

# <sup>2</sup> Supplementary Information for

- 3 The exploration of the chemical space and its three historical regimes
- 4 Eugenio J. Llanos, Wilmer Leal, Duc H. Luu, Jürgen Jost, Peter F. Stadler, and Guillermo Restrepo
- 5 Guillermo Restrepo.

1

6 E-mail: restrepo@mis.mpg.de

# 7 This PDF file includes:

- 8 Figs. S1 to S11
- <sup>9</sup> Tables S1 to S10
- 10 References for SI reference citations

# 11 Variance analysis of the number of new compounds

- <sup>12</sup> Table S1 contains the results of the Shapiro-Wilk and Kolmogorov-Smirnov normality tests for the growth rate  $r_t$  and for
- $Y_t = \ln s_{t+1} \ln s_t$ . These results show that  $r_t$  is not normally distributed (Figure S1a), but  $Y_t$  is for the three historical regimes (Table 1, main text; Table S1, and Figure S1). The distribution and its density of the combined residuals  $Z_t := \frac{Y_t - \mu_i}{\sigma_i}$ ,
- where  $\mu_i, \sigma_i$  are given in Table 1, are shown in Figure S2.

|           | $r_{i}$                  | t                     | Y                         | $Z_t$                 |           |          |
|-----------|--------------------------|-----------------------|---------------------------|-----------------------|-----------|----------|
| Period    | $p^{ShW}$                | $p^{KS}$              | $p^{ShW}$                 | $p^{KS}$              | $p^{ShW}$ | $p^{KS}$ |
| 1804-2015 | $<2.2\times10^{-16}$     | $<5.54\times10^{-14}$ | $< 4.143 \times 10^{-15}$ | $<1.013\times10^{-6}$ | 0.01934   | 0.2637   |
| 1804-1860 | $< 6.986 	imes 10^{-10}$ | 0.02414               | 0.05267                   | 0.5133                | 0.05267   | 0.5133   |
| 1861-1980 | 0.001877                 | 0.2138                | 0.0701                    | 0.3391                | 0.07010   | 0.3391   |
| 1981-2015 | 0.2027                   | 0.7196                | 0.08297                   | 0.6242                | 0.08297   | 0.6242   |

Table S1. Results of the Shapiro-Wilk and Kolmogorov-Smirnov normality tests for  $r_t$ ,  $Y_t$ , and  $Z_t$ .



Fig. S1. a) Growth rate  $r_t = (s_{t+1}/s_t) - 1$  and b) logarithm difference of number of new substances  $Y_t := \ln s_{t+1} - \ln s_t$  for the period 1800-2015.



Fig. S2. a) The adjusted noise of logarithm difference during the period 1800-2015. b) The density of residuals of logarithm difference during the period 1800-2015.

# <sup>16</sup> Preferred compositions over time

17 For each compound reported for the first time in year t we extracted the combination of elements appearing in the formula

 $_{18}$  of the compound and arranged the elements in lexicographic order, which we call composition. Hence, for HCl and H<sub>2</sub>SO<sub>4</sub>,

the respective compositions are ClH and HOS. Table S2 shows the relative importance of inorganic compositions in the first regime, and Table S3 the dominance of organic compositions. Likewise, Table S4 shows the preponderance of organic chemistry

compositions in the third regime, where all frequent metal compositions include C, highlighting the organometallic character of

<sup>22</sup> the third regime.

Table S2. List of the 10 most frequent compositions of elements in some particular years of the first regime. The second half of the table lists the remaining 10 most frequent compositions including metals. Non-carbon compositions in red.

| 1800     | 1810     | 1820   | 1830   | 1840    | 1850          | 1860   |
|----------|----------|--------|--------|---------|---------------|--------|
| CHNaO    | CHAIO    | CHNO   | CHNO   | СНО     | CHN           | СНО    |
| CHNO     | CHNO     | FeO    | HOSZn  | CHNO    | CHNO          | CHNO   |
| CHCuO    | CHKO     | CFeN   | HIKO   | CHCINO  | CHCINPt       | CHN    |
| OS       | OPb      | AuHO   | CIHHgN | CHCIO   | AsCaHO        | CHCIO  |
| CuHOS    | CBaO     | CBaN   | OPZn   | FeHKOS  | HNOPt         | CHOS   |
| S        | Pb       | Fe     | CIHIKO | CCIO    | CHFeNO        | CHCI   |
| OSn      | KTe      | FeS    | CuOS   | CHOS    | CHO           | IKSb   |
| CICuHO   | CFeNS    | CHFeNO | AsO    | CHBrNO  | CHOS          | CHBrP  |
| CICu     | NaTe     | CrO    | CIHO   | CHCuNO  | CHCIN         | IRbSb  |
| NaOS     | HTe      | CCoO   | CHO    | NaOSb   | CHNOPt        | HINSb  |
|          |          |        |        |         |               |        |
| CHgNO    | CHNaO    | HNaOS  | CHNZn  | CHKO    | HNaOSe        | ISbTI  |
| CIHNaOPt | CHCuO    | FeS    | CHNiO  | CHCIOPt | BHOSr         | CHOPb  |
| -        | CuHOS    | Fe     | HNaOP  | CIHNOPt | AsBaHO        | CuHOS  |
| -        | OSn      | CaCIHO | HNiO   | CIHNPt  | BHMgO         | CHOSn  |
| -        | CICuHO   | AgOS   | CuHOS  | BHMgO   | CFeNO         | CHCaO  |
| -        | ClCu     | Р      | FeHOS  | HNaOP   | CHCuNO        | NaOSi  |
| -        | NaOS     | MgO    | CoNO   | CHFeNO  | CIHNOPt       | CaHOSe |
| -        | CHgNO    | СКО    | HNOZn  | CHCuO   | CIHNPt        | CHSn   |
| -        | CIHNaOPt | CrS    | CICoHN | CHAgNOS | <b>HNOPtS</b> | CHISn  |
| -        | -        | CHKMgO | BaHOP  | CHOPb   | CoS           | HNaOS  |

