Predicting Polygenic Risk of Psychiatric Disorders

Supplemental Information

Table S1. Genetic and statistical concepts for genetic risk prediction

	A network is mutation in the neneme. Many OND- in an
Single nucleotide	A polymorphic mutation in the genome. Many SNPs in an
polymorphism	associated GWAS region often 'tag' causal variants because of
(SNP)	LD structure in the genome but are not themselves causal.
Haplotype	A segment of DNA inherited identity-by-descent from a common
	ancestor that is characterized by a set of co-inherited SNPs.
Linkage	The correlation among proximal loci due to less historical
disequilibrium	recombination relative to distal/interchromosomal variants.
(LD)	Elevated association significance among nearby non-causal but
	non-independent loci are typically driven by LD.
Distance	
Pleiotropy	The apparently unrelated effects of the same genes or variants
	influencing different biological pathways.
Sum of squares	Used in regression analysis to find the function that best fits the
	data by summing the squared difference of fitted values from the
	mean
Regression to	The phenomenon in which a variable with an extreme value in an
the mean	initial measure tends towards average upon a second measure.
	Galton described this phenomenon with the observation that
	extremely tall or short parents tend to have children of more
	average height than expected by chance.
Genome-wide	GWASs test the marginal associations of a single genotyped or
association study	imputed variant at a time with a phenotype of interest. These
(GWAS)	typically correct for potential confounders such as age, sex,
(01110)	population structure, etc.
GWAS summary	Test statistics for the association between each SNP and
statistics	phenotype, typically including the SNP identifier, risk allele, p
5101151105	value, and effect size estimate.
Effect size	
Ellect Size	A quantity measuring the effect of an allele on a phenotype, such
	as an odds ratio for binary traits, or a regression coefficient for
	continuous traits.
Biometrical	Decomposes the variation in a phenotype into its genetic and
model	environmental components.
Heritability	The fraction of trait variation that can be explained by genetic as
	opposed to environmental factors. Family-based and population-
	based estimates typically differ considerably (1).
Broad-sense	All genetic factors contributing to phenotypic variation including
(H^2)	additive, epistatic, and dominance effects, etc. It is typically
	studied in families, such as in twin studies.
•	

Narrow-sense (h ²)	Strictly defined as the additive genetic factors contributing to a trait. This can be estimated in families (e.g., parent-offspring regression) or with SNPs in unrelated populations (e.g. h_g^2) (2).
Genetic architecture/ polygenicity	The complexity measured by number of independent causal loci and distribution of corresponding effect sizes contributing to a phenotype across the genome
Genetic correlation	The additive genome-wide relationship between two or more traits.
Mendelian randomization	An epidemiological tool that uses genetic variants to assess causal relationships between exposures and outcomes.

Supplemental Note. Considerations for evaluating the validity of PRS applications in published literature and clinical models

- The traits under investigation must show evidence of significant heritability.
- PRS must be generated from well-powered, independent GWAS performed with careful quality control.
- The fraction of phenotypic variation explained must be significant and meaningful.
 For PRS to be clinically meaningful, they should improve prediction accuracy in translational models when evaluated jointly with other clinical factors.
- The phenotype on which PRS are trained (i.e. the GWAS cohorts) should be similar to the phenotype evaluated in the test set. Appropriate conclusions should not extrapolate far beyond the original GWAS.
- Ancestry differences comprise a PRS challenge, in that prediction will perform best when the training and prediction cohorts are genetically similar.
- Individual-level risk should be evaluated against a stationary and consistent measurement (e.g., the average 50% of the population) rather than arbitrary comparisons (e.g., to the rest of the population).
- The methodological choice should be rigorous with consideration to LD, ancestry, and the genetic architecture of the trait.

Supplemental References

- 1. Zuk O, Hechter E, Sunyaev SR, Lander ES (2012): The mystery of missing heritability: Genetic interactions create phantom heritability. Proc Natl Acad Sci USA. 109: 1193– 1198.
- 2. Visscher PM, Hill WG, Wray NR (2008): Heritability in the genomics era concepts and misconceptions. Nat Rev Genet. 9: 255–266.