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Supplemental Notes 
Supplementary note 1: Processing and quality control of public RNA-seq data 

All RNA-seq data used in this project was acquired from the European Nucleotide Archive 

(ENA) database 1. Of the 67,090 human RNA-seq samples, with at least 500,000 reads, 

registered in the ENA on June 30, 2016 (supplementary data 1), 67,019 were successfully 

downloaded. For 71 of the registered samples, the files were missing. Sample annotations 

were acquired from 2,3 and through manual curation based on study meta-information in the 

ENA database (supplementary data 1). 

Gene expression quantification 

The 67,019 downloaded samples were mapped to transcript annotations from Ensemble 

release 83 which uses build GRCh38.p5 of the human genome 4 using Kallisto 5 version 

0.42.4, and the number of reads assessed. The number of reads mapped per sample was 

obtained from the Kallisto summary file. The following genome files were used: 

ftp://ftp.ensembl.org/pub/release-

83/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh38.cdna.all.fa.gz 

ftp://ftp.ensembl.org/pub/release-

83/fasta/homo_sapiens/ncrna/Homo_sapiens.GRCh38.ncrna.fa.gz 

These files were merged and used to build the Kallisto reference index file. The following 

setting, in addition to all default settings, was used: –k 31. 

The following Kallisto settings were used mapping all 67,019 samples using default settings 

for paired-end data mapping. For single-end data mapping we used the following settings in 

addition to the defaults: –l 200 and –s 20 –bias. 

After obtaining the transcript counts per sample, these transcript-level counts were summed 

to gene-level counts for each sample of which we took the log2. 

Gene quality control 

We quantified 66,233 genes, which were filtered on the criteria described below, after which 

56,435 genes remained. Twenty-nine gene names were duplicates/identical. After these 

were removed, 66,203 genes remained. Of these, 3,628 genes are not expressed (0 reads 

detected among 31,499 samples) and were removed, leaving 62,575 genes. Next, we 

detected a number of duplicate genes (100% sequence similarity). Since these genes with 

perfect sequence similarity have exactly the same number of reads mapping, we were 

concerned they would appear as perfectly co-expressed genes in our analysis. Most of these 

genes are either incorrectly mapped genes in the genome build or duplicates of their 

ftp://ftp.ensembl.org/pub/release-83/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh38.cdna.all.fa.gz
ftp://ftp.ensembl.org/pub/release-83/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh38.cdna.all.fa.gz
ftp://ftp.ensembl.org/pub/release-83/fasta/homo_sapiens/ncrna/Homo_sapiens.GRCh38.ncrna.fa.gz
ftp://ftp.ensembl.org/pub/release-83/fasta/homo_sapiens/ncrna/Homo_sapiens.GRCh38.ncrna.fa.gz
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biological counterpart. Due to their high sequence similarity they are indistinguishable to the 

mapping tool (potentially introducing false correlations). To avoid potential biases resulting 

in deceptively high co-expression values, we decided to remove this bias prior to our 

analysis. 5,471 of these were not located on chromosomes (but on scaffolds), and were 

removed, leaving 57,104 genes. Another 665 genes had identical transcripts: different IDs, 

but 100% identical sequences (e.g. ENST00000442165 and ENST00000446969).  

An additional four genes had no expression in any of the remaining samples after removing 

outlier/poor-quality samples, as described below, and were also removed prior to the PCA 

analysis. The 56,435 genes that remained were used for our analyses (supplementary figure 

9).  

Sample quality control 

We excluded all samples in which less than 70% of the reads successfully mapped to the 

genome, as reported by Kallisto, resulting in 36,761 samples. 

Principal component analysis to identify outlier samples 

To identify outlier samples, we conducted a principal component analysis (PCA) along the 

following steps. First, all estimated counts were log2 transformed. Second, the data was 

quantile normalized. Third, the covariance over the samples was calculated. Fourth, genes 

without variance were removed from the dataset. Fifth, a PCA was conducted on the 

covariance matrix. An arbitrary cut-off on PC 1 was selected at 0.0049 (supplementary 

figure 10), leaving us with 32,142 samples. 

Removal of non-Illumina samples 

Since only a small number of samples that passed quality control (147 samples, <0.5% of 

the total number of samples) were not sequenced on Illumina machines, we removed these 

to avoid potential biases as a result of these different sequencing tools. This left 31,995 

samples in our dataset.  

Removing duplicate samples 

A number of samples had identical values for all genes. Upon inspection, some of these 

samples appeared to be have been used by multiple studies and uploaded to the ENA 

database multiple times. To remove duplicate samples, we identified all samples with a 

correlation >0.9999, randomly selected one of them to include and removed the other. 

After this step, 31,499 samples remained. 
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Removal of technical biases 

The remaining samples were normalized using DeSEQ 6. To identify potential technical 

biases in our data, we calculated the correlation between the PC-scores for each PC and the 

following potential confounders: read length, paired/single end, total reads in the dataset 

and percentage mapping reads (supplementary figure 11). We found that all these factors 

significantly correlated to our sample PC scores for multiple PCs (p-value < 0.01), indicating 

that these technical factors would affect the co-expression detected in the dataset, if not 

removed. We decided not to correct for GC content per gene as this may also have 

biological meaning 7. For a manual of the covariate removal pipeline we refer to: 

https://github.com/molgenis/systemsgenetics/tree/master/eqtl-mapping-pipeline. To 

remove covariates, we used the “adjustcovariates” option. 

