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Supplementary information 
 

Methods 

Clade selection  

 Neornithine family-level crown clades were selected based on two criteria: (i) they 

exhibit present-day geographic distributions generally restricted to tropical and subtropical 

latitudes, and (ii) they have known, well-constrained Paleogene total-clade fossil 

representatives. 10 such clades (Anseranatidae, Cariamidae, Coliidae, Leptosomidae, 

Musophagidae, Nyctibiidae, Podargidae, Steatornithidae, Todidae, Trogonidae) have 

previously been the subject of paleobiogeographic studies, and their fossil representatives the 

subject of detailed phylogenetic analysis (e.g., 11-39, although see (1) regarding Anatalavis). 

Additional clades that generally fit these criteria (e.g., Trochilidae, Psittaciformes) exhibit 

broader extant distributions that extend well beyond the subtropics; resultant niche models 

would be so broad that deep-time niche model projections would have been assured of 

encompassing fossil occurrences. 

 

Ecological model inputs 

Distributional data.  

Distributional data for each species were drawn from the Global Biodiversity 

Information Facility (www.gbif.org) (Fig. 1; Figs. S21-30). We inspected all records with 

respect to known ranges of species, removing those that reflected either errors or outdated 

taxonomic arrangements. We rarefied distributional data in environmental space using a 

modified version of the gridSample function in R (2), allowing only one occurrence per 

unique environmental combination. The process of removing repetitive occurrences under 

similar environmental conditions ensures that spatial autocorrelation in environmental 



characteristics does not interact with regional variation in sampling intensity to introduce 

biases in niche estimates.  

 

Environmental data.  

Present. To characterize present-day climatic landscapes, we used four environmental 

variables at 5’ spatial resolution from the WorldClim bioclimatic data set (3): maximum 

temperature of warmest month, minimum temperature of coldest month, precipitation of the 

wettest month, and precipitation of the driest month. These layers were selected from among 

the 19 available bioclimatic variables because they are thought to provide broad-scale 

constraints on avian distributional patterns and were available from our past climate model 

simulations (see below).  

 

Past. Estimates of past climates were simulated for four time periods: Ypresian (~56–

47.8 Ma), Priabonian (~37.8–33.9 Ma), Rupelian (~33.9–28.1 Ma) and the Chattian (~28.1–

23.03 Ma). Data were derived from Paleogene simulations produced by two general 

circulation models (GCMs): FAMOUS (4) and HadCM3L (5, 6). These models are closely 

related to each other in that they include near-identical parameterisations of physical and 

dynamical processes. Model spatial resolution from HadCM3L (3.75° x 2.5° atmosphere and 

1.25° x 1.25° ocean longitude by latitude resolution) is reduced in FAMOUS (7.5° x 5.0° for 

both the atmosphere and ocean) to allow longer simulations and therefore a more equilibrated 

climate. 

The Ypresian model comes from FAMOUS, and is derived from the perturbed 

physics ensemble (PPE) of (4). This modeling study is one of very few to date that has had 

success in simulating the extreme mid- and high-latitude heat of the early Eocene. 

Paleogeography was reconstructed using similar methods to (7), and to the HadCM3L early 



Eocene simulations conducted by (8). No flow occurs between the global oceans and the 

Arctic Ocean in these simulations, although opening these gateways could influence climate 

(9), and these simulations do not explicitly represent lakes. Proxy measurements indicate CO2 

in the early Eocene was substantially higher than at present (10). For these early Eocene 

simulations, CO2 was set at 560 ppmv (2x pre-industrial concentrations). Although this is at 

the lower end of the range of predicted CO2 values for the early Eocene, the resulting climate 

is in good agreement with proxy reconstructions (11). All other greenhouse gases were set to 

pre-industrial values. Over 100 simulations with varying internal model parameters were 

initially run using the aforementioned boundary conditions for up to 10,000 years, and 

climate means were calculated from the final 30 years of each experiment. From this 

ensemble of more than 100, we selected five Ypresian simulations for ecological modelling; 

our selections were based on i) simulation accuracy in representing the Ypresian climate as 

recorded in terrestrial and marine proxy records and ii) accuracy in simulating the present-

day climate, which was measured in a complementary set of simulations (12) and compared 

to present-day observational data.  These 5 simulations were named E11, E12, E13, E15 and 

E17 in (4).   