Table S3. List of the 10 most frequent compositions of elements in some particular years of the second regime. The second half of the table lists the remaining 10 most frequent compositions including metals. Non-carbon compositions in red.

| 1870     | 1880    | 1890     | 1900     | 1910                 | 1920   | 1930     | 1940     | 1950     | 1960     | 1970    | 1980     |
|----------|---------|----------|----------|----------------------|--------|----------|----------|----------|----------|---------|----------|
| CHNO     | СНО     | CHNO     | CHNO     | CHNO                 | CHNO   | CHNO     | CHNO     | CHNO     | CHNO     | CHNO    | CHNO     |
| CHO      | CHNO    | СНО      | СНО      | CHO                  | CHO    | СНО      | СНО      | CHO      | СНО      | CHO     | СНО      |
| CHCIO    | CHNOS   | CHN      | CHNOS    | CHNOS                | CHN    | CHNOS    | CHNOS    | CHNOS    | CHNOS    | CHNOS   | CHNOS    |
| CHCINO   | CHN     | CHNS     | CHCINO   | CHCINO               | CHBrO  | CHCINO   | CHCINO   | CHN      | CHCINO   | CHCINO  | CHCINO   |
| CHOS     | CHBrO   | CHNOS    | CHN      | CHN                  | CHNOS  | CHBrNO   | CHBrO    | CHCINO   | CHN      | CHN     | CHOS     |
| CHNOS    | CHBrNO  | CHCINO   | CHBrNO   | CHBrNO               | CHCIO  | CHN      | CHN      | CHCIO    | CHOS     | CHCINOS | CHN      |
| CHN      | CHOS    | CHOS     | CHBrO    | CHBrO                | CHCINO | CHCIO    | CHCIO    | CHOS     | CHCIO    | CHOS    | CHCINOS  |
| CHBrO    | CHBrN   | CHBrO    | CHCIO    | CHCIO                | CHBrNO | CHBrO    | CHBrNO   | CHBrNO   | CHCINOS  | CHCIO   | CHCIO    |
| CHCINPt  | СН      | CHCIO    | CHCIN    | CHCIN                | CHOS   | CHOS     | CHOS     | CHBrO    | CHNS     | CHNS    | CHBrNO   |
| СН       | CHCINO  | CHBrNO   | CHNS     | CHNS                 | CHINO  | СН       | СН       | CHCIN    | СН       | CHFNO   | CHFNO    |
|          |         |          |          |                      |        |          |          |          |          |         |          |
| CHCINPt  | CHNaO   | CHCINPt  | CHCoNOS  | CICoHNO              | CHNiOS | CHCuNO   | CHCICoNO | CHAgN    | CHNNIO   | CHOSn   | CHCoNO   |
| CHCIPPt  | BaHOPW  | CHAgNO   | CHCIHgO  | CHCoNO               | CHHgO  | CHNNIO   | CHCoNO   | CHNNiO   | CHCuNO   | CHCoNO  | CHCuNO   |
| CHNOPt   | HKOPW   | CHNaOS   | CHKNO    | BrCoHNO              | CHITe  | CHCIHgNO | CHNNIO   | CHCuNO   | CHCrO    | CHSn    | CHFeO    |
| CHKOS    | CHCuO   | BeNaOSi  | CHCINOPt | CHBrCoNO             | CHFeNO | CHCoNO   | CHNOPtS  | CHCoNO   | CHOSn    | CHCrNO  | CHNNiO   |
| CHAsCIPt | CIMoO   | CHNNaO   | CHCINPt  | CoHNO                | HMoNO  | CHNaOS   | CHCuNOS  | CHHgNO   | CHSn     | CHOSSn  | CHCICoNO |
| HNaOU    | BCIKPt  | CHAgNOS  | CHFeNNaC | CHCrNO               | CHKNOS | CHAgNOS  | CHBrCoNO | CHAg     | CHCINOV  | CHNOSn  | CHFeNO   |
| BrHNPt   | CHAgNO  | CHNNaOS  | CHNNaO   | CIHNTh               | CHIOTe | CHAgNO   | CHCuNO   | CHClHgO  | CHAgNO   | CHCuNO  | CHCICuNO |
| CHCINOPt | CHBrHgN | CHCrNOS  | CHHgO    | CoHNOS               | HHgNOS | CHCuNOS  | CHCINNiO | CHHgO    | CHCINNiO | CHCrO   | CHNNaOS  |
| CHINPt   | CHOPb   | AsHNaOS  | CHHgNO   | CHCIHgO              | CHIrNO | CHNNiOS  | CHCINNi  | CHOSn    | CHCrNO   | CHClOSn | CHNNaO   |
| CHNOPtS  | BBaHO   | CHCICoNP | CHAIO    | CHCIC <sub>0</sub> O | CHSn   | CHHgIS   | CHHgIP   | CHCICoNO | CHCINV   | CHFeNO  | CHCINNIO |

| Table S4. List of the 10 most frequent compositions of elements in some particular years of the third regime. | The second half of the table |
|---------------------------------------------------------------------------------------------------------------|------------------------------|
| lists the remaining 10 most frequent compositions including metals.                                           |                              |

