Smoking does not accelerate leukocyte telomere attrition: a meta-analysis of 18 longitudinal cohorts

Melissa Bateson^{1*}, Abraham Aviv², Laila Bendix³, Athanase Benetos⁴, Yoav Ben-Shlomo⁵, Stig E. Bojesen⁶, Cyrus Cooper⁷, Rachel Cooper⁸, Ian J. Deary⁹, Sara Hägg¹⁰, Sarah E. Harris^{9,11}, Jeremy D. Kark¹², Florian Kronenberg¹³, Diana Kuh⁸, Carlos Labat¹⁴, Carmen M. Martin-Ruiz¹, Craig Meyer¹⁵, Børge G. Nordestgaard⁶, Brenda W. J. H. Penninx¹⁶, Gillian V. Pepper¹, Dóra Révész¹⁷, M. Abdullah Said¹⁸, John M. Starr^{9,19,†}, Holly Syddall⁷, William Murray Thomson²⁰, Pim van der Harst¹⁸, Mary Whooley¹⁵, Thomas von Zglinicki^{21,22}, Peter Willeit^{23,24}, Yiqiang Zhan¹⁰ and Daniel Nettle¹

1 Centre for Behaviour and Evolution and Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom.

2 Center of Human Development and Aging, New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, USA.

3 Pain Center South, Department of Anesthesiology and Intensive Care Medicine, University Hospital Odense, Odense, Denmark.

4 Department of Geriatric Medicine, CHRU de Nancy, Université de Lorraine, Nancy, France.5 School of Social and Community Medicine, University of Bristol, Canynge Hall, Bristol, United Kingdom.

6 Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen University, Copenhagen, DK-2730 Herlev, Denmark.

7 MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, United Kingdom.

8 MRC Unit for Lifelong Health and Ageing at UCL, University College London, 33 Bedford Place, London, WC1B 5JU, United Kingdom.

9 Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom.

10 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden.

11 Medical Genetics Section, University of Edinburgh Centre for Genomic and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, Edinburgh, EH4 2XU, United Kingdom.

12 Hebrew University–Hadassah School of Public Health and Community Medicine, Ein Kerem, Jerusalem, Israel.

13 Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, 6020, Austria.

14 INSERM U1116, Université de Lorraine; Nancy, France.

15 Department of Medicine, University of California, San Francisco, CA, 94121, USA.

16 Department of Psychiatry, VU University Medical Center, Oldenaller 1, 1081 HJ Amsterdam, The Netherlands.

17 Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.

18 University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, 9700RB, The Netherlands.

19 Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom.

20 Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, 9054, New Zealand.

21 Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom.

22 Near East University, Arts and Sciences Faculty, Molecular Biology and Genetics, Nicosia, North Cyprus, Mersin 10, Turkey.

23 Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria 24 Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.

[†] John Starr died whilst this paper was under review and the final version was prepared posthumously.

*Corresponding author:

Professor Melissa Bateson

Email: melissa.bateson@ncl.ac.uk

Phone: +44 191 2085056

ORCID ID: 0000-0002-0861-0191

Contents

Page 3: Table S1. Summary of LTL data used in the meta-analysis.

Page 4: Table S2. Results from the leave-one-out sensitivity analysis of model 6.

Page 5: **Fig. S1. PRISMA diagram detailing the source of the data for the metaanalysis.** Nine of the cohorts included in the final meta-analysis were identified via an initial systematic literature search and the other nine were identified via a process of snowballing.

Page 6: **Fig. S2. LTL decreases with increasing age.** (a) Forest plot showing that LTL is significantly shorter at follow-up compared to baseline. For key see Fig. 2. (b) Scatterplot showing that longer follow-up intervals are associated with a greater decline in LTL between baseline and follow-up. The black line shows the estimate from a random-effects meta-regression obtained by adding mean follow-up interval as a moderator to model 1; this estimate is based on all 18 cohorts in the plot. For key see Fig. 3b. The additional blue line shows the estimate from the same meta-regression (±95% CI) based on the subset of cohorts measured using TRF.

