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Material and Methods 

External Transcriptomic Datasets 

We searched the LINCS database, a catalog of transcriptomics assays that directly measured 978 

landmark transcripts and computationally inferred >12,200 additional genes,1 which contains transcriptional 

responses of >50 human cell lines to each of ~20,000 compounds across a range of conditions.2 The >22,200 

transcripts generated using Affimetrix Human Genome HGU133A microarray platform for the Library of 

Integrated Cellular Signatures (LINCS) database were annotated using the Gene Expression Omnibus (GEO) 

probeTOentrez_gene mapping file dated 10/13/2016.  

We retrieved gene expression data on 15 available ART drugs before and after 6- and 24-hour 

treatments at a dose of 10 µM each across up to 59 different human cell lines (the number of total 

experimental instances per drug ranging between 37 and 174), for a total of 1,127 experiments (Supplemental 

Table S1). The 15 available ART drugs belonged to five classes: NNRTIs (efavirenz and nevirapine), NRTIs 

(zalcitabine, zidovudine, didanosine, stavudine, tenofovir, and lamivudine), PIs (indinavir, nelfinavir, 

ritonavir, and saquinavir), integrase inhibitors (raltegravir and elvitegravir), and an entry inhibitor 

(maraviroc).  

To identify novel mechanisms by which ART may promote CAD, we looked for co-expression 

enrichments of ART-induced transcripts in CAD-causal regulatory gene networks (RGNs) and their key 

drivers (Supplemental Table S2) reported in the STAGE study.3 In that study, seven tissues - atherosclerotic 

arterial wall, non-atherosclerotic arterial wall (internal mammary artery), liver, skeletal muscle, visceral fat, 

subcutaneous fat, and whole blood - were obtained during coronary artery bypass surgery from 114 patients 

with advanced CAD.4 RGNs, their key drivers, and co-expression modules were inferred by applying 

weighted co-expression network and Gaussian Bayesian network algorithm to genotype data and 612 gene 

expression profiles obtained from these patients. Genes with expression single nucleotide polymorphisms 



(eSNPs), transcription factors, CAD-associated genome-wide association hits, or genes for established CAD 

biological processes and molecular functions according to Gene Ontology (GO)5 were used as the priors to 

defining parent node of other genes.3 The Bayesian Information Criterion (BIC) was applied to score models; 

a multiple-restart greedy hill-climbing algorithm, with edge additions, deletions, and reversals, was used to 

search locally optimal models.6 Key drivers were identified from the RGNs as described elsewhere.7  The 30 

RGNs examined in the present study were identified by the STAGE study3as being CAD-causal based on 

their association with several key CAD phenotypes, including extent of coronary atherosclerosis, plasma 

lipid levels, glucose metabolism biomarkers, and the inflammatory marker C-reactive protein. 

Enrichment of CAD-related Genes in ART-Induced Transcriptional Signatures 

Using LINCS gene expression profiles before and after treatment with each drug, we first generated ART-

induced gene signatures by employing a heuristic based on selection of the 100 most over or under-expressed 

genes in response to ART from each experiment across different cell types and time exposures.  Due to the 

experimental complexity of the LINCS collection, and the distribution of experimental replicates across 

multiple treatment plates, standard differential gene expression methodologies are not well suited to defining 

individual drug signatures. Therefore, the drug-induced transcriptomic profiles available within LINCS were 

best suited to “signature-level” connectivity mapping, rather than as a compendium of individual drug-gene 

associations with corresponding statistical significance levels. This approach was more comparable to a 

gene-set enrichment analysis type paradigm, than a conventional differential expression analysis, and was not 

based on statistical significance. Signatures were normalized with reference to within-plate dimethyl 

sulfoxide (DMSO) controls, which allowed comparison and combination of signatures across disparate 

treatment conditions, and treatment plates. To define individual drug signatures, we ranked gene expression 

by the mean robust Z-score (averaged across all experimental instances for the same drug) in descending 

order, and selected the genes with the top and bottom 100 most extreme robust Z-scores.  

We only included the genes that were up or downregulated in 2 or more experiments. We then 

ranked gene expression by the mean robust Z-score (averaged across all experimental instances for the same 



drug) in descending order, and selected the genes with the top and bottom 100 most extreme robust Z-scores. 