| 1990     | 2000     | 2010     | 2015     |
|----------|----------|----------|----------|
| CHNO     | CHNO     | CHNO     | CHNO     |
| СНО      | СНО      | CHNOS    | CHFNO    |
| CHNOS    | CHNOS    | CHFNO    | CHNOS    |
| CHCINO   | CHCINO   | CHCINO   | CHO      |
| CHOS     | CHFNO    | CHO      | CHCINO   |
| CHFNO    | CHOSi    | CHFNOS   | CHFNOS   |
| CHN      | CHOS     | CHCINOS  | CHN      |
| CHOSi    | CHCINOS  | CHCIFNO  | CHCIFNO  |
| CHCINOS  | CHN      | CHBrNO   | CHBrNO   |
| CHBrNO   | CHNOSi   | CHN      | CHCINOS  |
|          |          |          |          |
| CHCuNO   | CHFeNO   | CHNOZn   | CHNOZn   |
| CHFeNO   | CHNOZn   | CHCuNO   | CHCuNO   |
| CHCoNO   | CHCuNO   | CHNNaOS  | CHFeNO   |
| CHFeO    | CHNNiO   | CHCoNO   | CHCoNO   |
| CHNNaOS  | CHClCuNO | CHClCuNO | CHNNaOS  |
| CHClCuNO | CHCoNO   | CHFeNO   | CHIrN    |
| CHNNiO   | CHNNaOS  | CHNNiO   | CHNNiO   |
| CHNORu   | CHCINORu | CHNNaO   | CHClCuNO |
| CHCICoNO | CHCIFeNO | CHNOPd   | CHCdNO   |
| CHOSn    | CHFNOPRu | CHCuNOS  | CHNOPt   |

#### 23 Distance among compositions

For each compound we extracted its elemental composition, which corresponds to the elements present in the compound and that are arranged in lexicographic order. Hence, for H<sub>2</sub>SO<sub>4</sub> its composition is HOS. The composition of interest for the chemistry community in year t is given by  $c(t) = (w_1(t)c_1(t), w_2(t)c_2(t), ...)$ , where  $w_i(t)$  is the frequency at which the community reports composition  $c_i(t)$  in year t. By studying the behavior of c(t) over time, we want to determine whether the community has had several compositional interests, or, on the contrary, its interests have been narrow and focused on few particular compositions. Therefore, we computed the relative frequency  $\bar{w}_i(t)$  of composition  $c_i(t)$  in year t as:

30 
$$ar{w}_i(t) = rac{w_i(t)}{\sum_i w_i(t)}$$

and calculated the composition distance between successive years as:

$$d(t, t+1) = \sum_{i} |\bar{w}_i(t) - \bar{w}_i(t+1)|.$$

Thus, larger values of d indicate that the community shifts the composition of the reported substances from one year to the other. In contrast, d = 0 indicates that compositions of year t remain the same next year.

We calculated *d* for the time window analyzed (1800-2015) and the resulting plot is shown in Figure S3. It is seen that *d* decreases to zero as *t* increases, which shows that  $\{\bar{w}_i(t)\}_{i\geq 1}$  behaves like a Cauchy sequence in the composition distribution space. As a result, we expect the existence in the long run of the limits:

 $\lim \bar{w}_i(t),$ 

38 
$$ar{w}_i(\infty) =$$

<sup>39</sup> i.e. each particular composition has a limit, which is reached when the composition is exhausted.

We are interested in the behavior of d as a function of time, whether it is high or low, increasing or decreasing. A low d indicates that essentially the same compositions are used over the years. This could happen for two opposite reasons:

(1) Chemists try compositions homogeneously, without concentrating on any particular one. This would be an *exploratory* approach, or

(2) they try the same few compositions repeatedly. This would be an extremely *conservative* approach.

45 Another possibility is that

32

(3) they try only a few compositions every year, but different ones from year to year. That would be a *semi-conservative* approach. It would result in high values of d.

48 Our results show that d has dropped over time (Figure S3), indicating that chemists may have populated compositions either

homogeneously (1) or conservatively (2). From Figure S4 we infer that chemists have preferred some compositions over others,

 $_{50}$  that is they have followed (2) rather than (1). Moreover, Tables S2 to S4 indicate on which narrow set of compositions chemists

<sup>51</sup> have concentrated; in fact, it has been mostly CHNO. In particular, they have definitely not followed strategy (3).



Fig. S3. Distance among elemental compositions of successive years for the period 1800-2015.

# 52 Concentration of compositions over time

From each new substance reported in year t, we extracted its composition, which led to a distribution of compositions  $c_i(t)$  for

54  $t: c(t) = (w_1(t)c_1(t), w_2(t)c_2(t), ...)$  where  $w_i(t)$  is the number of new substances matching the composition  $c_i(t)$ . The plot

sto shows the result by decades, rather than by years; we have simply added the figures for the 10 years of each decade. The

<sup>56</sup> box-plot of each decade is shown in (Figure S4) with inter whisker distance accounting for 99.9% of the data.



Fig. S4. Box-plots of the compositions every 10 years with inter whisker distance accounting for 99.9% of the data. Relative frequency of compositions are shown at the left axis.

# 57 Growth of families of elements

58 Elements were classified based on the system used in inorganic chemistry textbooks. Here we particularly follow the system by

59 Greenwood and Earnshaw (1) adjusted to classification results based on chemical similarity (2). Classes with more than one

element are: Halogens {F, Cl, Br, I}, Noble gases {He, Ne, Ar, Kr, Xe, Rn}, Alkali metals {Li, Na, K, Rb, Cs, Fr}, Alkaline

61 earth metals {Be, Mg, Ca, Sr, Ba, Ra}, {Al, Ga, In, Tl}, {Ge, Sn, Pb}, {As, Sb, Bi}, {Se, Te, Po}, {Ti, Zr, Hf}, {V, Nb, Ta},

<sup>62</sup> {Cr, Mo, W}, {Mn, Tc, Re}, Platinum metals {Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt}, Coinage metals {Cu, Ag, Au}, {Zn, Cd,
<sup>63</sup> Hg}, {Ge, Sn, Pb}, Lanthanoids {Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu}, Actinoids {Ac, Th,

Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr}.