Principal component analysis 

After correcting our dataset for technical biases, we conducted the following steps on the 

matrix. First, we calculated the correlation over the genes. Second, we conducted a PCA 

over the correlation matrix over the genes. Third, we calculated PC scores for each sample 

for all PCs. 

After the quality control steps described above, we conducted a co-regulation analysis using 

the 31,499 sample by 56,435 gene matrix. The co-regulation analysis was performed using 

the PC eigencoefficients of the genes for each of the reliable PCs obtained from our gene-co-

expression matrix. To determine which PCs are reliable, Cronbach’s alpha 8 was calculated 

for each PC (based on PCA of the gene-correlation matrix). Those PCs with a Cronbach’s 

Alpha ≥ 0.7 were considered reliable, and is a commonly used cutoff 9. In total, 1,588 PCs 

have a Cronbach’s Alpha ≥ 0.7. Additionally, we calculated the variance explained by each 

of these PCs and found the first 1,588 PCs explain 66 percent of the variance 

(supplementary figure 12). By including signals from only these PCs, we aimed to remove 

signals that are not reliable from our analysis. This method was previously shown to 

perform better than using the correlation matrix directly 10.  

Inspection of gene PC eigencoefficients 

To investigate if any technical biases were present for the different gene types (coding, 

miRNA, pseudogene, etc.), we plotted the gene eigencoefficients for the first 10 PCs and 

colored the genes by biotype (supplementary figure 13) and detected an outlier cluster on 

PC8 and PC9, which were further investigated (supplementary figure 14). 

https://github.com/molgenis/systemsgenetics/tree/master/eqtl-mapping-pipeline
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Inspection of sample PC scores 

To better understand the origin of the outlier genes in the eigenvector coefficients of PC 8 

and PC 9, we investigated the PC scores of the samples for these PCs. Additionally, we 

created a plot for each of the sample PC scores of the first 10 PCs (supplementary figure 

15). We observed that there is a clear biological explanation for these outliers, and 

therefore we decided to retain these signals in the data (supplementary figure 16). 

Data visualization of sample PC scores using a t-SNE plot 

To identify clusters for each cell type and tissue type, we used the sample PC scores, which 

indicate how strong the signal of each sample is for each PC in the data. Here, each PC is a 

gene expression signature for the complete set of genes. To visualize how the samples 

cluster in a two dimensional figure, we constructed a t-SNE plot 11 based on these sample 

PC-scores using the Rtsne library 12 (version 0.13). The t-SNE was run with a perplexity of 

50, and we ran 10,000 iterations on our sample PC score matrix. We found that single 

clusters were visible for many cell- and tissue-types (Figure 2a). Most of these clusters 

contain samples from different studies, which suggests that these clusters are not merely a 

representation of study-specific biases. The fact that studies with multiple cell/tissue types 

show multiple clusters further supports the suggestion that the clusters are not driven by 

non-biological inter-study differences. 
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Supplementary note 2: Using alternative tools to prioritize the candidate genes 

found using GADO 

We attempted to prioritize the candidate genes we identified in our unsolved cases using the 

following existing tools: Exomiser, ENDEAVOR 13, ToppGene 14.  

Exomiser 

We used the same version as in Supplementary methods 2 and used the default settings. 

We sorted the results based on the “EXOMISER_GENE_COMBINED_SCORE”.  

ToppGene 

There is no option in ToppGene to combine the results of multiple HPO terms and we 

therefor only applied ToppGene to the cases with a single HPO term listed. Since ToppGene 

does not work with HPO terms directly we extracted a list of gene names from the used HPO 

term from the HPO database we downloaded.  

ENDEAVOR 

Similair to ToppGene, ENDEAVOR does not work with HPO terms directly and does not 

provide an option to integrate multiple prioritizations. We therefor used the same samples 

and extracted gene-lists as for ToppGene. With the added limitation that the maximum 

number of supported genes in the training data was 200, if more than 200 genes were 

associated to an HPO term we selected a random subset. The number of genes that can be 

ranked is also limited to 200, for the cases for which GAVIN selected more than 200 genes 

we only ranked a random subset of genes while making sure that the gene GADO identified 

was present within this subset.   
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Supplementary note 3: GeneNetwork website 

We implemented the following functionality for www.genenetwork.nl. 

GADO gene prioritization 

Prioritize potential causative disease genes for patients based on HPO terms or a group of 

genes annotated to a patient, the GADO tool will rank all genes based on how likely they are 

to be related to the patient’s phenotype. These can be further filtered for genes of interest, 

by providing a list of genes known to harbor candidate causative variants.  

We also visualize the relations between the provided HPO terms using a heatmap. This 

heatmap is created by correlation the prioritization Z-score of two HPO terms.  