Priabonian, Rupelian and Chattian climate simulations were derived from a version of 

the UK Met Office coupled ocean-atmosphere general circulation model HadCM3L that 

relied on Getech Plc. paleogeographies (13). A dynamic vegetation model was employed, 

TRIFFID (14), coupled to the MOSES 2.1 land surface scheme (14). HadCM3L has been 

used for a wide range of paleoclimate studies of the Paleogene (5, 6, 15). Although 

computationally slower than FAMOUS, it is fast compared to more recent GCMs, allowing 

long integrations when simulating past climate states so that models approach equilibrium in 

the surface and mid-to-deep-ocean (6). Moreover, HadCM3L outperforms some higher-

fidelity CMIP5 models when compared to observations (13). Each simulation was run for 



1422 model years using a consistent four-stage initialization and spin-up approach with 

geologic stage-specific boundary conditions (see (6) for details). Priabonian, Rupelian and 

Chattian paleogeographies were provided by Getech Plc., with reconstructions from an 

extensive range of geological databases representing the high stand sea level environment at 

each stage-age mid-point. Stage-specific solar forcing was applied using the method of (16). 

All simulations include a modern orbital configuration, which was taken to be representative 

of the mean state through multiple orbital cycles. Two simulations that incorporated ice 

sheets were performed for each time slice with two values of atmospheric CO2 concentration 

(4x and 2x pre-industrial), designed to sample some of the uncertainty in CO2 concentration 

through this interval. Output from all the HadCM3L simulations is available from 

http://www.paleo.ggy.bris.ac.uk/access_simulations, wherein the simulations are named tdluk 

(4x Priabonian), tdwjk (2x Priabonian), tdlul (4x Rupelian), tdlup (2x Rupelian), tdlux (4x 

Chattian), and tdluq (2x Chattian). Tdlu* is described in full in (6), and tdwjk is a new 

simulation that used the same spin-up format as the tdlu* simulations.	

 

Ecological modeling  

Clade tolerances were quantified using Maxent v.3.3.3k, a maximum entropy 

algorithm that estimates suitable environmental combinations for species under a null 

expectation that suitability is proportional to availability (17). We used present-day 

environmental conditions to constrain clade tolerances, and resulting models were then 

projected onto Eocene and Oligocene climatic conditions to estimate the geographic regions 

that would have been suitable for them from the Ypresian through the Chattian, ~56 to ~23 

million years ago.  

 Model calibration should be performed in regions that have been sampled by 

researchers and that have been accessible to the species over their lifetime (18-20). Given the 



distinctive vagility of birds, we assumed large search radiuses for these calibration regions, 

testing two different extents: (i) an area defined by a 300 km buffer around species’ 

occurrence points, and (ii) global terrestrial area, which assumes excellent dispersal capacity 

and thorough sampling of well-known and well-sought-after species. Model results did not 

differ significantly based on calibration region, and thus we present only those models 

calibrated on global, terrestrial areas. 

Ecological modelling was performed using default parameters, with the exception of 

(i) setting a random seed for ten bootstrap replicates, and (ii) disabling clamping but allowing 

for extrapolation when transferring models to past climatic conditions (21). The median value 

from the ten bootstrap replicates was used in all subsequent analyses. From these median 

climatic layers, we calculated a mean suitability map to characterize central tendencies for 

each stage-level paleo-projection—that is, we averaged the five Ypresian, two Priabonian 

(4xP I and 2xPI CO2), two Rupelian (4xPI and 2xPI CO2), and two Chattian (4xPI and 2xPI 

CO2) scenarios. Note, however, that ecological models built using the different climate 

scenarios were remarkably similar, and therefore averaging had little effect on downstream 

analyses.  

