Transcriptome and organellar sequencing highlights the complex origin and

diversification of allotetraploid Brassica napus

An et al.

Supplementary Figure 1. Marginal Likelihood value for different K values in fastStructure. Based on Darmor-*bzh* reference genome, K=7 reaches the maximum marginal likelihood value. Source data are provided as a Source Data file.

Supplementary Figure 2. Genetic structure and phylogenetic tree of *B. napus.* The phylogenetic tree constructed by maximum-likelihood method. Based on Darmor-*bzh* reference genome. Colors indicates different genetic clusters. Yellow: WEAm (winter rapeseed in Europe and America); Red: S (spring rapeseed); Orange: WEsA (winter rapeseed in Europe and South Asia); Green: WeA (winter rapeseed in East Asia); Purple: SK (Siberian kale); Blue: R(Rutabaga); Dark pink: IntroS (Introgressed spring rapeseed); Black: genetically diverse accessions; Dark grey: outgroups. Source data are provided as a Source Data file.

Supplementary Figure 3. Marginal Likelihood value for different *K* **values in fastStructure.** Based on pan-transcriptome, *K*=5 reaches the maximum marginal likelihood value. Source data are provided as a Source Data file.

Supplementary Figure 4. Genetic structure of *B. napus* **based on pan-transcriptomes.** Colors indicates different genetic clusters. Yellow: WEAm (winter rapeseed in Europe and America); Red: S (spring rapeseed); Orange: WEsA (winter rapeseed in Europe and South Asia); Green: WeA (winter rapeseed in East Asia); Purple: SK (Siberian kale); Blue: R(Rutabaga); Dark pink: IntroS (Introgressed spring rapeseed). Source data are provided as a Source Data file.

Supplementary Figure 5. Phylogenetic tree of *B. napus* **based on pan-transcriptomes.** The phylogenetic tree constructed by maximum-likelihood method. Colors indicates different genetic clusters. Yellow: WEAm (winter rapeseed in Europe and America); Red: S (spring rapeseed); Orange: WESA (winter rapeseed in Europe and South Asia); Green: WeA (winter rapeseed in East Asia); Purple: SK (Siberian kale); Blue: R (Rutabaga); Dark pink: IntroS (Introgressed spring rapeseed); Black: genetically diverse accessions; Dark grey: outgroups.

Supplementary Figure 6. Maximum-likelihood phylogenetic tree constructed among *B. napus* and *B. rapa* based on A sub-genome. The red spot indicates a newly resynthesized *B. napus* accession. Colors indicates different genetic clusters. Yellow: WEAm (winter rapeseed in Europe and America); Red: S (spring rapeseed); Orange: WEsA (winter rapeseed in Europe and South Asia); Green: WeA (winter rapeseed in East Asia); Purple: SK (Siberian kale); Blue: R (Rutabaga); Dark pink: IntroS (Introgressed spring rapeseed); Pink: *B. rapa*; Black: genetically diverse accessions; Dark grey: outgroups.

Supplementary Figure 7. Maximum-likelihood phylogenetic tree constructed among *B. napus*, *B. oleracea* and wild C species based on C sub-genome. The Red spot indicates a newly resynthesized *B. napus* accession. Colors indicates different genetic clusters. Yellow: WEAm (winter rapeseed in Europe and America); Red: S (spring rapeseed); Orange: WEsA (winter rapeseed in Europe and South Asia); Green: WeA (winter rapeseed in East Asia); Purple: SK (Siberian kale); Blue: R (Rutabaga); Dark pink: IntroS (Introgressed spring rapeseed); Light blue: *B. oleracea* and wild C species; Black: genetically diverse accessions; Dark grey: outgroups.

Supplementary Figure 8. Comparison of phylogenetic trees constructed based on Darmorbzh genome and rapeseed pan-transcriptome. a comparison of *B. napus* phylogeny. b comparison of A sub-genome phylogeny. c comparison of C sub-genome phylogeny. Colors indicates different genetic clusters. Yellow: WEAm (winter rapeseed in Europe and America); Red: S (spring rapeseed); Orange: WESA (winter rapeseed in Europe and South Asia); Green: WeA (winter rapeseed in East Asia); Purple: SK (Siberian kale); Blue: R (Rutabaga); Pink: *B. rapa*; Light blue: *B. oleracea* and wild C species; Dark grey: outgroups. Note: clades were simplified from full phylogenies for the purpose of comparison.