Gene function predictions 

Per gene we have made the prediction for the GO, Reactome, KEGG gene sets and HPO 

terms can be retrieved. 

Gene-gene co-regulation 

The gene co-regulation scores were calculated by correlating the eigencoefficients of each 

gene pair after the eigencoefficients were standard normalized per gene, followed by a 

standard normalization per PC. This is done so each PC weighed equally when determining 

the co-regulation between two genes 10. The p-values of co-regulated genes can be queried 

via the website. 

Gene network visualization 

Edges are drawn between two genes/nodes based on the co-regulation z-score. The cutoff 

at which a line/edge between two genes should be drawn can be manually altered with the 

bar in the top right corner. The network is drawn based on a force directed layout and 

clusters are assigned using affinity propagation 15. 

HPO, Reactome, KEGG and GO enrichment calculations 

On the network page it is possible to retrieve which HPO, Reactome, KEGG and GO 

categories are enriched among the visualized genes. It is also possible to retrieve this for a 

sub-selection of these genes. The enrichment is calculated based on the z-scores of each of 

these genes for each category. For each category/term, a Mann-Whitney U test is conducted 

between the z-scores of the genes in the network versus the z-scores of genes that are not 

part of the visualized network. The pathways with the most significant p-values are then 

ranked highest. 

http://www.genenetwork.nl/
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It is also possible to identify which other genes are strongly co-regulated with those 

visualized in the network. This is done similarly to how the correlation between a gene and 

a pathway is calculated, as described above in “Gene function and HPO association 

predictions”. First, the z-scores for each PC of the genes visualized in the network is 

calculated. After the z-scores of this group of genes have been calculated for each pathway, 

the correlation of the PC coefficients for each gene not in the network with these z-scores is 

calculated. The genes with the most significant correlation are ranked highest. 
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Supplementary Figures 
Supplementary figure 1: Selection of parent HPO term if GADO does not have 

significant predictive power for query term. 

If the predictive power for a particular query HPO term is not significant (poor performance), 

the parent terms are instead suggested to make predictions. If one of the parent terms also 

does not have significant predictive power, then its parents are suggested. The algorithm 

progresses up the HPO tree until alternative terms are found for which GADO does have 

significant predictive power. The example shown is for HP:0002037 (Inflammation of the large 

intestine). 
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Supplementary figure 2: Performance of disease gene prioritization compared to 

random permutation.  

(a) OMIM disease genes and provisional disease genes have significantly stronger z-scores 

compared to permuted disease genes (T-test p-values: 2.16×10-532 & 5.38×10-80, 

respectively). We also observe that the predictions of the provisional OMIM genes are, on 

average, weaker than the other OMIM disease genes (T-test p-value: 1.89×10-7).  

(b) Ranking the disease based on z-scores shows GADO’s ability to prioritize the causative 

gene for a disease among all OMIM genes. For 49% of the disorders the causative gene is 

ranked in the top 5%.  

(c) We observe a clear relation between the prioritization z-scores and the gene 

prioritization Z-scores (Pearson r = 0.54). We don’t observe this relation in the permuted 

results.  

(d) GeneNetwork performs best for genes with high predictability scores.  

(e) The different groups have similar distributions of gene predictability scores. 
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Supplementary figure 3: The prioritization Z-score when using a maximum of 5 

random HPO terms to predict known diseases genes are strongly correlated to 

using all annotated HPO terms. 

The Pearson correlation between the prioritization Z-scores is 0.86. While this indicates that 

GADO also works well when using only 5 HPO terms, we believe this is an underestimate, 

since we randomly select 5 of the annotated HPO terms per disease. We expect that in 

reality clinicians usually will try to enter HPO terms that describe clearly different 

phenotypes, yielding more informative results. 
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Supplementary figure 4: Correlation between the GADO prioritization Z-scores and 

the ExAC missense constraint. 

(a) The correlation between the ExAC missense constraint score and the number of 

submission to Clinvar is detected. 

(b) The correlation between the ExAC missense constraint score and the GADO gene 

prioritization Z-scores is not observed. 
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Supplementary figure 5: Comparison of GADO performance with the level of 

evidence for each cardiomyopathy-related gene. 

All genes annotated to the HPO term ‘cardiomyopathy’ (HP:0001638) supplemented with 

genes recently reviewed in literature 16,17, were given a score based on the level of 

supporting evidence in literature suggesting each of these genes is involved in 

cardiomyopathy. The genes were scored independently by two clinicians based on the 

number of publications available, segregation of a given variant and functional evidence. In 

case a gene was scored differently, the papers were full-read and discussed until consensus 

was reached. Genes with much evidence tend to have higher gene prioritization Z-scores 

and higher gene predictability scores. We observed that GADO poorly ranks genes that 

cause disease through secondary effects. For example, the TTR gene has a low prioritization 

Z-score but a high predictability score, even though this gene is known to play a role in 

cardiomyopathy. 
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Supplementary figure 6: Including 10% random genes when predicting HPO-terms 

has a marginal effect on prediction accuracy 

To ascertain the effect of false positive disease gene-associations we randomly added 10% 

genes to each HPO term and recalculated predictions and AUC’s. The AUC’s when including 

the random spike-in was strongly correlated to the original AUC (r: 0.97). The median AUC 

dropped slightly from 0.73 to 0.71.  
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Supplementary figure 7: Rank of the known causative gene among the candidate 

disease causing variants.  

