the arrow is AX-93762848.




Supplementary Figure S3. Digital expression profiles for 26 genes in various tissues. (A) Expression levels of 26 genes in three vegetative tissues and at different seed developmental stages based on RNA sequencing data. The reads per kilobase million-normalized values were log<sub>10</sub>-transformed. (B) Expression of 26 genes in four different pod development stages from microarray data. The RMA-normalized values from the microarray data were log<sub>10</sub>-transformed. The transformed values were employed to create the heat map using R software.

| $\begin{array}{l} Hap1 \\ TGTTGTACGTGCCTGTGCACACTGACTCTCCCTATAATCACTCTCCCACAGAAACTCGTTTTCTAGGCCTGTGGTCTTCTTTTGTGCGTGTGCGTGC$                                                                                         | CATACTTGCTTCGCCTAGTAATTATTATAATCCAGTT<br>CATACTTGCTTCGCCTAGTAATTATTATAATCCAGTT              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| TCCTTATCACTCCAATTATTCAATTACATGGGGCCTCCTCATGTCAAGGAAAAATTAAAATTTTATTTGCTAGTGAACTTCACTTCCCTATAACTTGAAC<br>TCCTTATCACTCCAATTATTCAATTACATGGGGCCTCCTCATGTCAAGGAAAAAATTAAAATTTTATTTGCTAGTGAACTTCACTTCCCTATAACTTGAAC        |                                                                                             |
| 2<br>CCCCC—TAAAAAGCTTGTTTTTGCCTTCTTCTTCTCCTCAACATAGCTGACAAAAACAACCACTTCCTCTTTCATTGTTCTCTCCCCCCACTTTCACTATA<br>CCCCCCTAAAAAGCTTGTTTTTGCCTTCTTCTTCTCCTCAACATAGCTGACAAAAAACAACCACCTTCCTCTTCATTGTTCTCTCCCCCCACTTTCACTATA |                                                                                             |
| ***<br>TAACTTCTATTATCACTCACAATTCTTGTTCTTGGTCTTCTTCCTTTCTCATCCTTATACACTTCTTTGGATTGTTCTTGGATTATTTCATGG.<br>TAACTTCTATTATCACTCACAATTCTTGTTCTTGGTCTTCTTCCTTTCTTCATCACCTTCTTTCT                                           |                                                                                             |
| <b>633bp</b><br>TTACTATTATGTATGTGTTCCACATATAATATATATGTCAATTATCAAAGCAACTATATATTATAGTATGCTGTACTCTTTTCTTTTT<br>TTACTATTATGTATGTGTGTTCCACATATAATATA                                                                      | <b>45</b><br>TATTTTAAATATCGTGTATATATTTTTCAAATCTGTT<br>—ATTTTAAATATCGTGTATATATTTTTCAAATCTGTT |

Supplementary Figure S4. Comparison of sequence between Hap1 and Hap2. 1-5 represents S\_-500, Indel\_-230, S\_-128, Indel-766 and S-767. \*\*\*: the translation start codon.

Pairwise LD in r^2



Supplementary Figure S5. LD analysis of the 136 associated SNPs on chromosome 16.

| Gene          | Primer         | Primer sequence and probe sequence |
|---------------|----------------|------------------------------------|
| Glyma09g06290 | Forward primer | AGAAGATGATGATGGTGGTGGTGAT          |
|               | Reverse primer | TTTGTAGCTCAGTCACCATTTGTTC          |
| Glyma09g06320 | Forward primer | GCTCACGAAGGGAGTGAGAT               |
|               | Reverse primer | TGACGTGATTCAGAGTACACAC             |
| Glyma09g06390 | Forward primer | ATGAAGGCAATGAACCAA                 |
|               | Reverse primer | TGCGGAATAATGCAACACC                |
| Tubulin       | Forward primer | CACTTACGCATCACATAGCA               |
|               | Reverse primer | GGAGTTCACAGAGGCAGAG                |

## Supplemental Table S2. Primer sequence of qRT-PCR