Supplementary Figure 9. Maximum-likelihood phylogenetic tree constructed among *B. napus* and its progenitors based on each chromosome. Colors indicates different genetic clusters. Yellow: WEAm (winter rapeseed in Europe and America); Red: S (spring rapeseed); Orange: WEsA (winter rapeseed in Europe and South Asia); Green: WeA (winter rapeseed in East Asia); Purple: SK (Siberian kale); Blue: R (Rutabaga); Black: genetically diverse accessions; Dark grey: outgroups.

Supplementary Figure 10. Maximum-likelihood phylogenetic tree constructed among *B. napus* and all its progenitor species (*B. rapa*, *B. oleracea* and wild C species) using 62 chloroplast single copy regions homolog genes. ath, *Arabidopsis thaliana*. Colors indicates different genetic clusters. Yellow: WEAm (winter rapeseed in Europe and America); Red: S (spring rapeseed); Orange: WESA (winter rapeseed in Europe and South Asia); Green: WeA (winter rapeseed in East Asia); Purple: SK (Siberian kale); Blue: R (Rutabaga); Black: genetically diverse accessions; Dark grey, outgroups.

Supplementary Figure 11. Maximum-likelihood phylogenetic tree constructed among *B. napus* and all its progenitor species using 42 mitochondrial homolog genes. ath, *Arabidopsis thaliana*. Colors indicates different genetic clusters. Yellow: WEAm (winter rapeseed in Europe and America); Red: S (spring rapeseed); Orange: WEsA (winter rapeseed in Europe and South Asia); Green: WeA (winter rapeseed in East Asia); Ppurple: SK (Siberian kale); Blue: R (Rutabaga); Black: genetically diverse accessions; Dark grey, outgroups.

Supplementary Figure 12. Multidimensional scaling (MDS) plot for pairwise F_{ST} matrix among 6 genetic clusters. WEAm: Winter rapeseed in Europe and America; WESA: Winter rapeseed in Europe and South Asia; S: Spring rapeseed; SK: Siberian kale; R: Rutabaga; WeA: Winter rapeseed in East Asia.

Supplementary Figure 13. The summary of Differential Expressed Genes (DEGs) based on rapeseed pan-transcriptome reference. WEsA: Winter rapeseed in Europe and South Asia; S: Spring rapeseed; SK: Siberian kale; R: Rutabaga; WeA: Winter rapeseed in East Asia.

Supplementary Figure 14. Summary of Differentially expressed genes (DEGs) numbers on each chromosome. x axis shows the chromosome name in *B. napus*; y axis shows the DEGs number. S: Spring rapeseed; WEsA: Winter rapeseed in Europe and South Asia; WEAm: winter rapeseed in Europe and America; WeA: Winter rapeseed in East Asia; SK: Siberian kale; R: Rutabaga. Source data are provided as a Source Data file.

Supplementary Figure 15. Genome wide distributions of selective sweep among 5 genetic clusters based on XP-CLR. Red line: top 5% XP-CLR score; values marked on the right side. R: Rutabaga; SK: Siberian kale; WeA: Winter rapeseed in East Asia; WEsA: Winter rapeseed in Europe and South Asia; S: Spring rapeseed. Colored rectangle showed the selective sweeps with genes and candidate genes functioned in R, SK and S diversification.

Supplementary Figure 16. The summary of genes under selective sweep among the five genetic clusters. WEsA: Winter rapeseed in Europe and South Asia; S: Spring rapeseed; SK: Siberian kale; R: Rutabaga; WeA: Winter rapeseed in East Asia.

Supplementary Figure 17. The distribution of selective sweep regions in A and C subgenome. a The number distribution of selective sweep regions. **, p-value < 0.01 (X^2 test). b The length distribution of selective sweep regions. The unit for Y-axis is kb. WEsA: Winter rapeseed in Europe and South Asia; S: Spring rapeseed; SK: Siberian kale; R: Rutabaga; WeA: Winter rapeseed in East Asia. Source data are provided as a Source Data file.