Exome sequencing data of 83 patients with a known genetic diagnosis were used. Their 

phenotypic features, as listed in their medical records prior to the genetic diagnosis, were 

used. On average, per patient, GADO yielded 56 possible disease-causing genes with 

variants that are rare and predicted to be deleterious.  
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Supplementary figure 8: Correcting for biases in co-expression networks. 

(a) One common problem with co-expression analyses is its scale-free properties 10: when 

using a certain co-expression correlation threshold to declare an interaction, the topology of 

the network becomes such that for the majority of genes (so-called spoke genes) very few 

significant co-expression relationships are found, whereas for a very limited number of 

genes (so-called hub genes) many interactions are found 18. We observed this in our dataset 

as well: first of all, when using a Pearson correlation threshold of at least 0.3, we observed 

that the distribution of number of interactions per gene showed a power-law distribution, 

confirming the scale-free topology of this network (r2=0.76). For instance, we identified 

16,797 genes that each had less than 10 co-expression interactions but 17,320 genes that 

each had at least 1,000 interactions. This has ramifications for how HPO functions can be 

predicted: if we, for instance, would study a gene that currently lacks any HPO annotation 

and we would like to predict HPO terms, we could, for instance, assign HPO terms from 

genes that are strongly co-expressed with that gene. However, in 1 of 20 cases that gene is 

co-expressed with a hub gene that has 1,000 interactions in 1/20 cases. Phrased differently, 

the known HPO terms of this hub gene will be assigned to 1,000 other genes as well. 

(b) To overcome this, we decomposed the co-expression matrix into individual principal 

components, and for the prediction of HPO terms we weigh each of these components. As a 

consequence, GADO is able to make HPO inferences for the majority of protein-coding 

genes. For 10,318 genes, at least one HPO term is predicted with a prioritization z-score ≥ 

5. Additionally, we observed that hub genes had not been assigned more HPO terms than 

spoke genes, indicating that our HPO predictions are not driven by the topology of co-

expression networks (r2 = 0. 013). 

(c) This also alleviates strong biases that exist in literature towards well studied genes such 

as TP53, TNF, EGFR, VEGFA and APOE (each studied in over 40,000 papers 19), whereas 

nearly half of the protein-coding genes have rarely been studied, and thus have not yet 

received HPO annotation. This is also reflected in the high-quality interactions reported by 

STRING. Here we also observed a scale free network topology among the high-quality 

(score ≥ 0.7, this is the definition used by Exomiser) interactions which will bias HPO term 

assignment based on STRING interactions to well-studied genes (power law fit r2 = 0.87). 

Well studied genes contain more interactions and are therefore more likely to be assigned to 

an HPO term. 

(d) While most interactions in the STRING database are based, at least partially, on existing 

knowledge, STRING does contain some high-quality interaction solely based on co-
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expression. In principle this allows Exomiser to assign HPO terms to genes without any prior 

annotation. However only 1,244 human genes have at least one such high-quality 

interaction and, since co-expression networks have a scale free topology, we also observed 

that the number of interactions per gene follows a power-law distribution (r2 = 0.64).  
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Supplementary figure 9: Histogram of the gene types included in our analyses.  

Gene type annotations were obtained from Ensembl build 38, version 83 4. Most prevalent 

gene type bars are colored in accordance with supplementary figures 8 and 9. 
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Supplementary figure 10: PCA plot of 36,761 samples. 

Each dot represents a sample. Annotated samples are plotted on top and annotations are 

retrieved from supplementary data 1. Cutoff was arbitrarily set at 0.0049 to retain 32,142 

samples, retaining the largest cluster of samples while removing the outlier clusters and all 

samples with a similar signal for PC1. 
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Supplementary figure 11: Investigation of principal components capturing 

technical biases. 

We determined the correlation between read length, total number of reads in the dataset and 

the percentage mapped. This was determined for the 307 PCs with a Cronbach’s Alpha > 0.7. 

Similarly, we conducted a Wilcoxon test between the PC scores for the single end and paired 

end samples and converted these to z-scores. All z-scores lower than -38.53 (p-value < 1.98 

x 10-323) are reported as -38.53. For each of the four statistics (read length, total reads in 

dataset, percentage mapped reads and single/paired end), we assessed the bias in all 

significant PCs (left) and selected the one with the largest bias for visualization (right). 

We found that all of these factors were significantly correlated to our PC scores for PCs (p-

value < 0.01), indicating that these technical factors would affect our co-expression results if 

not removed. 
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Supplementary figure 12: Variance explained by first 1,588 PCs. 

The first 100 PCs together explain 46% of the variance. The first 1,588 PCs together explain 

66% of the variance together. 
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Supplementary figure 13: Visualization of PC1 to PC 10 of PCA over gene 

correlation matrix. 

