
S1 Appendix - Background Information about CRAR

In CRAR [1] a piecewise rigid strategy [2] is used in order to elastically deform the soft
choroid and preserve the rigid characteristics of the surrounding sclera and retina.

In an initialization step, the slices of the reference and template stack
IR, IT : Ω→ R images are rigidly registered pairwise at the BM, as shown in Fig. 1.
With the help of a graph search-based algorithm [3] the BM is accurately segmented
and used as shape-reference for the CSI to initialize CRAR. As explained in [1] this is
possible because even in longitudinal studies of progressing diseases the shape of the
CSI stays comparable to that of the BM in its small curvature and smoothness. Using
CRAR, many problems involving unreliable segmentation can be avoided, because the
exact position of the CSI is no longer needed. As a consequence, any other
segmentation algorithm applied to any scan within the time sequence could be
re-implemented as a starting point for comparisons.

Let Ωj ⊂ R2 be the jth slice of size m× n pixels in a volume stack

Ω =
⋃S

j=1 Ωj ⊂ R3 of S slices. Utilizing the BM as a reference surface as
aforementioned, the volume surrounding the CSI surface is subdivided into partially
overlapping 3D cuboidal blocks

{
Csi
}

defined over a regular grid of dimension
N = N × S̄ in the Oxy plane, as illustrated in Fig. 2. Using a multiresolution approach,
a 3D regularized block-matching registration of the CSI is conducted. As the images are
aligned to the rigid BM, the displacement corresponds to shifts of the CSI. Thus, it is
possible to determine the displacement field around the CSI and to use its outcome to
quantify choroidal growth. Since this study focuses on quantitative choroidal thickness
changes in longitudinal studies, only shifts in anterior-posterior/z-direction are
considered.

Piecewise rigid registration

In CRAR the registration is conceived as a regularized minimization problem with the
aim to find a set U = {usi} of blockwise constant transformations usi such that
IT (p+ usi ) ≈ IR(p) for all p ∈ Csi .

arg min
U
J [U ], J [U ] := D[IR, IT ,U ] + λR[U ]. (1)

D is a distance measure that quantifies the similarity between reference IR and the
transformed template image IT (p+ usi (p)). The regularizer R, with its corresponding
trade-off parameter λ > 0, ensures certain properties of the transformation. In
comparison to the previous version presented in [1], as of now called CRAR-v1.0, some
improvements have been done leading to a better performance in the detection of
temporal changes, as depicted in Fig. 4: as we analyze changes in the thickness of the
choroid within time intervals of at least three months, the (inverse) normalized cross
correlation (see Eq. (2)) is a more useful distance measure than the sum square
difference (used in CRAR-v1.0) for such matching problems, where tomograms haven
not been acquired at same average signal level. Thus, we define

D[IR, IT ,U ] := −
S̄∑

s=1

N∑
i=1

∑
p∈Ĉs

i
[IT (p+ usi (p))− µT ]

[
IR(p)− µR

]
√∑

p∈Ĉs
i

[IT (p+ usi (p))− µT ]
2

√∑
p∈Ĉs

i

[
IR(p)− µR

]2 , (2)
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Fig 1. The pairwise inter-stack rigid registration as initialization of CRAR (1),
followed by an accurate segmentation of the BM (2). Utilizing the BM as reference, the
area surrounding the CSI is subdivided into partially overlapping blocks (3). The
displacement is represented by the shifts due to the blockwise transformation of the
volume surrounding the lower boundary of the choroid.

where µR and µT are the average intensities of IR and IT respectively, while Ĉsi denotes
the overlapping volume between reference and transformed template image and p is the
point position in block Ĉsi ⊂ Ω.