The annual fraction of new compounds that contain at least one element of each family to the total of new compounds is plotted in Figures S7 to S8.



Fig. S5. Fraction of synthesized compounds of the families to the total of new compounds.



Fig. S6. Fraction of synthesized compounds of the families to the total of new compounds.



Fig. S7. Fraction of synthesized compounds of the families to the total of new compounds.



Fig. S8. Fraction of synthesized compounds of the families to the total of new compounds.

# 67 Most synthesized products

 $_{68}$  Table S5 shows the top-10 most frequently synthesized products for each one of the nine periods analyzed (main text).

#### Table S5. Most synthesized products.

|    | Before 1860 | 1860-1879 | 1880-1889 | 1900-1919 | 1920-1939 | 1940-1959 | 1960-1979          | 1980-1999 | 2000-2015 |
|----|-------------|-----------|-----------|-----------|-----------|-----------|--------------------|-----------|-----------|
| 1  | $NH_3$      | $NH_3$    | $NH_3$    | $NH_3$    | BZA       | $H_2O$    | $H_2O$             | PhCHO     | Glc       |
| 2  | $H_2O$      | $CO_2$    | $CO_2$    | $CO_2$    | $NH_3$    | $CO_2$    | $H_2$              | $CO_2$    | $CO_2$    |
| 3  | $CO_2$      | AcOH      | MAC       | BZA       | $CO_2$    | $CH_2O$   | $H_2S$             | Ethene    | PhCHO     |
| 4  | S           | HCI       | BZA       | $H_2O$    | MAC       | Methane   | $O_2$              | Methane   | $Ph_2$    |
| 5  | HCI         | BZA       | $H_2O$    | $PhNH_2$  | AcOH      | AcOH      | CO                 | BZA       | CuO       |
| 6  | $O_2$       | MAC       | $PhNH_2$  | AcOH      | $H_2O$    | BZA       | $CO_2$             | $C_6H_6$  | $H_2$     |
| 7  | $Cl_2$      | $H_2O$    | AcOH      | OA        | OA        | Acetone   | B(OH) <sub>3</sub> | PhAc      | ZnO       |
| 8  | Hg          | OA        | OA        | MAC       | FA        | HCI       | Ag                 | CO        | PhAc      |
| 9  | $SO_2$      | $H_2S$    | HCI       | PhCHO     | $CH_2O$   | MAC       | $N_2$              | $Ph_2$    | BZA       |
| 10 | $H_2$       | S         | EtOH      | HCI       | HCI       | $NH_3$    | FC                 | Acetone   | CO        |

Abbreviations: AcOH (Acetic acid), Ag (Silver), B(OH)<sub>3</sub> (Boric acid), BZA (Benzoic acid), C<sub>6</sub>H<sub>6</sub> (Benzene), CH<sub>2</sub>O (Formaldehyde), Cl<sub>2</sub>
(Chlorine), CO (Carbon monoxide), CO<sub>2</sub> (Carbon dioxide), CuO (Copper(II) oxide), EDBB (1,1'-(1,2-ethanediyl)bisbenzene), EtOH (Ethanol), FA (Formic acid), FC (Ferrocene), Glc (Glucose), H<sub>2</sub> (Hydrogen), H<sub>2</sub>O (Water), HCl (Hydrochloric acid), Hg (Mercury), H<sub>2</sub>S (Hydrogen sulfide),
MAC (Methylammonium carbonate), N<sub>2</sub> (Nitrogen), NH<sub>3</sub> (Ammonia), O<sub>2</sub> (Oxygen), OA (Oxalic acid), Ph<sub>2</sub> (Biphenyl), PhAc (Acetophenone),
PhCHO (Benzaldehyde), PhNH<sub>2</sub> (Aniline), S (Sulphur), SO<sub>2</sub> (Sulfur dioxide), ZnO (Zinc oxide).

# 69 Analysis of the distribution of substrates

The hypothesis that frequency distributions p(R) of the number of different reactions R in which substrates have participated

<sup>71</sup> in period t follow power-law, normal, exponential and Poisson distributions models were tested using the poweRlaw package (3). <sup>72</sup> The mathematical expressions for these distributions are shown in Table S6 (4). To test whether the experimental distribution

The mathematical expressions for these distributions are shown in Table S6 (4). To test whether the experimental distribution follows one of the given distributions in Table S6, a goodness-of-fit test was used (3), which generates a *p*-value that is based

<sup>74</sup> on the distance between the experimental distribution and the hypothesized distribution (4). In general, if  $p \leq 0.1$ , the

<sup>75</sup> hypothesized distribution is ruled out. Table S7 shows the results for the distributions of the nine periods and their parameters

76 for substrates.

Table S6. Definition of power-law, normal, exponential and Poisson distributions. For each distribution, the basic functional form f(R) is given along with the normalization constant C such that  $\sum_{R=R_{min}}^{\infty} Cf(R) = 1$ , where  $R_{min}$  is the minimum R value from which the distributions begins to apply. The general expression for these distributions is p(R) = Cf(R).

| Name        | f(R)                                                | C                                                                                                    |
|-------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Power law   | $R^{-\alpha}$                                       | $1/\sum_{n=0}^{\infty} (n+R_{min})^{-\alpha}$                                                        |
| Exponential | $e^{-\lambda R}$                                    | $(1 - e^{-\lambda})e^{\lambda R_{min}}$                                                              |
| Poisson     | $\mu^R/R!$                                          | $[e^{\mu} - \sum_{k=0}^{R_{min}-1} \frac{\mu^k}{k!}]^{-1}$                                           |
| Log-normal  | $\frac{1}{R}\exp[-\frac{(\ln R-\mu)^2}{2\sigma^2}]$ | $\sqrt{rac{2}{\pi\sigma^2}} [\operatorname{erfc}^* (rac{\ln R_{min} - \mu}{\sqrt{2}\sigma})]^{-1}$ |