To identify any potential biases remaining in the data, the first 10 PCs were investigated for 

outlier patterns. A clear group of outliers was identified in PC7 and PC8, which was further 

investigated. 
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Supplementary figure 14: Outlier genes in PC 8 and PC 9 of PCA over gene 

correlation matrix. 

Arbitrary cutoffs to select outlier genes for functional enrichment analysis were set at PC8 > 

0.010 and PC9 < -0.005. Using gene function enrichment analysis, we found these genes to 

be enriched for Olfactory Receptor pathway genes (p-value = 2.980E-276), as determined 

using the ToppFun functional enrichment analysis feature 14. 
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Supplementary figure 15: PC sample scores to distinguish different tissues. 

To determine if the first 10 PCs can distinguish samples originating from different tissues, we 

plotted the PC scores of each pair. Tissues for which at least 500 samples are annotated and 

colored. The outlier samples in PC 8 and PC 9 were investigated in more detail (supplementary 

figure 10). 
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Supplementary figure 16: Outlier samples in PC sample scores of PC 8 and PC 9. 

Inspection of the first 10 PCs revealed outliers on PC 8 and PC 9. We set a cutoff at PC 8 > 

100 and PC 9 < -50 to select the outlier samples and retrieved the tissue/cell-type 

annotation for these samples. Among the outlier samples, 14 were testis samples 

originating from five different studies and 60 were brain samples of which most are 

annotated with cancer. Additionally, a number of other outlier samples were observed, and 

some of these were also cancer samples. A number of studies support that olfactory genes 

are expressed in the testes 20,21. The fact that the glioblastoma samples were also outliers in 

this PC could be the result of accidental activation of these genes by the glioblastoma. 

Based on this observation, we concluded the outlier signal is of biological nature and 

decided to keep this in the data rather than removing it. 
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Supplementary tables 
Supplementary table 1: A list of 83 diagnosed patients with Mendelian disorders 

and corresponding predictions with GADO. 

The phenotype of the patients was described with HPO terms best matching their 

phenotypes. These patients were originally diagnosed through exome sequencing with 

analysis of a gene panel or the entire exome. 

The rank of the causative gene in the GADO predictions was determined using the 

corresponding HPO terms and the genes GAVIN flagged as harboring a potentially causative 

variant for each patient respectively.  

Sample Gene HPO terms GADO Rank Total disease 

genes with 

gavin 

variants 

DiagnosedPatient1 TTN HP:0001644 1 59 

DiagnosedPatient2 TTN HP:0001644 1 49 

DiagnosedPatient3 MYBPC3 HP:0001644 1 40 

DiagnosedPatient4 MYH7 HP:0001644 1 64 

DiagnosedPatient5 MYH7 HP:0005157 1 59 

DiagnosedPatient6 MYL2 HP:0001644 1 47 

DiagnosedPatient7 CYB561 HP:0001278 1 43 

DiagnosedPatient8 RBM10 HP:0001883 

HP:0000609 

HP:0012736 

1 51 

DiagnosedPatient9 TTN HP:0001644 1 50 

DiagnosedPatient10 MYL2 HP:0001644 

HP:0004764 

1 46 

DiagnosedPatient11 MYH7 HP:0001644 

HP:0000822 

1 47 

DiagnosedPatient12 MYL2 HP:0001644 

HP:0001942 

1 56 

DiagnosedPatient13 MYH7 HP:0001644 

HP:0012817 

1 62 
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DiagnosedPatient14 MYH7 HP:0001644 

HP:0012817 

1 59 

DiagnosedPatient15 MYL2 HP:0001644 

HP:0004755 

1 48 

DiagnosedPatient16 USP9X HP:0000707 

HP:0000453 

HP:0002023 

HP:0100259 

1 57 

DiagnosedPatient17 SPG7 HP:0001258 1 47 

DiagnosedPatient18 BBS5 HP:0000548 

HP:0001513 

1 56 

DiagnosedPatient19 SEPN1 HP:0003011 1 50 

DiagnosedPatient20 DDX3X HP:0000707 1 43 

DiagnosedPatient21 TTN HP:0001644 2 52 

DiagnosedPatient22 TNNT2 HP:0001644 2 63 

DiagnosedPatient23 MYL2 HP:0005157 2 58 

DiagnosedPatient24 PDE6B HP:0000510 2 51 

DiagnosedPatient25 DYNC1H1 HP:0000478 

HP:0011343 

HP:0005484 

HP:0000565 

2 92 

DiagnosedPatient26 EHMT1 HP:0000271 

HP:0011750 

HP:0001249 

2 61 

DiagnosedPatient27 USH2A HP:0000510 2 60 

DiagnosedPatient28 AFG3L2 HP:0001251 

HP:0002066 

HP:0002470 

HP:0007240 

HP:0002131 

3 40 

DiagnosedPatient29 SPEG HP:0001644 

HP:0003198 

3 43 

DiagnosedPatient30 SCN5A HP:0011701 

HP:0001644 

HP:0004755 

3 61 
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DiagnosedPatient31 TTN HP:0001644 3 47 