All ecological niche models were validated using partial receiver operating 

characteristic analyses (22) in the ‘PartialROC’ function in the ‘ENMGadgets’ package for R 

(23). We performed 1000 bootstrap replicates, with each replicate sampling half of the 

occurrences randomly and allowing for 5% omission. Raw ‘area under the curve’ of the 

receiver operating characteristic plots (AUCs) were also evaluated as a measure of overall 

discriminatory ability of the model (24) (Table S1).   

 Ecological models were discretized to binary suitability maps using two threshold 

approaches: Least Training Presence (25) and MaxSSS (26) using custom scripts written in 

R. The latter approach is based on maximizing the sum of sensitivity and specificity, and 



performs well when only presence data are available (26). Two thresholds were used to 

assess the sensitivity of results to the threshold method.  

  

Post-modeling analyses 

  We assessed the ability of paleo-projections of suitable habitat to correctly predict 

fossil occurrence localities. The correspondence between fossil sites and paleo-projections 

was analyzed as follows: fossil sites were transformed (paleo-rotated) so that they reflected 

their geographical position during the period in which they were deposited. Two paleo-plate 

models were used for transformations: Getech (see (27) and EarthByte via the PaleoGIS 

extension for ArcGIS (28)). Localities were accorded a buffer of 25 km using the ‘gBuffer’ 

function in the ‘rgeos’ package for R (29). Localities were buffered to account for uncertainty 

in both paleo-plate rotations and georeferencing, and to reflect the minimum likely area the 

fossil would have occupied when extant. These buffered localities were then intersected with 

the suitable area predicted for the time period corresponding to the age of the fossil site using 

a custom script written in R.  

We assessed the probability of randomly predicting fossil occurrences for each clade 

in each time slice using binomial tests (30). Analyses were performed for each clade 

characterized by more than one occurrence in a given time slice, using the following 

parameters: n = the number of successfully-predicted occurrences, K = the total number of 

occurrences, and p = the probability of successfully predicting an occurrence, defined by the 

percentage of predicted suitable terrestrial area globally. Although species’ occurrences 

cannot be considered as independent, we aimed to provide a measure of the rough probability 

that our results could be obtained by chance.  

 Temporal shifts in the centroid of suitable habitat predicted for each clade were 

calculated using the ‘gCentroid’ function in the ‘rgeos’ package for R (29). The binary 



suitability maps were converted to polygons, and these polygons were used to find the ‘center 

of mass’ (also known as ‘true centroid’) of the areas presenting suitable conditions for each 

time slice; Northern and Southern Hemispheres were calculated separately (Fig. 3; Fig. S31).  

 

Caveats  

Although we were able to successfully predict fossil occurrences using climate model 

estimates of paleo-climates, results may be dependent on climate model choice. That is, 

different climate models may produce different geographic patterns of suitable habitat for 

each clade in deep time, potentially affecting conclusions. The Climate Model 

Intercomparison Project (CMIP) has evaluated model performance from many models and 

many past climates, and although climate models do robustly capture the broad patterns of 

past climate (31), deficiencies in these simulations are recognized. Polar amplification, for 

example, is too weak in many models. For the early Eocene, which experienced tremendous 

global warmth, this is a considerable problem (4, 32). The use of FAMOUS for the Ypresian 

comparison in this work was motivated by the fact that the model is one of very few able to 

simulate mid- and high-latitude temperatures in good agreement with proxy data. However, it 

is likely that tropical temperatures generated by this model are too high (11), which should be 

taken into account in the interpretation of our habitat-suitability results. Data from the 

“Super-Warm Early Eocene Temperatures and climate: The Early Eocene Model 

Intercomparison Project (SWEET)” (13) later this year may provide an opportunity to further 

test the methods used here on a larger suite of climate model data, which have applied 

consistent boundary conditions.   