Supplementary Figure 18. Summary of selective sweep regions in each chromosome. Y-axis is the number of selective sweep regions. S: Spring rapeseed; WEsA: Winter rapeseed in Europe and South Asia; WeA: Winter rapeseed in East Asia; SK: Siberian kale; R: Rutabaga. Source data are provided as a Source Data file.

Supplementary Figure 19. Summary of SNPs number in each genetic clusters of the four SNPs dataset used in this study. The order of the x-axis shows the increasing divergence of the genetic clusters compare to WEAm. WEAm: Winter rapeseed in Europe and America; S: Spring rapeseed; WEsA: Winter rapeseed in Europe and South Asia; WeA: Winter rapeseed in East Asia; SK: Siberian kale; R: Rutabaga.

Chr	SNPs	Density(per kb)	Chr	SNPs	Density(per kb)
chrA01	21,954	0.944	chrC01	15,028	0.387
chrA02	17,419	0.703	chrC02	13,240	0.286
chrA03	32,158	1.080	chrC03	28,317	0.467
chrA04	15,073	0.787	chrC04	16,576	0.339
chrA05	21,987	0.953	chrC05	17,511	0.405
chrA06	25,593	1.049	chrC06	13,559	0.364
chrA07	20,636	0.860	chrC07	15,587	0.348
chrA08	16,113	0.850	chrC08	15,863	0.412
chrA09	29,627	0.875	chrC09	17,701	0.365
chrA10	18,604	1.069			
Total	219,164		Total	153,382	

Supplementary Table 1. Single nucleotide polymorphism (SNP) distribution in all *B. napus* accessions.

	WEAm	S	WEsA	SK	WeA	R
WEAm		0.148	0.077	0.165	0.157	0.183
S			0.158	0.178	0.191	0.198
WEsA				0.131	0.103	0.150
SK					0.163	0.168
WeA						0.140
R						

Supplementary Table 2. Mean pairwise F_{ST} among each genetic cluster

WEsA: Winter rapeseed in Europe and South Asia; S: Spring rapeseed; SK: Siberian kale; R: Rutabaga; WeA: Winter rapeseed in East Asia; WEAm: winter rapeseed in Europe and America.

Genetic cluster	Total DEGs	Total up- regulated	Total down- regulated	Total down- regulated Unique DEGs		Unique down- regulated
S	2,337	592	1,745	688	188	500
WEsA	956	294	662	151	48	103
WeA	2,773	723	2,050	914	256	658
SK	4,269	1,327	2,942	1,946	732	1,214
R	3,093	754	2,339	1,165	309	856

Supplementary Table 3. Summary of differentially expressed genes between WEAm and other genetic clusters

WEsA: Winter rapeseed in Europe and South Asia; S: Spring rapeseed; SK: Siberian kale; R: Rutabaga; WeA: Winter rapeseed in East Asia; WEAm: winter rapeseed in Europe and America.

Cluster	A sub-genome	C sub-genome
WEAm	4.944e-05	2.822e-05
WEsA	6.256e-05	3.424e-05
S	5.241e-05	2.635e-05
SK	4.521e-05	3.332e-05
WeA	8.677e-05	2.760e-05
R	7.234e-05	2.271e-05

Supplementary Table 4. Mean value of nucleotide diversity in different subgroups based on A and C sub-genome

WEsA: Winter rapeseed in Europe and South Asia, S: Spring rapeseed; SK: Siberian kale; R: Rutabaga; WeA: Winter rapeseed in East Asia; WEAm: winter rapeseed in Europe and America.