\*erfc stands for the complementary error function (5).

| Parameters  |                                                   |                                                   |                                                    |                                                                           |  |  |  |
|-------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------|--|--|--|
| Period      | Power-law                                         | Exponential                                       | Poisson                                            | Log-normal                                                                |  |  |  |
| Before 1860 | $R_{min} = 2$<br>$\alpha = 1.963773$<br>p = 0.01  | $R_{min} = 13$<br>$\lambda = 0.03506312$<br>p = 0 | $R_{min} = 13$<br>$\mu = 41.02849$<br>p = 0        | $R_{min} = 2$<br>$\mu = -5.196269$<br>$\sigma = 2.827289$<br>p = 0.374    |  |  |  |
| 1860-1879   | $R_{min} = 1$<br>$\alpha = 2.016267$<br>p = 0     | $R_{min} = 1$<br>$\lambda = 0.7320951$<br>p = 0   | $R_{min} = 771$<br>$\mu = 1106$<br>p = 0.089       | $R_{min} = 1$<br>$\mu = -6.733486$<br>$\sigma = 2.985701$<br>p = 0.291    |  |  |  |
| 1880-1899   | $R_{min} = 9$<br>$\alpha = 2.113$<br>p = 0.49     | $R_{min} = 1$<br>$\lambda = 0.6836599$<br>p = 0   | $R_{min} = 4398$<br>$\mu = 4815.667$<br>p = 0.587  | $R_{min} = 2$<br>$\mu = -15.148219$<br>$\sigma = 4.012288$<br>p = 0       |  |  |  |
| 1900-1919   | $R_{min} = 3$<br>$\alpha = 2.177336$<br>p = 0     | $R_{min} = 1$<br>$\lambda = 0.6561324$<br>p = 0   | $R_{min} = 3839$<br>$\mu = 6352.571$<br>p = 0.038  | $R_{min} = 18$<br>$\mu = -50.422936$<br>$\sigma = 7.343984$<br>p = 0.587  |  |  |  |
| 1920-1939   | $R_{min} = 2$<br>$\alpha = 2.160733$<br>p = 0     | $R_{min} = 1$<br>$\lambda = 0.6735098$<br>p = 0   | $R_{min} = 4177$<br>$\mu = 8774.154$<br>p = 0      | $R_{min} = 27$<br>$\mu = -19.421922$<br>$\sigma = 4.956338$<br>p = 0.837  |  |  |  |
| 1940-1959   | $R_{min} = 18$<br>$\alpha = 2.011466$<br>p = 0.11 | $R_{min} = 1$<br>$\lambda = 0.7368087$<br>p = 0   | $R_{min} = 8638$<br>$\mu = 13026.17$<br>p = 0.029  | $R_{min} = 23$<br>$\mu = -15.601899$<br>$\sigma = 4.544417$<br>p = 0.916  |  |  |  |
| 1960-1979   | $R_{min} = 1$<br>$\alpha = 2.340214$<br>p = 0     | $R_{min} = 2$<br>$\lambda = 0.8119482$<br>p = 0   | $R_{min} = 3574$<br>$\mu = 7080.636$<br>p = 0.001  | $R_{min} = 50$<br>$\mu = -0.3703384$<br>$\sigma = 2.3445863$<br>p = 0.927 |  |  |  |
| 1980-1999   | $R_{min} = 1$<br>$\alpha = 2.341685$<br>p = 0     | $R_{min} = 1$<br>$\mu = 0.8174186$<br>p = 0       | $R_{min} = 23031$<br>$\mu = 41872.17$<br>p = 0.064 | $R_{min} = 94$<br>$\mu = -3.513336$<br>$\sigma = 3.218282$<br>p = 0.101   |  |  |  |
| 2000-2015   | $R_{min} = 5$<br>$\alpha = 2.114837$<br>p = 0     | $R_{min} = 2$<br>$\mu = 0.8376273$<br>p = 0       | $R_{min} = 46242$<br>$\mu = 61491.5$<br>p = 0.052  | $R_{min} = 1$<br>$\mu = -1035.13808$<br>$\sigma = 28.84289$<br>p = 0.064  |  |  |  |

Table S7. Parameters and *p*-values for the distributions shown in Table S6, when applied to the distribution of substrates. The *p*-values were calculated running 1,000 simulations.

#### 77 Analysis of jumps for substrates

The distribution of participation of compounds in R different reactions as substrates for the following periods is shown in Figure 2a (main text): Period 1 (Before 1860), Period 2 (1860-1879), Period 3 (1880-1899), Period 4 (1900-1919), Period 5 (1920-1920), Period 6 (1940-1950), Period 7 (1960-1970), Period 8 (1980-1990), Period 9 (2000-2015)

80 (1920-1939), Period 6 (1940-1959), Period 7 (1960-1979), Period 8 (1980-1999), Period 9 (2000-2015).