 Finally, our estimates of the niche for each clade may be incomplete (i.e., truncated),  

which may result from poor (i.e., limited to modern-day) sampling of the full suite of climate 

conditions each clade can tolerate, and/or poor sampling of the modern-day distribution for 



each clade (21, 33). However, given that we were able to accurately predict fossil 

occurrences for most clades, truncated niches would likely affect only the extent of suitable 

habitat predicted in deep time, not our ability to predict fossil occurrence localities 

themselves. In this regard, it is unsurprising that the two groups with the poorest predictive 

abilities for fossil representatives are island-restricted clades (Todidae, Greater Antilles; and 

Leptosomidae, Madagascar, Mayotte, Comoros), a situation which has been shown to result 

in poor niche characterizations for modern groups (33).  
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Table S1.  Ecological model verification statistics. Area Under the Curve (AUC) values were 
consistently high, as were partial receiver operating characteristic (partialROC) AUC Ratios. 
PartialROC tests indicated models deviated significantly from random (p-value). Model 
calibration was performed using only environmentally-unique occurrences, meaning that 
each occurrence was characterized by a different combination of environmental conditions.  

 
  

Anseranatidae Cariamidae Coliidae Leptosomidae Musophagidae
Test AUC 0.88 0.94 0.84 0.97 0.85
AUC Ratio 1.69 1.75 1.69 1.83 1.65
p -value 0.00 0.00 0.00 0.00 0.00
# of environmentally-unique 
occurrences

1978 391 3783 103 2865

Nyctibiidae Podargidae Steatornithidae Todidae Trogonidae
Test AUC 0.90 0.74 0.97 0.96 0.73
AUC Ratio 1.75 1.57 1.86 1.91 1.65
p -value 0.00 0.00 0.00 0.00 0.00
# of environmentally-unique 
occurrences

1311 9056 139 545 9545



Table S2. Correspondence of paleo-projections with penecontemporaneous fossils. Least 
training presence (LTP) and MaxSSS threshold methods are shown for the two paleo-plate 
rotational models (EarthByte and Getech Plc.). Predicted suitable area for each paleo-
projection is shown as a percentage of terrestrial areas globally.  
 

	
	
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Anseranatidae—Least Training Presence Threshold  

 
Figure S1. Maxent model of the suitable habitat for Anseranatidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the least training presence threshold (see 
main text Methods for details). The present-day model was projected onto estimates of past 
climate conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian 
(~33.9–28.1 Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at 
higher latitudes in the Ypresian, which contracts equatorward towards the present day.  
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Anseranatidae—MaxSSS Threshold  

 
Figure S2. Maxent model of the suitable habitat for Anseranatidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the MaxSSS threshold (see main text 
Methods for details). The present-day model was projected onto estimates of past climate 
conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian (~33.9–28.1 
Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at higher 
latitudes in the Ypresian, which contracts equatorward towards the present day.  
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Cariamidae—Least Training Presence Threshold 

 
Figure S3. Maxent model of the suitable habitat for Cariamidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the least training presence threshold (see 
main text Methods for details). The present-day model was projected onto estimates of past 
climate conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian 
(~33.9–28.1 Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at 
higher latitudes in the Ypresian, which contracts equatorward towards the present day.  
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Cariamidae—MaxSSS Threshold 

 
Figure S4. Maxent model of the suitable habitat for Cariamidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the MaxSSS threshold (see main text 
Methods for details). The present-day model was projected onto estimates of past climate 
conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian (~33.9–28.1 
Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at higher 
latitudes in the Ypresian, which contracts equatorward towards the present day.  
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Coliidae—Least Training Presence Threshold 

 
Figure S5. Maxent model of the suitable habitat for Coliidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the least training presence threshold (see 
main text Methods for details). The present-day model was projected onto estimates of past 
climate conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian 
(~33.9–28.1 Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at 
higher latitudes in the Ypresian, which contracts equatorward towards the present day.  
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Coliidae—MaxSSS Threshold 