Chr	Start	End	Gene	Br/Bo Homolog	Ath Homolog	Function	Description
A03	4400001	4510000	BnaA03g09810D	Bra006773	AT5G58320	Kinase interacting (KIP1-like) family protein	expressed in the epidermis of the root meristem and the early expansion zone
A06	10330001	10370000	BnaA06g18130D	Bra018219	AT3G46200	nudix hydrolase homolog 9	modulation of protein N- glycosylation in the roots
A06	10450001	10530000	BnaA06g18280D	Bra038270	AT3G45890	root UVB sensitive-like protein (Protein of unknown function%2C DUF647)	Cheng et al. 2016 ¹
A08	3300001	3360000	BnaA08g04000D		AT1G47240	NRAMP metal ion transporter 2	root morphogenesis; Mutation impaired root growth
A10	14960001	14990000	BnaA10g22000D	Bra009047	AT5G10250	Phototropic-responsive NPH3 family protein	mutants have defects in primary root growth
C01	13260001	13340000	BnaC01g19230D	Bo1g047910	AT4G27060	ARM repeat superfamily protein	the orientation of cortical microtubules and the direction of organ growth
C02	3260001	3290000	BnaC02g06130D	Bo2g012660	AT5G15600	SPIRAL1-like4	mutant result of defective anisotropic cell expansion
C02	8100001	8130000	BnaC02g12760D	Bo2g037670	AT5G55910	D6 protein kinase	basipetal auxin transport
C03	1070001	1100000	BnaC03g02240D	Bo3g003470	AT5G05730	anthranilate synthase alpha subunit 1	forms a link between ethylene signaling and auxin synthesis in roots
C03	14330001	14360000	BnaC03g25570D	Bo4g196030	AT2G46070	mitogen-activated protein kinase 12	negative regulator of auxin signaling
C03	14330001	14360000	BnaC03g25580D	Bo3g039070	AT2G46070	mitogen-activated protein kinase 12	negative regulator of auxin signaling
C03	14330001	14360000	BnaC03g25590D	Bo3g039070	AT2G46070	mitogen-activated protein kinase 12	negative regulator of auxin signaling

Supplementary Table 5. Selected candidate genes for rutabaga diversification.

C03	23410001	23460000	BnaC03g38180D	Bo3g065780	AT3G13870	Root hair defective 3 GTP- binding protein (RHD3)	Cheng et al. 2016 ¹
C03	44900001	44930000	BnaC03g55810D		AT3G46200	nudix hydrolase homolog 9	modulation of protein N- glycosylation in the roots
C03	57580001	57650000	BnaC03g67970D	Bo3g175620	xyloglucan Bo3g175620 AT4G30290 endotransglucosylase/hydrolase 19		cellular response to auxin stimulusregions
C05	6290001	6340000	BnaC05g10910D	Bo5g019970	AT1G14740	class I heat shock protein%2C putative (DUF1423)	MP-dependent embryonic root meristem initiation
C05	18300001	18330000	BnaC05g24110D	Bo5g048360	AT1G31930	extra-large GTP-binding protein 3	regulation of root morphological and growth responses
C07	36720001	36830000	BnaC07g33750D	Bo7g104490	AT4G16515	root meristem growth factor	root meristem growth factor
C08	32690001	32820000	BnaC08g34590D	Bo8g100610	AT2G23140	RING/U-box superfamily protein with ARM repeat domain-containing protein	root development, root meristem
C09	32620001	32650000	BnaC09g29880D	Bo9g111400	AT5G53540	P-loop containing nucleoside triphosphate hydrolases superfamily protein	promotion of root distal stem cell (DSC) differentiation
C09	35000001	35080000	BnaC09g32060D	Bo9g120690	AT5G55540	tornado 1	radial pattern of tissue differentiation in the root

".": No corresponding gene identified.