Radial Differences Regularization

In order to adhere to the eye's natural shape, the regularization enforces the local
homogeneity of the transformations in nasal-temporal (x-) and superior-inferior (y-)
direction by penalizing their radial differences [4]. The mismatched blocks of the
registration process are not individually corrected. Instead, the entire neighborhood is
moved until the block configuration with the least bending energy is reached, see Fig. 2.
Let N = N × S̄ be the total number of cuboids, psi = (xsi , y

s
i , z

s
i ) and ptj = (xtj , y

t
j , z

t
j)

the centers of the blocks Csi and Ctj , respectively. Then, the regularizer R is defined as
follows:

R[U ] =
1

N

S̄∑
s,t=1

N∑
i,j=1

∣∣∣∣usi (psi )− utj(ptj)∣∣∣∣2 ·Kb(p
s
i , p

t
j), (3)

where usi (p
s
i ) and utj(p

t
j) are the corresponding displacement vectors of psi and ptj , as

obtained from the 3D block-matching. Due to its smoothing properties and compact
support, the radial cubic B-spline function Kb : Ω× Ω→ R has been chosen as kernel.
It makes sure that in case of two blocks being wide apart, displacements influence each
other much less than if they are within the same (2σx × 2σy)-neighborhood. The factor
||usi (psi )− utj(ptj)||2 of Eq. (3) guarantees local homogeneity of the transformations.

May 12, 2019 2/5



y

x

z

σx

σy

(a) 3D block-matching (b) Additional regularization

Fig 2. (a) Block matching leaves some blocks mismatched (red). Underneath both 1D
B-spline kernels with their support 2σx and 2σy are visualized. The regularization
corrects the position of the mismatched block in the 3D registration. This movement is
counteracted by the directly neighboring blocks (yellow), which has a smoothing effect.
Blocks that are further away (light green) do not have such strong influence. (b) The
smoothed result after eye shape adherent regularization.

B-spline deformation

Inspired by [5], a synthetically deformed OCT B-scan is created as follows: a target
thinning rate α is generated as a random sample from a uniform distribution between
[−25, 25] µm, with α < 0 denoting a thinning choroid and α > 0 corresponding to a
thickening one. This range for α is chosen to realistically represent changes that can be
observed in the choroid's thickness which are bigger than the daily variations up to
29 µm [6]. A 3D regular B-spline grid with L1 × L2 × L3 control points is created, see
Fig. 3. The region of interest to be manipulated is represented by two rows of grid nodes
surrounding the CSI. The B-spline deformation is set to 0 outside this region. In order
to attest the superior performance of CRAR in recognizing thickness changes, we apply
CRAR on the 90 OCT volume stack pairs after artificially induced deformation [5].

The mean errors in detecting changes by CRAR are compared to those obtained
applying the old version of the algorithm, a state-of-the-art segmentation method based

(a) (b)

Fig 3. Artificial deformation of the choroid. (a) A regular L1 × L2 × L3 grid is created.
While the yellow dots remain in place, the red ones surrounding the lower boundary of
the choroid are deformed. In thickening simulations (positive factor α), the B-spline
grid points in the choroidal region moved away from each other vertically, whereas in
thinning simulations (negative α), they moved toward each other. (b) The results after
the deformation. The B-spline kernel guarantees local smooth deformations, allowing a
realistic thinning/thickening effect.
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Fig 4. The average differences between the synthetically induced displacements and
the measured ones, obtained with CRAR-v2.0 (red), CRAR-v1.0 (green), a
state-of-the-art graph search based segmentation method [7] (purple) and manual expert
segmentation (cyan), applied on the 90 OCT volume stack pairs after synthetic
deformation for different resolution levels k.

on graph search [7] and manual expert segmentation. As illustrated in Fig. 4, we
observe that the higher precision of CRAR is remarkable in particular at a higher
resolution level. As a reminder, we point out that a multiresolution approach for the
registration is used in CRAR (for more detail see [1]). In this context, k denotes the
resolution level with the corresponding number of patches in which the volume
surrounding the CSI is subdivided in nasal-temporal/x-direction, e.g. 8, 16, . . . , 512 for
k = 1, 2, . . . , 7. In Fig. 1 the situation for k = 1 and 8 blocks is shown.
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