

**Figure S1.** (A) Comparison of 16 months old fish zebrafish circadian rhythm pattern; the locomotion was analyzed by either idTracker (blue color) or ImageJ (red color) methods. The data are expressed as the means. Comparison of idTracker and ImageJ results after data normalization for 16 months old fish in (B) light and (C) dark cycle with r value from Spearman nonparametric correlation test. The data are expressed as the means  $\pm$  SEM and were analyzed by unpaired *t-test* with Welch's correction (n =18). Comparison of total (D) average speed, (E) average angular velocity, and (F) meandering of zebrafish between the light and dark cycles. The data are expressed as the means  $\pm$  SEM (n=17) and were analyzed by unpaired *t-test*. Comparison of total (G) average speed, (H) average angular velocity, and (I) meandering of catfish between the light and dark cycles. The data are expressed as the means  $\pm$  SEM (n=6) and were analyzed by Mann-Whitney test. Significance difference was defined as \*\*P < 0.01, \*\*\*\*P < 0.0001.



**Figure S2.** Comparison of zebrafish circadian rhythm activities for fish acclimated to (A) 18°C or (B) 30°C temperature and the locomotion was analyzed by either idTracker (blue color) or ImageJ (red color). The data are expressed as the means. Comparison of idTracker and ImageJ results after data normalization for 18°C acclimated fish in (C) light and (D) dark cycle and 30°C acclimated fish in (E) light and (F) dark cycle with r value (highlighted in blue color) from Spearman nonparametric correlation test. The data are expressed as the means  $\pm$  SEM and were analyzed by unpaired *t-test* with Welch's correction (n =13 for 18°C temperature group and n=18 for 30°C temperature group).



**Figure S3.** Comparison of zebrafish circadian rhythm activities for fish acutely (A) and chronically (B) exposed to 0.1% EtOH and the locomotion was analyzed by either idTracker (blue color) or ImageJ (red color). The data are expressed as the means. Comparison of idTracker and ImageJ results after data normalization for acutely 0.1% EtOH exposed fish in light (C) and dark (D) cycle and chronically 0.1% EtOH exposed fish in light (E) and dark (F) cycle with r value (highlighted in blue color) from Spearman nonparametric correlation test. The data are expressed as the means  $\pm$  SEM and were analyzed by unpaired *t-test* with Welch's correction (n =18 for acute and chronic exposure of 0.1% EtOH groups).

#### Table S1

| References                                                 | Age of<br>Zebrafish | Light Source                                                                   | Recording Apparatus                                                                                                                                                                                                                                                                                                                                                   | <b>Recording Quality</b>                                        | Data Analysis                                                                                                                                                                           | Data output                                        |
|------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Cahill et al.<br>(1998) [1] &<br>Hurd et al.<br>(2002) [2] | Larvae              | Infrared (>700<br>nm) illumination                                             | CCD camera with a 28 mm<br>lens, automatic gain control<br>and shading correction<br>(Hamamatsu Photonics,<br>Hamamatsu,<br>+F2+D2:H+D2:I2                                                                                                                                                                                                                            | Monochrome<br>images<br>(640 x 480 pixels,<br>8 bit resolution) | Optimas (Seattle, WA) image<br>analysis software controlled by<br>a macro written in Analytical<br>Language for Images & Chrono<br>II software (T. Roenneberg,<br>University of Munich) | Actogram<br>plots                                  |
| Hirayama et al.<br>(2005) [3]                              | Larvae              | A custom made<br>diffuse axial<br>illuminator with<br>infrared light<br>source | Monochrome video camera<br>with a 50-mm macro lens,<br>and a 1.7-cm CCD sensor<br>with the IR-blocking filter<br>removed, automatic gain<br>control, shading correction<br>and horizontal center<br>resolution >750 TVL; a<br>desktop computer with a<br>640x480 pixel, 8-bit gray<br>scale frame capture card<br>(Flashpoint 128), and a<br>Windows operating system | Not mentioned in<br>the original article                        | Optimate 6.2<br>(MediaCybernetics, Silver<br>Spring, MD) image processing<br>software with the Swimming1.1<br>macro (Meyer Instruments,<br>Houston, TX) and Chrono 4.5.1                | Actogram<br>plots                                  |
| Prober et al.<br>(2006) [4]                                | Larvae              | Zebrabox<br>(ViewPoint Life<br>Sciences)                                       | An automated video-tracking<br>system (Videotrack;<br>ViewPoint Life Sciences,<br>Montreal, Quebec, Canada)<br>with a Dinion one-third inch<br>Monochrome camera (model<br>LTC0385; Bosch, Fairport,<br>NY) fitted with a fixed-angle<br>megapixel lens (M5018-MP;<br>Computar) and infrared filter                                                                   | Not mentioned in<br>the original article                        | Custom PERL software and<br>Visual Basic Macros for<br>Microsoft (Seattle, WA) Excel                                                                                                    | Activity plots<br>and 4<br>behavioral<br>endpoints |