Chr	Start	End	Gene	Br/Bo Homolog	Ath Homolog	Function	Description
A03	790001	870000	BnaA03g01760D	Bra005867	AT5G05780	RP non-ATPase subunit 8A	leaf adaxial identity
A05	2560001	2590000	BnaA05g04870D	Bra004913	AT2G45450	binding protein	leaf polarity; adaxial/abaxial axis specification
A05	11260001	11320000	BnaA05g16600D	Bra033869	AT1G31880	DZC domain containing protein	Cheng <i>et al.</i> 2016^1
A05	19150001	19190000	BnaA05g26050D	Bra034692	AT3G13300 Transducin/WD40 repeat- like superfamily protein		cellular response to auxin stimulus
A05	19150001	19190000	BnaA05g26060D	Bra034693	AT3G13300	Transducin/WD40 repeat- like superfamily protein	cellular response to auxin stimulus
A07	5200001	5230000	BnaA07g04790D	Bra015131	AT3G25520	ribosomal protein L5	adaxial/abaxial pattern specification
A07	8870001	8930000	BnaA07g08860D	Bra030038	AT1G27340	Galactose oxidase/kelch repeat superfamily protein	leaf morphology; regulation of auxin mediated signaling
A07	8870001	8930000	BnaA07g08880D	Bra030037	AT1G27320	histidine kinase 3	cytokinin-mediated leaf longevity
A07	11550001	11690000	BnaA07g13040D	Bra012034	AT2G27100	C2H2 zinc-finger protein SERRATE (SE)	adaxial/abaxial pattern formation
A09	4400001	4460000	BnaA09g08940D	Bra037283	AT2G17040	NAC domain containing protein 36	leaf morphogenesis; negative regulate cell size
A09	4400001	4460000	BnaA09g08950D	Bra037283	AT2G17040	NAC domain containing protein 36	leaf morphogenesis; negative regulate cell size
C04	6750001	6780000	BnaC04g09000D	Bo4g034840	AT3G52770	binding protein	adaxial/abaxial axis specification; leaf shaping; leaf
C06	30320001	30350000	BnaC06g29450D	Bo6g020110	AT1G68310	MIP18 family protein (DUF59)	leaf adaxial–abaxial polarity formation

5	Suppl	lementary	Table 6	. Sel	ected	candidate	e genes :	for	Si	berian	kal	e d	liversificati	on.
							0							

Chr	Start	End	Gene	Br/Bo Homolog	Ath Homolog	Function	Description
A01	21450001	21510000	BnaA01g31660D	Bra034119	AT3G10490	NAC domain containing protein 52	flowering time control
A03	8860001	8900000	BnaA03g18840D	Bra000165	AT2G40080	EARLY FLOWERING-like protein (DUF1313)	early flowering
A03	24340001	24370000	BnaA03g47480D	Bra019158	AT4G25530	FLOWERING WAGENINGEN	flowering control
A03	26620001	26650000	BnaA03g51290D	Bra024023	AT4G31120	SHK1 binding protein 1	vernalization
A05	9110001	9170000	BnaA05g14670D	Bra038101	AT1G53160	squamosa promoter binding protein-like 4	flower development ; vegetative phase change
A05	11740001	11780000	BnaA05g17020D	Bra040834	AT3G22590	PLANT HOMOLOGOUS TO PARAFIBROMIN	transition from vegetative growth to flowering
A06	3080001	3110000			РНҮА		Schiessl et al. 2014 ²
A06	3470001	3510000	BnaA06g06380D	Bra019923	AT1G10570	Cysteine proteinases superfamily protein	vegetative to reproductive phase transition of meristem
A06	6510001	6570000	BnaA06g12580D		AT1G18450	actin-related protein 4	early flowering; long-day photoperiodism
A07	15060001	15130000	BnaA07g18530D	Bra003390	AT3G59790	MAP kinase 10	mutant has late flowering in long days
A07	15740001	15910000	BnaA07g19990D	Bra003578	AT1G80680	SUPPRESSOR OF AUXIN RESISTANCE 3	mutant has early-flowering phenotype
A07	17200001	17280000	BnaA07g22720D		AT1G73310	serine carboxypeptidase-like 4	Schiessl <i>et al.</i> 2017^3
A07	17840001	17950000	BnaA07g23960D	Bra003965	AT1G70170	matrix metalloproteinase	mutant has late flowering
A07	22930001	22970000	BnaA07g33460D	Bra015678	AT1G77300	histone-lysine N- methyltransferase	early flower in short days; inhibitor of flowering

Supplementary	y Table 7. Se	elected candidate	genes for s	spring ra	peseed diversification.
			0	· ·	1