DiagnosedPatient32 SPG7 HP:0002313 3 54 

DiagnosedPatient33 RPGR HP:0000510 3 45 

DiagnosedPatient34 SLC12A7 

TECTB GJB3 

HP:0000407 3 45 

DiagnosedPatient35 PLD3 HP:0001251 

HP:0002066 

HP:0002470 

HP:0007240 

HP:0002131 

4 42 

DiagnosedPatient36 RPE65 HP:0007875 4 62 

DiagnosedPatient37 NDUFS7 HP:0000707 4 55 

DiagnosedPatient38 CASK HP:0003011 

HP:0000271 

4 49 

DiagnosedPatient39 PSTPIP1 HP:0001817 

HP:0001911 

HP:0011034 

4 70 

DiagnosedPatient40 HSPG2 HP:0002486 

HP:0011338 

HP:0001638 

4 58 

DiagnosedPatient41 RPE65 HP:0000510 4 58 

DiagnosedPatient42 ALPK3 HP:0001644 5 49 

DiagnosedPatient43 ARID1B HP:0000271 

HP:0000707 

HP:0002086 

5 57 

DiagnosedPatient44 GJB2 HP:0008527 6 61 

DiagnosedPatient45 KAT6B HP:0000707 7 55 

DiagnosedPatient46 NEK1 HP:0000478 7 57 

DiagnosedPatient47 NPC1 HP:0000707 7 53 

DiagnosedPatient48 PDHA1 HP:0001939 

HP:0001626 

HP:0002086 

8 67 

DiagnosedPatient49 MAGEL2 HP:0100704 

HP:0001763 

8 43 



33 
 

HP:0000494 

HP:0000047 

DiagnosedPatient50 MTM1 HP:0001319 9 47 

DiagnosedPatient51 KCNT1 HP:0002133 

HP:0000707 

HP:0001638 

9 49 

DiagnosedPatient52 PIK3R2 HP:0030680 

HP:0000256 

HP:0002126 

10 47 

DiagnosedPatient53 RARS HP:0000929 10 44 

DiagnosedPatient54 PIEZO2 HP:0000924 10 50 

DiagnosedPatient55 TTN SLC37A4 HP:0001644 

HP:0001882 

HP:0002037 

HP:0031123 

HP:0001987 

10.5 58 

DiagnosedPatient56 MEGF10 HP:0001319 12 58 

DiagnosedPatient57 KANSL1 HP:0000750 

HP:0000717 

12 54 

DiagnosedPatient58 RAPSN HP:0000271 

HP:0003808 

HP:0001324 

13 57 

DiagnosedPatient59 GJB2 HP:0008527 14 76 

DiagnosedPatient60 SOD2 HP:0001644 15 39 

DiagnosedPatient61 TBCK HP:0001319 

HP:0012727 

HP:0000271 

15 60 

DiagnosedPatient62 GLB1 HP:0001644 18 88 

DiagnosedPatient63 STXBP1 HP:0000707 19 60 

DiagnosedPatient64 PRKCG HP:0001251 

HP:0002066 

HP:0002470 

HP:0007240 

HP:0002131 

21 52 
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DiagnosedPatient65 FAT1 HP:0001251 

HP:0002066 

HP:0002470 

HP:0007240 

HP:0002131 

21 60 

DiagnosedPatient66 PTPN11 HP:0000474 

HP:0000368 

HP:0006610 

HP:0001939 

22 63 

DiagnosedPatient67 SPG7 HP:0002062 

HP:0000729 

22 54 

DiagnosedPatient68 GFER HP:0003128 

HP:0001943 

HP:0001319 

HP:0002093 

23 65 

DiagnosedPatient69 KCNQ2 HP:0002197 

HP:0002133 

HP:0000707 

HP:0001939 

23 52 

DiagnosedPatient70 USP9X HP:0001626 23 64 

DiagnosedPatient71 CACNA1A HP:0001251 

HP:0002066 

HP:0002470 

HP:0007240 

HP:0002131 

24 59 

DiagnosedPatient72 CHD7 HP:0010880 

HP:0012020 

HP:0001789 

HP:0000271 

HP:0001939 

HP:0003011 

25 65 

DiagnosedPatient73 TMEM240 HP:0001251 

HP:0002066 

HP:0002470 

26 54 
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HP:0007240 

HP:0002131 

DiagnosedPatient74 GRIN2B HP:0001249 

HP:0003019 

HP:0003011 

HP:0000707 

26 55 

DiagnosedPatient75 DNMT3A HP:0000478 27 46 

DiagnosedPatient76 PDE6B HP:0000478 28 48 

DiagnosedPatient77 PAX6 HP:0000707 

HP:0001249 

30 62 

DiagnosedPatient78 FAT2 HP:0001251 

HP:0002066 

HP:0002470 

HP:0007240 

HP:0002131 

32 45 

DiagnosedPatient79 MAP3K7 HP:0009099 

HP:0001193 

HP:0005656 

HP:0004209 

32 60 

DiagnosedPatient80 KBTBD13 HP:0000271 

HP:0009602 

HP:0001319 

36 58 

DiagnosedPatient81 RYR1 HP:0003793 37 59 

DiagnosedPatient82 GJB2 HP:0008619 40 62 

DiagnosedPatient83 CRLF1 HP:0002015 

HP:0006610 

HP:0003186 

HP:0000707 

HP:0025031 

49 83 
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Supplementary table 2: Comparison between GADO and Exomiser predictions 

using a list of 83 diagnosed patients with Mendelian disorders. 

