1 Supplemental Information for

2 KNL1 binding to PP1 and microtubules is mutually exclusive

3

4 Rakhi Bajaj¹, Mathieu Bollen², Wolfgang Peti¹, Rebecca Page^{1*}

⁵ ¹Department of Chemistry and Biochemistry, University of Arizona, AZ 85721, USA; ²Laboratory

6 of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven,

7 Belgium.

- 8
- 9

11

12 Figure S1. Isothermal titration calorimetry of KNL1 with PP1.

- 13 Related to Figure 1.
- 14 (**A**) KNL1₁₋₁₅₀:PP1γ₇₋₃₂₃, KNL1₁₋₈₀:PP1γ₇₋₃₂₃, KNL1₂₃₋₈₀:PP1γ₇₋₃₂₃, KNL1₂₃₋₈₀:PP1γ₇₋₃₀₀, KNL1₂₃-
- 15 ₈₀:PP1α₇₋₃₃₀.

16 **(B)** WT and phosphomimetic mutants of KNL1 with PP1: KNL1₁₋₈₀:PP1 α_{7-330} , KNL1₁₋₈₀:PP1 α_{7-330} , KNL1₁₋₈₀:PP1 α_{7-330} , KNL1₁₋₈₀:PP1 α_{7-330} , KNL1₁₋₈₀:PP1 α_{7-330} .

- 18 (C) SILK mutants of KNL1 with PP1: KNL1_{1-80SILKdead}:PP1α₇₋₃₃₀₀, KNL1_{1-80S24AS25A}:PP1α₇₋₃₃₀.
- 19 (D) RVxF mutant of KNL1 with PP1: KNL1_{1-80S60A}:PP1 α_{7-330}
- 20

22 Figure S2. KNL1 is not isoform specific.

- 23 Related to Figure 1.
- 24 (A) Sequence alignment of PP1 α and PP1 γ , with sequence difference shaded in orange. PP1
- 25 secondary structure elements are shown as cylinders (helices) and arrows (strands) above the
- 26 sequence.

(B) The structure of the KNL1:PP1 holoenzyme with KNL1 in pink and PP1 shown as a grey surface. Residues that differ between PP1 α and PP1 γ are shaded grey. KNL1 does not interact

- 29 with any residues that differ between the two PP1 isoforms.
- 30 (**C**) F_{o} - F_{c} omit map contoured at 1 σ of bound KNL1.
- 31

Figure S3. Sequence logo of an alignment of KNL1 PP1 interaction domain (residues 1-

- **80)** from 27 organisms from T. adhaerens to H. sapiens.
- 35 Related to Figure 1.
- 36 PP1 interaction motifs, which are highly conserved, are highlighted in yellow. Serine residues
- 37 phosphorylated by Aurora B Kinase are starred.
- 38

40 Figure S4. KNL1 is phosphorylated by Aurora Kinase at four residues.

41 Related to Figure 3.

2D [¹H,¹⁵N] HSQC of (A) KNL1₁₋₈₀ (black) and (B) pKNL1₁₋₈₀ (phosphorylated by Aurora Kinase;
orange). Aurora B phosphorylates KNL1 at residues S24, S25, S56 and S60.

44 (C) Chemical shift index (CSI) plotted against residue number for KNL1 (black) and pKNL1

45 (orange); the phosphorylated serine residues are indicated (red). Both un-phosphorylated and

46 phosphorylated KNL1 lack preformed secondary structure elements.

47

49 Figure S5. KNL1 residues are independently phosphorylated by Aurora B Kinase.

50 Related to Figure 3.

51 2D [¹H,¹⁵N] HSQCs of Aurora B kinase phosphorylated KNL1 variants: (A) pKNL1₁₋₈₀S24A and

52 (B) pKNL1₁₋₈₀S60A. Each single point mutation does not alter the ability of Aurora B kinase to

phosphorylate the remaining three Ser residues. *, N-H^N cross-peak of pS25 in KNL-1₁₋₈₀ S24A.

54 **pS56 peak is visible at lower contours.

Figure S6. *MTBS1 is the primary MT binding site in KNL1.*

- 57 Related to Figure 4
- **(A)** An overlay of 2D [¹H,¹⁵N] HSQC spectrum of free (black) and MTB-bound KNL1₂₂₋₈₀ (green).
- 59 (**B**) Normalized Intensity ratios of $KNL1_{MTbound}(I)/KNL1_{free}(I_0)$ upon addition of microtubules plotted
- vs amino acid sequence of KNL1₁₋₈₀; MTB binding site 2 is shaded in light blue. PP1 binding sites
- 61 (SILK, RVxF and $\Phi\Phi$) are highlighted in pink.