A07	22930001	22970000			EFS		Schiessl et al. 2014 ²
A09	18540001	18570000	BnaA09g25530D	Bra023153	AT1G30970	zinc finger (C2H2 type) family protein	delayed flowering in winter- annual Arabidopsis
A09	18540001	18570000			SUF4		Schiessl <i>et al.</i> 2014 ²
C01	14790001	14840000	BnaC01g21240D	Bo1g052990	AT4G17060	FRIGIDA interacting protein 2	a major determinant of natural variation in Arabidopsis flowering time
C02	3100001	3210000	BnaC02g05910D	Bo2g012420	AT5G15160	BANQUO 2	regulation of flowering time
C03	9610001	9640000	BnaC03g18800D	Bo3g027460	AT2G33810	squamosa promoter binding protein-like 3	regulation of flowering and vegetative phase change
C03	9610001	9640000			SPL3		Schiessl et al. 2014 ²
C04	3750001	3770000	BnaC04g05320D	Bo4g025620	AT2G40080	EARLY FLOWERING-like protein (DUF1313)	early flowering
C09	18450001	18490000	BnaC09g21160D	Bo9g072870	AT2G03070	mediator subunit 8	regulation of flower development

".": No corresponding gene identified.

Gene	Chr	Start	End	Size	Br/Bo Homolog	Ath Homolog	Sources	Function
BnaA03g12070D							Chalhoub et al. ⁴	
BnaA03g12080D	A03	5460001	5470000	10000	Bra029048		Chalhoub et al.4	
BnaA03g12090D					Bra029049	AT5G54060	Chalhoub <i>et al.</i> ⁴	UDP-glucose:flavonoid 3-o- glucosyltransferase
BnaC02g12010D	C02	7410001	7420000	10000	Bo2g032950	•	Chalhoub <i>et al.</i> ⁴	
BnaC02g12020D	C02	/410001	7420000	10000	Bo7g014750		Blast	
BnaC04g17220D	C04	15260001	15280000	20000	Bo4g076870	AT2G26770	Chalhoub et al. ⁴	plectin-like protein
BnaC05g16920D					Bo5g034620	AT1G21630	Chalhoub <i>et al.</i> ⁴	Calcium-binding EF hand family protein
BnaC05g16930D					Bo5g034630	AT1G21640	Chalhoub <i>et al.</i> ⁴	NAD kinase 2
BnaC05g16940D					Bo5g034640	AT1G21651	Chalhoub <i>et al.</i> ⁴	zinc ion binding protein
BnaC05g16950D	C05	10630001	10660000	30000	Bo5g034640		Blast	
BnaC05g16960D					Bo5g034640		Blast	
BnaC05g16970D					Bo5g034650		Chalhoub <i>et al.</i> ⁴	
BnaC05g16980D					Bo5g034660	AT1G21660	Chalhoub <i>et al.</i> ⁴	Chaperone DnaJ-domain superfamily protein
BnaC05g25450D					Bo5g071090		Chalhoub <i>et al.</i> ⁴	
BnaC05g25460D					Bo5g071100		Chalhoub <i>et al.</i> ⁴	
BnaC05g25470D	C05	20440001	20470000	30000	Bo5g071120	AT1G47330	Chalhoub <i>et al.</i> ⁴	methyltransferase%2C putative (DUF21)
BnaC05g25480D					Bo5g071130		Chalhoub <i>et al.</i> ⁴	
BnaC05g25490D					Bo5g071150		Chalhoub <i>et al.</i> ⁴	
BnaC06g22290D					Bo6g040610	AT1G75580	Chalhoub <i>et al.</i> ⁴	SAUR-like auxin-responsive protein family
BnaC06g22300D	C06	24320001	24350000	30000	Bo6g040600	AT1G75550	Chalhoub <i>et al.</i> ⁴	glycine-rich protein
BnaC06g22310D					Bo6g040590	AT1G75540	Chalhoub <i>et al.</i> ⁴	salt tolerance homolog2
BnaC06g22320D					Bo2g155140		Blast	

Supplementary Table 8. The 22 genes under selective sweeps among all genetic clusters.

".": No corresponding gene or annotation identified.