Similar to the analysis with GADO, Exomiser 22 was used to predict causative genes in the 

83 solved samples. The Exomiser gene files, separated by different inheritance modes, were 

concatenated and the rank of the causative gene was determined. If a gene was present in 

multiple output files, the highest (best) rank was used. When genes were scored equally, 

the average rank of all genes with equal scores was reported. When multiple causative 

genes were annotated for a patient, the median rank of each was determined and is 

reported in the table. We also list the rank of GADO with and without incorporating existing 

knowledge when ranking the genes with variants selected by Exomiser. 

Case Causative 

gene 

Number 

genes 

selected by 

Exomiser 

Exomiser 

rank 

GADO rank 

without 

existing 

knowledge 

GADO rank 

including 

existing 

knowledge 

DiagnosedPatient1 TTN 901 1 2 2 

DiagnosedPatient10 MYL2 714 1 1 1 

DiagnosedPatient12 MYL2 639 1 1 1 

DiagnosedPatient13 MYH7 766 1 1 1 

DiagnosedPatient14 MYH7 793 1 1 1 

DiagnosedPatient17 SPG7 610 1 12 6 

DiagnosedPatient2 TTN 849 1 2 2 

DiagnosedPatient21 TTN 713 1 1 1 

DiagnosedPatient23 MYL2 681 1 1 1 

DiagnosedPatient27 USH2A 565 1 2 2 

DiagnosedPatient28 AFG3L2 650 1 19 8 

DiagnosedPatient30 SCN5A 615 1 4 4 

DiagnosedPatient4 MYH7 717 1 1 1 

DiagnosedPatient41 RPE65 548 1 13 7 

DiagnosedPatient44 GJB2 578 1 62 12 

DiagnosedPatient5 MYH7 872 1 7 7 

DiagnosedPatient56 MEGF10 595 1 52 8 

DiagnosedPatient60 SOD2 646 1 113 114 

DiagnosedPatient62 GLB1 961 1 114 18 

DiagnosedPatient64 PRKCG 552 1 213 18 
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DiagnosedPatient71 CACNA1A 633 1 188 83 

DiagnosedPatient73 TMEM240 655 1 188 14 

DiagnosedPatient32 SPG7 540 2 4 4 

DiagnosedPatient42 ALPK3 989 2 18 18 

DiagnosedPatient59 GJB2 663 2 83 21 

DiagnosedPatient22 TNNT2 676 3 4 4 

DiagnosedPatient29 SPEG 638 3 11 11 

DiagnosedPatient36 RPE65 549 3 12 9 

DiagnosedPatient34 GJB3 

TECTB 

SLC12A7 

536 4 18 18 

DiagnosedPatient67 SPG7 588 4 231 114 

DiagnosedPatient11 MYH7 842 5 3 3 

DiagnosedPatient43 ARID1B 592 5 23 9 

DiagnosedPatient55 TTN 

SLC37A4 

670 5 222.5 195 

DiagnosedPatient18 BBS5 531 7 13 11 

DiagnosedPatient77 PAX6 554 13 197 11 

DiagnosedPatient45 KAT6B 542 17 26 43 

DiagnosedPatient25 DYNC1H1 688 21 3 5 

DiagnosedPatient69 KCNQ2 715 22 212 13 

DiagnosedPatient49 MAGEL2 575 24 43 48 

DiagnosedPatient80 KBTBD13 526 25 298 306 

DiagnosedPatient72 CHD7 965 27 262 7 

DiagnosedPatient76 PDE6B 499 31 175 29 

DiagnosedPatient79 MAP3K7 779 32 233 33 

DiagnosedPatient7 CYB561 967 35 38 43 

DiagnosedPatient19 SELENON 575 40 221 40 

DiagnosedPatient39 PSTPIP1 586 40 19 20 

DiagnosedPatient74 GRIN2B 542 41 225 38 

DiagnosedPatient66 PTPN11 794 47 226 1 

DiagnosedPatient51 KCNT1 911 48 59 19 

DiagnosedPatient40 HSPG2 544 55 14 9 

DiagnosedPatient75 DNMT3A 521 59 217 223 
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DiagnosedPatient83 CRLF1 914 76 437 130 