We selected this threshold for consistency with existing connectivity mapping tools,8 and also previous 

reports of optimal ‘rediscovery’ of known clinical indications for drug signatures based on the 100 most 

extreme genes.9 To assess the overrepresentation of the genes from the 30 CAD-causal RGNs among the 

individual ART-induced genes, we applied a one-tailed Fisher's exact test assessing whether the probability 

of observing the genes on both lists was greater than expected by chance. Of 7,378 genes in the 171 co-

expression modules identified in the STAGE study,3 4,576 genes were present in LINCS and used in our 

analysis. The Benjamini-Hochberg method was applied globally to account for multiple hypotheses testing 

across all ART-RGN combinations for up and downregulated genes (900 tests).10 

Co-expression Analysis of CAD-related Genes in ART-induced Transcriptional 

Signatures 
To determine co-expression patterns of the genes associated with ART response and those linked to 

CAD, for each ART transcriptional profile extracted from LINCS, we assessed which of the 30 

CAD-causal RGNs were more strongly co-expressed with ART-induced gene signatures than with 

random sets of genes using the WGCNA R package.11 We calculated the connection strengths for all 

pairs of ART-induced genes within each of the 30 CAD-causal RGNs using Pearson correlation analysis and 

compared those to the connection strengths from 1,000 random gene sets of the same size. Since in a 

weighted gene co-expression network analysis (as WGCNA), the soft-threshold power is recommended as a 

noise filtering, soft-threshold power β was used to calculate adjacency based on the criterion of approximate 

scale-free topology. We used the guidelines at 

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/faq.html to choose an 

appropriate threshold for network construction. We generated a connectivity measure, k, which is an average 

of adjacency values derived from weighted Pearson correlation coefficients using scaling parameter β = 6, 

that assessed the co-expression of the ART-induced genes within each RGN versus within the random set of 

genes. The strength of co-expression of the ART-induced genes within the CAD-causal RGN genes 

compared to those within random sets of genes, was assessed using a Wilcoxon rank-sum test implemented 

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/faq.html


in the coin R package.12 We used the NetWeaver R package13; 14 to generate a circular layout summarizing all 

significant results across the 15 ART drugs with adjusted median P<0.05 across the 1,000 tests.  

Experimental Validation 

Cell incubation and phenotyping 

For experimental validation, we selected the three PIs (ritonavir, nelfinavir and saquinavir) whose drug-

induced gene signatures were both enriched and co-expressed in atherosclerosis-related RGN (AR-RGN). 

We also included an integrase inhibitor raltegravir as a negative control since it was previously reported to 

not induce CE accumulation in THP-1 cells and an entry inhibitor maraviroc as it induced downregulation of 

PQBP1 in THP-1 cells in LINCS and was associated with beneficial lipid profiles in HIV patients treated 

with the drug.  To validate these 5 drugs, we used the in vitro atherosclerosis model based on human THP-1 

monocytic cell line.  In this model, THP-1 cells are differentiated into macrophages and loaded with 

acetylated low-density lipoproteins (AcLDLs) to induce cholesteryl ester (CE) accumulation and foam cell 

formation. In brief, human THP-1 cells (American Type Culture Collection, ATCC) were cultured in RPMI-

40 medium (Corning) supplemented with 10% fetal bovine serum (Gibco) and 1% penicillin/streptomycin 

(Sigma) at 37°C, 5% CO2. Macrophage differentiation was induced in vitro with phorbol-12-myristate-13-

acetate (Sigma) (50 ng/mL) for 72 hours at 37°C in 5% CO2, as described.15 Macrophages were first pre-

treated for 24 hours with vehicle (DMSO) or with either saquinavir (Sigma), ritonavir, nelfinavir, maraviroc, 

or raltegravir (all from Selleckchem) at concentrations of 5, 15, or 30 µM. The cells were then incubated 

with AcLDL (50 µg/mL; Alfa Aesar) for 48 hours to generate foam cells; drug treatment was maintained 

throughout the experiment.  The effect of each drug treatment on intracellular CE accumulation was 

measured in cell lysates with the Total Cholesterol and Cholesteryl Ester Colorimetric/Fluorometric Assay 

kit (BioVision) as recommended by the manufacturer. For all treatments, 3 independent experiments per drug 

were performed with 3 technical replicates for each condition (n=9); values are reported as mean ± SEM. 

Differences in CE levels in all experiments were assessed on raw data using analysis of variance with 

Dunnett’s adjustment for multiple comparisons. We used GraphPad Prism 6 (La Jolla, CA) and considered 

adjusted P<0.05 to be statistically significant. 



RNA sequencing analyses 

We performed RNA-sequencing (RNA-Seq; 30 million read depth, single-end reads, 100 base pairs) using 

the Illumina HiSeq 2500 platform on 32 RNA samples isolated from AcLDL-loaded macrophages after 

treatment with vehicle (DMSO) or with ARTs (ritonavir at 30 µM; nelfinavir, saquinavir and maraviroc at 15 

µM). The ART with no effect on CE accumulation (raltegravir) was excluded. We first aligned the RNA-Seq 

data with HISAT216 to GRCh38, and quantified gene expression with Subread17 and StringTie18 to create two 

main assembled count matrices—one for genes and one for transcripts. For normalization and estimation of 

differentially expressed genes while comparing drug perturbations to DMSO treatment, we used DESeq219 

after adjustment for experimental batch effects. To assess whether genes in a particular RGN were over-

represented among the differentially expressed genes from the four drug perturbations, we used an empirical 

null distribution including only protein-coding genes (17,157 in total) to avoid any biases introduced by 

noncoding RNA present in our RNA-Seq data but absent in the microarray data from LINCS.  