 
Figure S6. Maxent model of the suitable habitat for Coliidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the MaxSSS threshold (see main text 
Methods for details). The present-day model was projected onto estimates of past climate 
conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian (~33.9–28.1 
Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at higher 
latitudes in the Ypresian, which contracts equatorward towards the present day.  
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Leptosomidae—Least Training Presence Threshold 

 
Figure S7. Maxent model of the suitable habitat for Leptosomatidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the least training presence threshold (see 
main text Methods for details). The present-day model was projected onto estimates of past 
climate conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian 
(~33.9–28.1 Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at 
higher latitudes in the Ypresian, which contracts equatorward towards the present day.  
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  Leptosomidae—MaxSSS Threshold 

 
Figure S8. Maxent model of the suitable habitat for Leptosomatidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the MaxSSS threshold (see main text 
Methods for details). The present-day model was projected onto estimates of past climate 
conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian (~33.9–28.1 
Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at higher 
latitudes in the Ypresian, which contracts equatorward towards the present day.  
 

Modern

Rupelian

Chattian

Priabonian

Ypresian

Modern heat 



 Musophagidae—Least Training Presence Threshold 

 
Figure S9. Maxent model of the suitable habitat for Musophagidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the least training presence threshold (see 
main text Methods for details). The present-day model was projected onto estimates of past 
climate conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian 
(~33.9–28.1 Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at 
higher latitudes in the Ypresian, which contracts equatorward towards the present day.  
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Musophagidae—MaxSSS Threshold 

 
Figure S10. Maxent model of the suitable habitat for Musophagidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the MaxSSS threshold (see main text 
Methods for details). The present-day model was projected onto estimates of past climate 
conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian (~33.9–28.1 
Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at higher 
latitudes in the Ypresian, which contracts equatorward towards the present day.  
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Nyctibiidae—Least Training Presence Threshold 

 
Figure S11. Maxent model of the suitable habitat for Nyctibiidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the least training presence threshold (see 
main text Methods for details). The present-day model was projected onto estimates of past 
climate conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian 
(~33.9–28.1 Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at 
higher latitudes in the Ypresian, which contracts equatorward towards the present day.  
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Nyctibiidae—MaxSSS Threshold 

 
Figure S12. Maxent model of the suitable habitat for Nyctibiidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the MaxSSS threshold (see main text 
Methods for details). The present-day model was projected onto estimates of past climate 
conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian (~33.9–28.1 
Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at higher 
latitudes in the Ypresian, which contracts equatorward towards the present day.  
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Podargidae—Least Training Presence Threshold 

 
Figure S13. Maxent model of the suitable habitat for Podargidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the least training presence threshold (see 
main text Methods for details). The present-day model was projected onto estimates of past 
climate conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian 
(~33.9–28.1 Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at 
higher latitudes in the Ypresian, which contracts equatorward towards the present day.  
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Podargidae—MaxSSS Threshold 

 
Figure S14. Maxent model of the suitable habitat for Podargidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the MaxSSS threshold (see main text 
Methods for details). The present-day model was projected onto estimates of past climate 
conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian (~33.9–28.1 
Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at higher 
latitudes in the Ypresian, which contracts equatorward towards the present day.  
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Steatornithidae—Least Training Presence Threshold 

 
Figure S15. Maxent model of the suitable habitat for Steatornithidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the least training presence threshold (see 
main text Methods for details). The present-day model was projected onto estimates of past 
climate conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian 
(~33.9–28.1 Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at 
higher latitudes in the Ypresian, which contracts equatorward towards the present day. 
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Steatornithidae—MaxSSS Threshold 

Figure S16. Maxent model of the suitable habitat for Steatornithidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the MaxSSS threshold (see main text 
Methods for details). The present-day model was projected onto estimates of past climate 
conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian (~33.9–28.1 
Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at higher 
latitudes in the Ypresian, which contracts equatorward towards the present day. 
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Todidae—Least Training Presence Threshold 