DiagnosedPatient26 EHMT1 526 82 6 7 

DiagnosedPatient38 CASK 540 85 23 20 

DiagnosedPatient20 DDX3X 527 89 5 5 

DiagnosedPatient70 USP9X 572 89 140 23 

DiagnosedPatient8 RBM10 540 89 1 1 

DiagnosedPatient33 RPGR 537 91 7 7 

DiagnosedPatient50 MTM1 884 111 91 91 

DiagnosedPatient48 PDHA1 1004 141 26 43 

DiagnosedPatient68 GFER 755 141 97 103 

DiagnosedPatient35 PLD3 585 152 15 22 

DiagnosedPatient6 MYL2 664 158 1 1 

DiagnosedPatient47 NPC1 545 171 36 34 

DiagnosedPatient53 RARS 548 179 88 24 

DiagnosedPatient65 FAT1 658 192 186 192 

DiagnosedPatient24 PDE6B 577 202 20 7 

DiagnosedPatient37 NDUFS7 547 218 8 8 

DiagnosedPatient57 KANSL1 489 231 86 32 

DiagnosedPatient61 TBCK 922 252 207 54 

DiagnosedPatient54 PIEZO2 519 299 79 26 

DiagnosedPatient78 FAT2 564 314 355 357 

DiagnosedPatient15 MYL2 760 Not 

Reported 

1 1 

DiagnosedPatient16 USP9X 570 Not 

Reported 

2 1 

DiagnosedPatient3 MYBPC3 669 Not 

Reported 

1 1 

DiagnosedPatient31 TTN 640 Not 

Reported 

2 2 

DiagnosedPatient46 NEK1 573 Not 

Reported 

20 56 

DiagnosedPatient52 PIK3R4 561 Not 

Reported 

51 15 
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DiagnosedPatient58 RAPSN 782 Not 

Reported 

134 1 

DiagnosedPatient63 STXBP1 554 Not 

Reported 

98 33 

DiagnosedPatient81 RYR1 586 Not 

Reported 

216 216 

DiagnosedPatient82 GJB2 617 Not 

Reported 

297 297 

DiagnosedPatient9 TTN 644 Not 

Reported 

1 1 
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Supplementary table 3: A list of 61 undiagnosed patients with suspected 

Mendelian disorders. 

Our patients were described with HPO terms best matching their phenotypes. We aimed to 

use terms that are as specific as possible, thus aiming to avoid HPO terms that describe a 

broader, less-specific phenotype. 

Annonemized HPO terms Number of genes 

prioritization Z-score ≥ 5 

Case 1 HP:0001644 2 

Case 2 HP:0001644 5 

Case 3 HP:0001638 HP:0001701 3 

Case 4 HP:0001644 5 

Case 5 HP:0001644 4 

Case 6 HP:0001644 HP:0001636 6 

Case 7 HP:0001644 HP:0011675 2 

Case 8 HP:0001644 HP:0001250 2 

Case 9 HP:0001644 HP:0004755 4 

Case 10 HP:0001644 HP:0001712 

HP:0001250 

1 

Case 11 HP:0001644 3 

Case 12 HP:0001644 2 

Case 13 HP:0001644 1 

Family 1 HP:0001644 1 

Family 2 HP:0001644 1 

Family 3 HP:0001644 3 

Family 4 HP:0001644 2 

Family 5 HP:0001644 0 

Family 6 HP:0001644 1 

Family 7 HP:0001638 1 

Family 8 HP:0001644 1 

Family 9 HP:0001644 HP:0005110 

HP:0031546 HP:0006704 

2 

Family 10 HP:0001644 0 

Family 11 HP:0001644 2 
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Family 12 HP:0001638 1 

Family 13 HP:0001644 4 

Family 14 HP:0001638 3 

Case 14 HP:0001644 2 

Case 15 HP:0001638 4 

Case 16 HP:0001263 HP:0001249 

HP:0000717 HP:0002300 

HP:0002360 HP:0000664 

12 

Case 17 HP:0001249 HP:0004322 

HP:0000252 

7 

Case 18 HP:0001249 HP:0000729 

HP:0002300 

8 

Case 19 HP:0008066 HP:0008064 9 

Case 20 HP:0040194 HP:0000707 2 

Case 21 HP:0000098 HP:0000707 1 

Case 22 HP:0003458 HP:0003715 

HP:0003789 

2 

Case 23 HP:0001522 0 

Case 24 HP:0001305 HP:0001263 1 

Case 25 HP:0012302 2 

Case 26 HP:0002092 HP:0030875 2 

Case 27 HP:0002197 1 

Case 28 HP:0000364 HP:0000707 2 

Case 29 HP:0000252 HP:0002092 1 

Case 30 HP:0002791 0 

Case 31 HP:0002197 1 

Case 32 HP:0001641 0 

Case 33 HP:0030968 HP:0001928 0 

Case 34 HP:0100495 HP:0011675 

HP:0001699 

3 

Case 35 HP:0007402 HP:0100022 

HP:0011400 HP:0011344 

HP:0002375 

17 
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Case 36 HP:0001684 HP:0002905 

HP:0011682 HP:0004383 

6 

Case 37 HP:0004322 HP:0001249 10 

Case 38 HP:0001263 HP:0000506 0 

Case 39 HP:0002123 1 

Case 40 HP:0004481 HP:0011342 2 

Case 41 HP:0001319 0 

Case 42 HP:0002791 HP:0001520 

HP:0001270 

0 

Case 43 HP:0001789 0 

Case 44 HP:0011675 HP:0001714 6 

Case 45 HP:0011107 0 

Case 46 HP:0003493 HP:0002583 6 

Case 47 HP:0012649 HP:0002583 

HP:0001890 

8 
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