Cohort ¹	LTL measurement		Baseline TL				Follow-up TL				Telomere attrition (/year)				Pearson correlation between baseline and follow-up LTL	
	Method ²	Units ³	Smokers		Non-smokers		Smokers		Non-smokers		Smokers		Non-smokers		r	p-value
			Mean	sd	Mean	sd	Mean	sd	Mean	sd	Mean	sd	Mean	sd		
ADE	TRF	bp	6290.00	721.25	6378.57	465.85	6155.00	855.60	6128.57	490.83	16.44	15.56	30.02	24.20	0.92	< 0.0001*
BHS	TRF	bp	7392.00	777.00	7481.00	777.00	7150.00	772.00	7270.00	772.00	42.00	46.00	40.00	46.00	0.95	< 0.0001*
BRUNECK	qPCR	T/S	1.64	0.83	1.68	0.84	1.15	0.61	1.18	0.55	0.05	0.06	0.05	0.06	0.64	< 0.0001*
CCHS	qPCR	bp	4318.00	1047.00	4434.00	1062.00	4042.00	1010.00	4116.00	1031.00	28.00	120.00	33.00	122.00	0.39	< 0.0001*
CCS	qPCR	bp	4302.39	1591.62	4506.89	1867.65	3438.83	1472.86	3080.53	938.18	112.76	288.71	183.06	261.03	0.03	0.5990
DMHDS	qPCR	T/S	1.17	0.37	1.20	0.41	1.02	0.31	1.05	0.31	0.01	0.02	0.01	0.03	0.66	< 0.0001*
ERA	TRF	bp	5860.00	0.00	6428.84	620.03	5710.00	0.00	6198.26	601.17	16.04	0.00	24.34	15.52	0.97	< 0.0001*
ESTHER	qPCR	bp	5940.00	384.49	6020.00	315.18	5190.00	522.04	5810.00	616.72	1.30	84.35	14.50	99.80	NA	NA
HAS	qPCR	bp	5490.26	1464.64	5417.45	1443.86	3637.15	1539.88	4048.20	1446.62	204.74	265.92	149.04	236.01	-0.16	0.0919
HSS	qPCR	bp	5546.32	543.21	5483.28	527.85	5325.56	406.29	5277.76	344.28	46.12	119.89	42.05	102.77	0.40	< 0.0001*
JLRCS	TRF	bp	7253.00	650.00	7361.00	673.00	6907.00	590.00	7053.00	644.00	26.50	14.00	23.50	13.60	0.96	< 0.0001*
LBC1921	qPCR	bp	3912.37	301.05	4096.44	457.96	3290.00	770.88	3542.61	791.46	49.64	33.08	64.34	138.97	0.35	0.0017*
LBC1936	qPCR	bp	4073.34	579.07	4207.34	571.33	3680.81	648.08	3805.03	708.36	86.94	119.95	66.38	112.14	0.54	< 0.0001*
MONICA	qPCR	T/S	0.75	0.16	0.74	0.16	0.65	0.19	0.67	0.20	0.01	0.02	0.01	0.02	0.37	< 0.0001*
NESDA	qPCR	bp	5407.29	623.56	5511.60	614.67	5370.51	403.03	5440.66	446.86	6.13	96.55	11.82	95.26	0.45	< 0.0001*
NSHD	qPCR	bp	5610.81	2017.47	5792.41	1827.71	4241.11	1236.59	4297.16	1345.08	148.61	235.88	160.14	234.61	0.12	0.0102*
PREVEND	qPCR	T/S	1.05	0.32	1.09	0.32	1.00	0.36	1.07	0.35	0.01	0.07	0.00	0.07	0.13	< 0.0001*
SATSA	qPCR	T/S	0.73	0.19	0.73	0.22	0.72	0.15	0.74	0.17	0.00	0.03	0.00	0.03	0.39	< 0.0001*

Supplementary Information: Table S1. Summary of LTL data used in the meta-analysis.