 
Figure S17. Maxent model of the suitable habitat for Todidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the least training presence threshold (see 
main text Methods for details). The present-day model was projected onto estimates of past 
climate conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian 
(~33.9–28.1 Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at 
higher latitudes in the Ypresian, which contracts equatorward towards the present day. 
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Todidae—MaxSSS Threshold 

 
Figure S18. Maxent model of the suitable habitat for Todidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the MaxSSS threshold (see main text 
Methods for details). The present-day model was projected onto estimates of past climate 
conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian (~33.9–28.1 
Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at higher 
latitudes in the Ypresian, which contracts equatorward towards the present day. 
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Trogonidae—Least Training Presence Threshold 

 
Figure S19. Maxent model of the suitable habitat for Trogonidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the least training presence threshold (see 
main text Methods for details). The present-day model was projected onto estimates of past 
climate conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian 
(~33.9–28.1 Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at 
higher latitudes in the Ypresian, which contracts equatorward towards the present day. 
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Trogonidae—MaxSSS Threshold 

 
Figure S20. Maxent model of the suitable habitat for Trogonidae based on present-day 
occurrences and climate data. Continuous suitability models (Modern heat) were converted to 
binary suitable/unsuitable maps (Modern) using the MaxSSS threshold (see main text 
Methods for details). The present-day model was projected onto estimates of past climate 
conditions for the Ypresian (~56–47.8 Ma), Priabonian (~38–33.9 Ma), Rupelian (~33.9–28.1 
Ma), and Chattian (~28.1–23.03 Ma). Note how suitable habitat is predicted at higher 
latitudes in the Ypresian, which contracts equatorward towards the present day. 
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Figure S21. Present-day occurrences (top panel) for Anseranatidae as derived from GBIF. 
Using these occurrences, models of abiotic tolerances for this clade were projected onto 
estimates of past climate conditions at the Ypresian (~56 Ma), the approximate time when 
fossil representatives of this group were deposited in Germany. Note the accurate 
correspondence between the fossil locality and model prediction. Maps are shown for both 
the least training presence (LTP; green) and MaxSSS (blue) threshold methods; pink and 
white occurrences represent Getech and EarthByte plaeo-plate rotational models, respectively 
(see main text Methods for details).  
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Figure S22. Present-day occurrences (top panel) for Cariamidae as derived from GBIF. Using 
these occurrences, models of abiotic tolerances for this clade were projected onto estimates of 
past climate conditions at the Ypresian (~56 Ma), the approximate time when fossil 
representatives of this group were deposited in Germany. Note the accurate correspondence 
between the fossil locality and model prediction. Maps are shown for both the least training 
presence (LTP; green) and MaxSSS (blue) threshold methods; pink and white occurrences 
represent Getech and EarthByte plaeo-plate rotational models, respectively (see main text 
Methods for details).  
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Figure S23. Present-day occurrences (top panel) for Coliidae as derived from GBIF. Using 
these occurrences, models of abiotic tolerances for this clade were projected onto estimates of 
past climate conditions at the Ypresian (~56 Ma) and Priabonian (~34 Ma), approximate 
times when fossil representatives of this group were deposited. Note the accurate 
correspondence between the fossil localities and model predictions. Maps are shown for both 
the least training presence (LTP; green) and MaxSSS (blue) threshold methods; pink and 
white occurrences represent Getech and EarthByte plaeo-plate rotational models, respectively 
(see main text Methods for details).  
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Figure S24. Present-day occurrences (top panel) for Leptosomidae as derived from GBIF. 
Using these occurrences, models of abiotic tolerances for this clade were projected onto 
estimates of past climate conditions at the Ypresian (~56 Ma), the approximate time when 
fossil representatives of this group were deposited. Note the generally accurate 
correspondence between the fossil localities and model prediction. Maps are shown for both 