We found that the participation of substrates in less than 21 reactions ( $R \le 20$ ) accounts for 98% of the whole variance of the distribution (Figure 2a, main text). Therefore, we plotted (Figure S9) the logarithm growth of participation of compounds in  $R \le 20$  different reactions as substrates in the nine periods of Figure 2a. The least squares regression method shows that the logarithm growth of participation of compounds log Comp<sub>i</sub>, with i = 1, ..., 9 follows the equation

85

$$\log \text{Comp}_{i} = 0.7839528i + 7.9552287 + \text{Residual}_{i}$$

where  $\text{Residual}_1 = 0.174906828$ ,  $\text{Residual}_2 = -0.084145563$ ,  $\text{Residual}_3 = 0.221563190$ ,  $\text{Residual}_4 = -0.107935989$ ,  $\text{Residual}_5 = -0.084145563$ ,  $\text{Residual}_3 = 0.221563190$ ,  $\text{Residual}_4 = -0.107935989$ ,  $\text{Residual}_5 = -0.084145563$ ,  $\text{Residual}_3 = 0.221563190$ ,  $\text{Residual}_4 = -0.107935989$ ,  $\text{Residual}_5 = -0.084145563$ ,  $\text{Residual}_3 = 0.221563190$ ,  $\text{Residual}_4 = -0.107935989$ ,  $\text{Residual}_5 = -0.084145563$ ,  $\text{Residual}_3 = 0.221563190$ ,  $\text{Residual}_4 = -0.107935989$ ,  $\text{Residual}_5 = -0.084145563$ 

These residuals pass the Shapiro-Wilk and Kolmogorov-Smirnov normality tests for mean 0 and standard deviation

so sd = 0.2260776, with the corresponding probabilities  $p^{ShW} = 0.7444$  and  $p^{KS} = 0.8711$ . There are two historical jumps, namely between 1860-1879 and 1880-1899, and between 1960-1979 and 1980-1999, corresponding to Residual<sub>3</sub> = 0.221563190

namely between 1860-1879 and 1880-1899, and between 1960-1979 and 1980-1999, corresponding to Residual<sub>3</sub> = 0.221563190and Residual<sub>8</sub> = 0.397940841, which are higher than the other residuals, and still in the range (-2sd, 2sd). As a result, the

and Residual<sub>8</sub> = 0.397940841, which are higher than the other residuals, and still in the range (-2sd, 2sd). As a result, the logarithm difference log Comp<sub>i</sub> – log Comp<sub>i-1</sub>, with i = 2, ... 9 reaches the highest and the second highest at these two periods.



Fig. S9. Logarithm growth of participation of compounds in  $R \leq 20$  different reactions as substrates in the nine periods.

#### Analysis of the distribution of products

<sup>94</sup> The hypothesis that frequency distributions p(R) of the number of different reactions R in which products have participated

in period t follow power-law, normal, exponential and Poisson distributions models were tested using the the poweRlaw

 $_{96}$  package (3). The mathematical expressions for these distributions are shown in Table S6 (4). To test whether the experimental

- $_{97}$  distribution follows one of the given distributions in Table S6, a goodness-of-fit test was used (3), which generates a *p*-value that
- is based on the distance between the experimental distribution and the hypothesized distribution (4). In general, if  $p \leq 0.1$ , the
- hypothesized distribution is ruled out. Table S8 shows the results for the distributions of the nine periods and their parameters
   for products.

| Parameters  |                                                    |                                                   |                                                                         |                                                                                               |  |  |  |
|-------------|----------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|
| Period      | Power-law                                          | Exponential                                       | Poisson                                                                 | Log-normal                                                                                    |  |  |  |
| Before 1860 | $R_{min} = 2$<br>$\alpha = 2.314181$<br>p = 0.049  | $R_{min} = 59$<br>$\mu = 0.0187567$<br>p = 0.718  | $R_{min} = 161$<br>$\mu = 203.6254$<br>p = 0.207                        | $R_{min} = 1$<br>$\mu = -718.58135$<br>$\sigma = 23.31244$<br>p = 0.049                       |  |  |  |
| 1860-1879   | $R_{min} = 1$<br>$\alpha = 2.451058$<br>p = 0      | $R_{min} = 68$<br>$\mu = 0.01125429$<br>p = 0.941 | $R_{min} = 1$<br>$\mu = 1.671426$<br>p = 0                              | $R_{min} = 1$<br>$\mu = -16.007938$<br>$\sigma = 3.667497$<br>p = 0.011                       |  |  |  |
| 1880-1899   | $R_{min} = 5$<br>$\alpha = 2.479312$<br>p = 0.513  | $R_{min} = 2$<br>$\mu = 0.8289619$<br>p = 0       | $R_{min} = 1$<br>$\mu = 1.511293$<br>p = 0                              | $R_{min} = 1$<br>$\mu = -3.909269$<br>$\sigma = 1.944246$<br>p = 0                            |  |  |  |
| 1900-1919   | $R_{min} = 8$<br>$\alpha = 2.467412$<br>p = 0.476  | $R_{min} = 2$<br>$\mu = 0.8198701$<br>p = 0       | $R_{min} = 1$<br>$\mu = 1.435699$<br>p = 0                              | $R_{min} = 1$<br>$\mu = -1.929820$<br>$\sigma = 1.488447$<br>p = 0                            |  |  |  |
| 1920-1939   | $R_{min} = 11$<br>$\alpha = 2.388553$<br>p = 0.881 | $R_{min} = 2$<br>$\mu = 0.8359276$<br>p = 0       | $R_{min} = 1$<br>$\mu = 1.333986$<br>p = 0                              | $R_{min} = 20$<br>$\mu = -17.738687$<br>$\sigma = 4.029873$<br>p = 0.881                      |  |  |  |
| 1940-1959   | $R_{min} = 1$<br>$\alpha = 2.947494$<br>p = 0      | $R_{min} = 2$<br>$\mu = 1.148441$<br>p = 0        | $R_{min} = 1$<br>$\mu = 0.7163911$<br>p = 0                             | $R_{min} = 1$<br>$\mu = -3.183353$<br>$\sigma = 1.522464$<br>p = 0                            |  |  |  |
| 1960-1979   | $R_{min} = 1$<br>$\alpha = 4.126991$<br>p = 0      | $R_{min} = 63$<br>$\mu = 0.0152121$<br>p = 0.13   | $R_{min} = 1$<br>$\mu = 0.2046896$<br>p = 0                             | $R_{min} = 1$<br>$\mu = -10.352775$<br>$\sigma = 2.075666$<br>p = 0                           |  |  |  |
| 1980-1999   | $R_{min} = 1$<br>$\alpha = 3.211598$<br>p = 0      | $R_{min} = 2$<br>$\mu = 0.9182153$<br>p = 0       | $\begin{aligned} R_{min} &= 1\\ \mu &= 0.576151\\ p &= 0 \end{aligned}$ | $R_{min} = 1$<br>$\mu = -8.801885$<br>$\sigma = 2.259969$<br>p = 0                            |  |  |  |
| 2000-2015   | $R_{min} = 1$<br>$\alpha = 3.672836$<br>p = 0      | $R_{min} = 2$<br>$\mu = 0.9465415$<br>p = 0       | $R_{min} = 1$<br>$\mu = 0.3613914$<br>p = 0                             | $\begin{array}{l} R_{min} = 1 \\ \mu = -206.291472 \\ \sigma = 9.765858 \\ p = 0 \end{array}$ |  |  |  |