¹Full details of each cohort are provided in Table 1; ²Measurement methods for LTL: TRF = terminal restriction fragment and qPCR = quantitative polymerase chain reaction; ³Units of LTL measurement: bp = base pairs and T/S = T/S ratios.

Cohort	ohort Summary SMD			Heterogeneity statistics							
omitted	Estimate* [95%	p-value	Q16	p-value	τ^2	\mathbf{I}^2	\mathbf{H}^2				
	CI]					(%)					
ADE	-0.02 [-0.07, 0.04]	0.5116	24.06	0.0881	0.00	37.93	1.61				
BHS	-0.02 [-0.08, 0.05]	0.6091	24.56	0.078	0.01	41.03	1.70				
BRUNECK	-0.02 [-0.08, 0.04]	0.5257	24.64	0.0764	0.00	40.44	1.68				
CCHS	-0.03 [-0.09, 0.03]	0.3793	21.65	0.155	0.00	32.98	1.49				
CCS	-0.03 [-0.08, 0.03]	0.2978	19.97	0.2215	0.00	30.71	1.44				
DMHDS	-0.02 [-0.08, 0.04]	0.5217	24.61	0.077	0.01	40.93	1.69				
ERA	-0.02 [-0.07, 0.04]	0.5214	24.39	0.0814	0.00	37.93	1.61				
ESTHER	-0.03 [-0.08, 0.03]	0.3552	22.49	0.1282	0.00	34.74	1.53				
HAS	-0.02 [-0.07, 0.04]	0.5973	23.93	0.091	0.00	38.05	1.61				
HSS	-0.02 [-0.08, 0.04]	0.5721	24.64	0.0764	0.00	40.12	1.67				
JLRCS	-0.01 [-0.06, 0.05]	0.8152	20.47	0.1996	0.00	29.70	1.42				
LBC1921	-0.02 [-0.07, 0.04]	0.5256	24.64	0.0765	0.00	38.03	1.61				
LBC1936	-0.01 [-0.07, 0.05]	0.6828	23.16	0.1096	0.00	36.99	1.59				
MONICA	0.00 [-0.05, 0.05]	0.9947	18.39	0.3017	0.00	13.68	1.16				
NESDA	-0.03 [-0.09, 0.03]	0.3918	23.27	0.1068	0.00	36.71	1.58				
NSHD	-0.02 [-0.08, 0.04]	0.4743	24.33	0.0825	0.00	39.61	1.66				
PREVEND	-0.01 [-0.08, 0.05]	0.6692	23.98	0.09	0.01	38.68	1.63				
SATSA	-0.02 [-0.07, 0.04]	0.6088	24.25	0.0841	0.00	38.80	1.63				

Supplementary Information: Table S2. Results from the leave-one-out sensitivity analysis of model 6.

*Negative parameter estimates for the summary standardized mean difference (SMD) correspond to faster attrition in smokers. The cohort with the largest influence is shaded.

Supplementary Information: Fig. S1. PRISMA diagram detailing the source of the data for the meta-analysis. Nine of the cohorts included in the final meta-analysis were identified via an initial systematic literature search and the other nine were identified via a process of snowballing.

Supplementary Information: Fig. S2. LTL decreases with increasing age. (a) Forest plot showing that LTL is significantly shorter at follow-up compared to baseline. For key see Fig. 2. (b) Scatterplot showing that longer follow-up intervals are associated with a greater decline in LTL between baseline and follow-up. The black line shows the estimate from a random-effects meta-regression obtained by adding mean follow-up interval as a moderator to model 1; this estimate is based on all 18 cohorts in the plot. For key see Fig. 3b. The additional blue line shows the estimate from the same meta-regression (±95% CI) based on the subset of cohorts measured using TRF.