the least training presence (LTP; green) and MaxSSS (blue) threshold methods; pink and 
white occurrences represent Getech and EarthByte plaeo-plate rotational models, respectively 
(see main text Methods for details).  
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Figure S25. Present-day occurrences (top panel) for Musophagidae as derived from GBIF. 
Using these occurrences, models of abiotic tolerances for this clade were projected onto 
estimates of past climate conditions at the Ypresian (~56 Ma), the approximate time when a 
fossil representative of this group was deposited. Note the accurate correspondence between 
the fossil locality and model prediction. Maps are shown for both the least training presence 
(LTP; green) and MaxSSS (blue) threshold methods; pink and white occurrences represent 
Getech and EarthByte plaeo-plate rotational models, respectively (see main text Methods for 
details).  
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Figure S26. Present-day occurrences (top panel) for Nyctibiidae as derived from GBIF. Using 
these occurrences, models of abiotic tolerances for this clade were projected onto estimates of 
past climate conditions at the Ypresian (~56 Ma), the approximate time when fossil 
representatives of this group were deposited. Note the accurate correspondence between the 
fossil locality and model prediction. Maps are shown for both the least training presence 
(LTP; green) and MaxSSS (blue) threshold methods; pink and white occurrences represent 
Getech and EarthByte plaeo-plate rotational models, respectively (see main text Methods for 
details).  
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Figure S27. Present-day occurrences (top panel) for Podargidae as derived from GBIF. Using 
these occurrences, models of abiotic tolerances for this clade were projected onto estimates of 
past climate conditions at the Ypresian (~56 Ma), the approximate time when fossil 
representatives of this group were deposited. Note the accurate correspondence between the 
fossil localities and model prediction. Maps are shown for both the least training presence 
(LTP; green) and MaxSSS (blue) threshold methods; pink and white occurrences represent 
Getech and EarthByte plaeo-plate rotational models, respectively (see main text Methods for 
details).  
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Figure S28. Present-day occurrences (top panel) for Steatornithidae as derived from GBIF. 
Using these occurrences, models of abiotic tolerances for this clade were projected onto 
estimates of past climate conditions at the Ypresian (~56 Ma), the approximate time when 
fossil representatives of this group were deposited. Note the accurate correspondence 
between the fossil locality and model prediction. Maps are shown for both the least training 
presence (LTP; green) and MaxSSS (blue) threshold methods; pink and white occurrences 
represent Getech and EarthByte plaeo-plate rotational models, respectively (see main text 
Methods for details).  
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Figure S29. Present-day occurrences (top panel) for Todidae as derived from GBIF. Using 
these occurrences, models of abiotic tolerances for this clade were projected onto estimates of 
past climate conditions at the Rupelian (~30 Ma), the approximate time when fossil 
representatives of this group were deposited. Maps are shown for both the least training 
presence (LTP; green) and MaxSSS (blue) threshold methods; pink and white occurrences 
represent Getech and EarthByte plaeo-plate rotational models, respectively (see main text 
Methods for details).  
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Figure S30. Present-day occurrences (top panel) for Trogonidae as derived from GBIF. Using 
these occurrences, models of abiotic tolerances for this clade were projected onto estimates of 
past climate conditions at the Ypresian (~56 Ma) and Rupelian (~30 Ma), approximate times 
when fossil representatives of this group were deposited. Note the accurate correspondence 
between the fossil localities and model predictions. Maps are shown for both the least 
training presence (LTP; green) and MaxSSS (blue) threshold methods; pink and white 
occurrences represent Getech and EarthByte plaeo-plate rotational models, respectively (see 
main text Methods for details).  
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Figure S31. Temporal shifts in the centroid of suitable habitat for each clade. Binary 
suitability maps were converted to polygons and used to find the ‘center of mass’ for the 
areas presenting suitable conditions in each time slice; Northern (blue) and Southern (green) 
Hemispheres were calculated separately. Results are shown for the MaxSSS threshold 
method; see Fig. 3 in the main text for the Least Training Presence (LTP) threshold results.  
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