Sample ID	Accession	Species	Cultivar	Genome size	Level	Reality
2035	PI 204682	Brassica oleracea	No. 190	1.07	cross-species	B. rapa
2062	Ames 30186	Brassica napus	Tun222	1.03	cross-species	B. rapa
2074	PI 169075	Brassica napus		1.00	cross-species	B. rapa
2075	PI 169080	Brassica napus		0.95	cross-species	B. rapa
2076	PI 169083	Brassica napus		0.98	cross-species	B. rapa
2080	PI 251614	Brassica napus		0.97	cross-species	B. rapa
2085	PI 286418	Brassica napus		1.09	cross-species	B. rapa
2086	PI 357374	Brassica napus	Esenska Mesana	1.19	cross-species	B. oleracea
2095	PI 443015	Brassica napus	Gry	2.28	in-speices	rutabaga
2096	PI 458607	Brassica napus	Doon Major Swede	2.76	in-speices	rutabaga
2136	PI 633123	Brassica napus	E94197	0.88	cross-species	B. rapa
2141	PI 649135	Brassica napus	NU 41737	2.15	cross-species	B. juncea
2142	PI 649148	Brassica napus	G 32327	1.68	cross-species	B. rapa
2143	PI 649153	Brassica napus ssp. napus	Span	1.73	cross-species	B. rapa
3003	PI 502303	Brassica napus	AR-115	1.07	cross-species	B. rapa
3046	GT 080920	Brassica napus ssp. rapifera	New Hakuran	2.42	in-speices	rapeseed
3048	GT 060523	Brassica napus ssp. rapifera	Ceres	2.34	in-speices	rapeseed
3072	GT 050561	Brassica napus	CGN_07224	1.14	cross-species	B. rapa
3129	BRA3053	Brassica cretica		1.35	cross-species	B. oleracea
3130	BRA3092	Brassica cretica		1.34	cross-species	B. oleracea
3140	BRA2918	Brassica incana		1.46	cross-species	B. oleracea

Supplementary Table 9. Summary of contaminated and mislabeled accessions.

Genetic cluster	Cluster size	Group I	Group II	Group III	Group IV
		372,546	36,829	24,193	23,387
WEAm	23	82,246	20,081	7,367	7,456
S	34	83,849	21,377	8,114	7,697
WEsA	12	104,299	22,599	9,083	8,975
WeA	17	123,521	25,131	14,849	7,455
SK	19	85,151	19,046	7,332	8,626
R	25	102,043	22,879	11,266	6,390

Supplementary Table 10. SNP distributions of each genetic cluster in different SNP Groups.

Supplementary Table 11. NCBI accessions of the chloroplast and mitochondria reference genomes.

Species	Chloroplast	Mitochondria
Brassica napus	NC_016734	AP006444
Brassica oleracea	KR233156	NC_016118
Brassica rapa	NC_015139	NC_016125
Brassica nigra	NC_030450	NC_029182
Brassica juncea	KT581449	NC_016123
Brassica carinata	KX681672	NC_016120

Genetic cluster	XP-CLR	π ratio	Both
R	459	4215	420
WEsA	616	4068	570
WeA	500	4153	452
S	498	4109	474
SK	424	4083	412

Supplementary Table 12. Summary of the selective sweep regions identified by XP-CLR and π ratio method.

WEsA: Winter rapeseed in Europe and South Asia; S: Spring rapeseed; SK: Siberian kale; R: Rutabaga; WeA: Winter rapeseed in East Asia.

Supplementary References

- 1. Cheng, F. *et al.* Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in *Brassica rapa* and *Brassica oleracea*. *Nat. Genet.* **48**, 1218–1224 (2016).
- 2. Schiessl, S., Samans, B., Hüttel, B., Reinhard, R. & Snowdon, R. J. Capturing sequence variation among flowering-time regulatory gene homologs in the allopolyploid crop species *Brassica napus*. *Front. Plant Sci.* **5**, 404 (2014).
- Schiessl, S., Huettel, B., Kuehn, D., Reinhardt, R. & Snowdon, R. Post-polyploidisation morphotype diversification associates with gene copy number variation. *Sci. Rep.* 7, 41845 (2017).
- 4. Chalhoub, B. *et al.* Early allopolyploid evolution in the post-Neolithic *Brassica napus* oilseed genome. *Science* **345**, 950–953 (2014).