Table S8. Parameters and p-values for the distributions shown in Table S6, when applied to the distribution of products. The p-values were calculated running 1,000 simulations.

# <sup>101</sup> Similarity of distribution of products

The distance between frequency distributions of participation of compounds in R different reactions as products of Figure 2b (main text) is given by:

$$d(d_i, d_j) = \frac{\sum_{k=1}^{20} |f_i(R_k) - f_j(R_k)|}{f_i(R_k) + f_j(R_k)},$$

where  $d_l$  is a frequency distribution and  $f_l(R_l)$  is the frequency of participation of products in  $R_l$  reactions. Note that only products obtained in less than 21 reactions ( $R \le 20$ ) where considered, for they account for 97% of the whole variance of the distributions (Figure 2b, main text). The results of the pair-wise distances for the nine periods shown in Figure 2b are found in Table S9. It is observed that the closest distributions are  $d_8$  and  $d_9$ , which correspond to periods 1980-1999 and 2000-2015, respectively.

Table S9. Distances between distributions of Figure 2b (main text).

|             | 1860-1879 | 1880-1899 | 1900-1919 | 1920-1939 | 1940-1959 | 1960-1979 | 1980-1999 | 2000-2015 |
|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Before 1860 | 6.00659   | 13.8973   | 15.4195   | 17.3573   | 17.4216   | 15.2836   | 19.5405   | 19.5062   |
| 1860-1879   |           | 10.0815   | 12.4142   | 15.4533   | 15.6046   | 12.5027   | 19.1822   | 19.1245   |
| 1880-1899   |           |           | 3.54215   | 8.94705   | 9.52587   | 5.48084   | 17.7134   | 17.5695   |
| 1900-1919   |           |           |           | 5.90002   | 6.70359   | 4.84538   | 16.87     | 16.688    |
| 1920-1939   |           |           |           |           | 2.06348   | 7.05896   | 14.6438   | 14.3598   |
| 1940-1959   |           |           |           |           |           | 6.10315   | 14.2749   | 14.0378   |
| 1960-1979   |           |           |           |           |           |           | 15.5765   | 15.6039   |
| 1980-1999   |           |           |           |           |           |           |           | 1.00596   |

#### 110 Analysis of jumps for products

The distribution of participation of compounds in R different reactions as products for the following periods is shown in Figure 2b (main text): Period 1 (Before 1860), Period 2 (1860-1879), Period 3 (1880-1899), Period 4 (1900-1919), Period 5 (1920-1939), Period 6 (1940-1959), Period 7 (1960-1979), Period 8 (1980-1999), Period 9 (2000-2015).

We found that the participation of products in less than 21 reactions ( $R \le 20$ ) accounts for 97% of the whole variance of the distribution (Figure 2b, main text). Therefore, we plotted (Figure S10) the logarithm growth of participation of compounds in  $R \le 20$  different reactions as products in the nine periods of Figure 2b. The least squares regression method shows that the logarithm growth of participation of compounds log Comp<sub>i</sub>, with i = 1, ..., 9 follows the equation

 $\log \text{Comp}_i = 0.8447904i + 8.3520785 + \text{Residual}_i,$ 

where  $\text{Residual}_1 = 0.04787297$ ,  $\text{Residual}_2 = -0.17878533$ ,  $\text{Residual}_3 = 0.28512578$ ,  $\text{Residual}_4 = -0.07595590$ ,  $\text{Residual}_5 = -0.20859164$ ,  $\text{Residual}_6 = -0.16903558$ ,  $\text{Residual}_7 = 0.35814213$ ,  $\text{Residual}_8 = 0.16272740$ , and  $\text{Residual}_9 = -0.22149983$ .

These residuals pass the Shapiro-Wilk and Kolmogorov-Smirnov normality tests for mean 0 and standard deviation sd = 0.2228266, with the corresponding probabilities  $p^{ShW} = 0.1398$  and  $p^{KS} = 0.6966$ . There are two historical jumps, namely between 1860-1879 and 1880-1899, and between 1940-1959 and 1960-1979, corresponding to Residual<sub>3</sub> = 0.28512578 and Residual<sub>7</sub> = 0.35814213, which are higher than the standard deviation sd = 0.2228266 (and also higher than the other residuals), and still in the range (-2sd, 2sd). As a result, the logarithm difference  $\log \operatorname{Comp}_i - \log \operatorname{Comp}_{i-1}$ , with  $i = 2, \ldots 9$ reaches the highest and the second highest at these two periods.



Fig. S10. Logarithm growth of participation of compounds in  $R \leq 20$  different reactions as products in the nine periods.

# 127 Analysis of the distribution of targets

The frequency distributions of the number of reactions R producing the same target is shown in Figure S11.