Transfection of small interfering RNA 

To test the effect of the key driver PQBP1 on foam cell formation induced by the 3 ART drugs associated 

with CE accumulation, we silenced PQBP1 by transfecting THP-1-derived macrophages with a pool of 3 

PQBP1 small interfering RNA (siRNA) oligonucleotides (Ambion, Thermo Fisher Scientific, siRNA IDs: 

s19619, s19621, s527195), using Lipofectamine RNAiMax (Invitrogen) according to the manufacturer’s 

instructions. Another pool of 2 control siRNA oligonucleotides (Ambion, Thermo Fisher Scientific, cat. no. 

4390843 and 4390846) was used as control. The efficiency of target gene silencing by TaqMan analyses 

(Hs00172888_m1) was affirmed for up to 72 hours. The CE accumulation after PQBP1 silencing was 

quantified in 3 independent experiments with 3 technical replicates for each condition (n=9) and 2 technical 

replicates for each condition of PQBP1 RNA levels quantification (n=6). 

  



Supplemental Tables 

Supplemental Table S1. The list of the 15 antiretroviral drugs (ART) with transcriptional data available for 
various cell types in the LINCS database.  

Drug  
name 

Drug 
class Cell line 

Maraviroc Entry 
inhibitor 

A375,A549,A673,AGS,CL34,CORL23,COV644,DV90,EFO27,HA1E,HCC15,HCC515, 
HCT116,HEC108,HEPG2,HT115,HT29,JHUEM2,LOVO,MCF7,MDST8,NCIH1694, 
NCIH1836,NCIH2073,NCIH508,NCIH596,NOMO1,OV7,PC3,PL21,RMGI, 
RMUGS,SKLU1,SKM1,SKMEL1,SKMEL28,SNGM,SNU1040,SNUC4,SNUC5, 
SW480,SW620,SW948,T3M10,THP1,TYKNU,U937,VCAP,WSUDLCL2,H1299,RKO 

Raltegravir Integrase 
inhibitor 

A375,A549,ASC,HA1E,HCC515,HEPG2,HT29,MCF7,NEU,NPC,PC3,SKB,VCAP 

Elvitegravir Integrase 
inhibitor 

A375,A549,HA1E,HCC515,HEPG2,HT29,MCF7,NEU,PC3,VCAP 

Efavirenz NNRTI A375,A549,HA1E,HT29,MCF7,PC3,VCAP 

Nevirapine NNRTI A375,VCAP,A549,HA1E,HT29,MCF7,PC3,HCC515 

Zalcitabine NRTI A375,A549,HA1E,HT29,MCF7,PC3,VCAP 

Zidovudine NRTI MCF7,PC3,VCAP,A375,A549,HA1E,HCC515,HT29 

Didanosine NRTI A375,A549,HA1E,HT29,MCF7,PC3,VCAP 

Stavudine NRTI HT29,VCAP,A375,A549,HA1E,MCF7,PC3,HCC515 

Tenofovir NRTI A375,A549,ASC,HA1E,HCC515,HEPG2,HT29,MCF7,NPC,PC3,PHH,SKB,VCAP 

Lamivudine NRTI A375,A549,HA1E,HCC515,HEPG2,HT29,MCF7,PC3,VCAP 
Indinavir PI A375,A549,HA1E,HT29,MCF7,PC3,VCAP 
Nelfinavir PI A375,A549,HA1E,HT29,MCF7,PC3,VCAP,ASC,HCC515,HEPG2,NEU,NPC,PHH,SKB 
Ritonavir PI A375,A549,HA1E,HT29,MCF7,PC3,VCAP,HCC515 
Saquinavir PI HA1E,HCC515,PC3,VCAP,A375,A549,HT29,MCF7,ASC,HEPG2,NPC,PHH,SKB 

NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitor, PI, Protease 
inhibitor. 

  



Supplemental Tables as Excel files 
 

Supplemental Table S2. List of coronary artery disease (CAD)-causal regulatory gene networks (RGN) 
derived in the STAGE study (Talukdar et al.). 

Supplemental Table S3. The adjusted  p-values for co-expression between 30 regulatory gene networks 
(RGN) and 15 antiretroviral drugs. 

  



Supplemental Figure 

  

Supplemental Figure S1. Heat map of differentially expressed key driver genes from the atherosclerosis-
related regulatory gene network (AR-RGN) and their isoforms comparing treatments with DMSO versus 
maraviroc, ritonavir, saquinavir, and nelfinavir, respectively, in THP-1 foam cells incubated with acetylated 
low density lipoprotein.   
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