Fig. S11. Frequency distributions of number of reactions  ${\it R}$  producing the same target.

The hypothesis that frequency distributions p(R) of the number of different reactions R in which targets have participated

in period t follow power-law, normal, exponential and Poisson distributions models were tested using the poweRlaw package (3).

The mathematical expressions for these distributions are shown in Table S6 (4). To test whether the experimental distribution follows one of the given distributions in Table S6, a goodness-of-fit test was used (3), which generates a p-value that is based

on the distance between the experimental distribution and the hypothesized distribution (4). In general, if  $p \leq 0.1$ , the

<sup>&</sup>lt;sup>134</sup> hypothesized distribution is ruled out. Table S10 shows the results for the distributions of the nine periods and their parameters

<sup>135</sup> for targets.

|             | Parameters                                        |                                                   |                                                 |                                                                          |  |  |  |  |
|-------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|
| Period      | Power-law                                         | Exponential                                       | Poisson                                         | Log-normal                                                               |  |  |  |  |
| Before 1860 | $R_{min} = 2$<br>$\alpha = 2.417702$<br>p = 0.186 | $R_{min} = 17$<br>$\mu = 0.06030108$<br>p = 0.171 | $R_{min} = 56$<br>$\mu = 63.30087$<br>p = 0.721 | $R_{min} = 1$<br>$\mu = -30.626118$<br>$\sigma = 4.792057$<br>p = 0.186  |  |  |  |  |
| 1860-1879   | $R_{min} = 1$<br>$\alpha = 2.532562$<br>p = 0.189 | $R_{min} = 12$<br>$\mu = 0.08234484$<br>p = 0.003 | $R_{min} = 1$<br>$\mu = 1.269463$<br>p = 0      | $R_{min} = 1$<br>$\mu = -7.279544$<br>$\sigma = 2.480881$<br>p = 0.197   |  |  |  |  |
| 1880-1899   | $R_{min} = 3$<br>$\alpha = 2.658096$<br>p = 0.223 | $R_{min} = 84$<br>$\mu = 0.01255286$<br>p = 0.67  | $R_{min} = 1$<br>$\mu = 1.216067$<br>p = 0      | $R_{min} = 5$<br>$\mu = -5.920010$<br>$\sigma = 2.291455$<br>p = 0.584   |  |  |  |  |
| 1900-1919   | $R_{min} = 3$<br>$\alpha = 2.795804$<br>p = 0.001 | $R_{min} = 47$<br>$\mu = 0.01875625$<br>p = 0.064 | $R_{min} = 1$<br>$\mu = 1.197611$<br>p = 0      | $R_{min} = 7$<br>$\mu = -20.806110$<br>$\sigma = 3.752783$<br>p = 0.001  |  |  |  |  |
| 1920-1939   | $R_{min} = 7$<br>$\alpha = 2.636928$<br>p = 0.063 | $R_{min} = 90$<br>$\mu = 0.01074621$<br>p = 0.514 | $R_{min} = 1$<br>$\mu = 1.094216$<br>p = 0      | $R_{min} = 11$<br>$\mu = -11.385738$<br>$\sigma = 3.071208$<br>p = 0.738 |  |  |  |  |
| 1940-1959   | $R_{min} = 2$<br>$\alpha = 3.339249$<br>p = 0     | $R_{min} = 68$<br>$\mu = 0.0181202$<br>p = 0.886  | $R_{min} = 1$<br>$\mu = 0.5954598$<br>p = 0     | $R_{min} = 1$<br>$\mu = -2.467482$<br>$\sigma = 1.333142$<br>p = 0       |  |  |  |  |
| 1960-1979   | $R_{min} = 1$<br>$\alpha = 4.198562$<br>p = 0     | $R_{min} = 1$<br>$\mu = 2.454067$<br>p = 0        | $R_{min} = 1$<br>$\mu = 0.1825004$<br>p = 0     | $R_{min} = 1$<br>$\mu = -6.231822$<br>$\sigma = 1.609130$<br>p = 0       |  |  |  |  |
| 1980-1999   | $R_{min} = 1$<br>$\alpha = 3.479212$<br>p = 0     | $R_{min} = 2$<br>$\mu = 1.154287$<br>p = 0        | $R_{min} = 1$<br>$\mu = 0.390401$<br>p = 0      | $R_{min} = 1$<br>$\mu = -6.062233$<br>$\sigma = 1.795392$<br>p = 0       |  |  |  |  |
| 2000-2015   | $R_{min} = 1$<br>$\alpha = 3.855568$<br>p = 0     | $R_{min} = 2$<br>$\mu = 0.954044$<br>p = 0        | $R_{min} = 1$<br>$\mu = 0.2859205$<br>p = 0     | $R_{min} = 1$<br>$\mu = -118.983190$<br>$\sigma = 7.210826$<br>p = 0     |  |  |  |  |

Table S10. Parameters and p-values for the distributions shown in Table S6, when applied to the distribution of targets. The p-values were calculated running 1,000 simulations.

# 136 References

- 1. Greenwood NN, Earnshaw A (1998) Chemistry of the elements. (Butterworth Heinemann).
- Leal W, Restrepo G, Bernal A (2012) A network study of chemical elements: From binary compounds to chemical trends.
   MATCH Commun. Math. Comput. Chem. 68:417-442.
- 3. Gillespie C (2015) Fitting heavy tailed distributions: The powerlaw package. Journal of Statistical Software, Articles
   64(2):1–16.
- 4. Clauset A, Shalizi C, Newman M (2009) Power-law distributions in empirical data. SIAM Review 51(4):661–703.
- 143 5. Gautschi W (1972) Error function and Fresnel integrals, eds. Abramowitz M, Stegun IA. (Dover), p. 299.