| Zhdanova et al.<br>(2008) [5]     | Adult Male | Illuminated floor<br>and an additional<br>light source<br>placed next to the<br>tanks               | One camera & automatic<br>animal tracking software<br>(Video-track, View Point Inc,<br>France)                                         | 30 fps video                              | Nonlinear least squares analysis<br>(Mathematica, Wolfram<br>Research, Champaign, IL)                                                       | 4 behavioral<br>endpoints                                                    |
|-----------------------------------|------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Lopez-Olmeda<br>et al. (2009) [6] | Adult      | Fluorescent bulb<br>(F15W/GRO.<br>Sylvania Gro-<br>Lux, Germany)<br>with 400 lux light<br>intensity | Infrared photocell (Omron,<br>mod E3S-AD62, Kyoto,<br>Japan                                                                            | No video<br>(light-beam<br>interruptions) | Chronobiology software <i>El</i><br><i>Temps</i> © (version 1.228; Prof.<br>Diez-Noguera, University of<br>Barcelona) and SPSS®<br>software | Actogram<br>plots                                                            |
| This Study (2018)                 | Adult      | White COB LED<br>and 940 nm IR<br>LED beneath the<br>fish tanks                                     | 940 nm infrared CCD<br>camera, workstation<br>computer with 1 TB SSD<br>and Intel Core i7-6850K<br>CPU, and Total Recorder<br>software | 1028x1024<br>30 fps video                 | Image-J image analysis<br>software, idTracker software,<br>and Microsoft Excel                                                              | Average<br>speed and<br>meandering<br>plots and 6<br>behavioral<br>endpoints |

#### REFERENCES

- 1. Cahill, G.M., M.W. Hurd, and M.M. Batchelor, *Circadian rhythmicity in the locomotor activity of larval zebrafish.* Neuroreport, 1998. **9**(15): p. 3445-3449.
- 2. Hurd, M.W. and G.M. Cahill, *Entraining signals initiate behavioral circadian rhythmicity in larval zebrafish*. Journal of biological rhythms, 2002. **17**(4): p. 307-314.
- 3. Hirayama, J., et al., *Analysis of circadian rhythms in zebrafish*, in *Methods in enzymology*. 2005, Elsevier. p. 186-204.
- 4. Prober, D.A., et al., *Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish.* Journal of Neuroscience, 2006. **26**(51): p. 13400-13410.
- 5. Zhdanova, I., et al., Aging of the circadian system in zebrafish and the effects of melatonin on sleep and cognitive performance. Brain research bulletin, 2008. **75**(2-4): p. 433-441.
- 6. López-Olmeda, J.F. and F.J. Sánchez-Vázquez, *Zebrafish temperature selection and synchronization of locomotor activity circadian rhythm to ahemeral cycles of light and temperature.* Chronobiology international, 2009. **26**(2): p. 200-218.

#### **Supplementary protocol**



# Methods



# **Tips for Video Recording**

- Frame rate per second (FPS)
  - ↑ : more accurate tracking, slower process
  - $\psi$  : less accurate tracking, faster process
- Use a good contrast vessel for the fishes
- Using Black and White image setting is recommended because it can enhance the contrast
- There must be free space in the disk because tracker will generate a large amount of data
- Internal hard drive's video usage is strongly recommended

# Example Video (Zebrafish)



Day Cycle



Night Cycle

\*original video is available upon request

\*original video is a

1280x1024; 30fps

# Parameters Adjustments

# Execute idTracker.exe

Select video file

Load the video



- 1. Enter the number of individuals
- 2. Intensity threshold
  - The system is going to considers that pixels with lower intensity than this threshold belong to the animals (*vice versa* if "invert contrast" is checked)
- 3. Minimum size
  - The programs will reject blobs smaller than the minimum size entered



- 4. Choose resolution reduction
  - If the sizes of the animals are bigger than 2000 pixels, input a number higher than 1 (the number of pixels will be divided by n<sup>2</sup>, where n is the number in the box)
- 5. Background removal option
  - Check if you want to activate the background removal option
  - To compute it before, click on the 'Compute Bckgrnd' button



- 6. Choose an interval
  - If you want to track only part of video, enter the interval that you want to track
- 7. Number of references frames
  - Choose a lower number for increased speed, a higher number for increased accuracy



- 8. Select Region Of Interest (ROI) and/or exclude regions
  - Click on button 'Clear' to clear all previously defined ROS's or excluded regions
- 9. Segmentation only
  - If this box is checked, idTracker will exit after the segmentation step, leaving the tracking unfinished.
  - The data can be recovered later using button 'Load Previous Data'



#### 10. Number of processors

 The number of this box indicates how many processors idTracker will use ('Inf' means that idTracker will use all available processors)

#### 11. Start tracking

- Click the 'Start' button
- If 'S&E' (Save & Exit) button pressed, the programs ends, but the tracking does not start. All tracking parameters can be used later using 'Load Previous Data' button

# Movement Tracking Separated tracking



- Advantages
  - Reduce error occurrence
  - Tracking duration takes less time
- Disadvantages
  - Need more space to store the video







- Advantages
  - Just one video needs to be saved
- Disadvantages
  - Error often occurred
  - Tracking duration takes more time



See result

Exit

- The results are in a folder called 'segm' located in the same folder as the video
- Press 'About the output files' for more information about the results
- 'See results' button will play the result's video

# Tracking Result's Video



| segm     | Trajectories | trajectories_noga<br>ps | 16.30 |
|----------|--------------|-------------------------|-------|
| 5        | A            | A                       |       |
| untitled | trajectories | trajectories_noga<br>ps |       |

- There will be four output files
  - Two of them are .mat files, to be loaded into Matlab
  - The other two are .txt files to import the data into any software
- Both of the files contain identical information, which is the following
  - X and Y coordinates of each individual in each frame
  - Probability of correct assignment



- Difference between trajectories and trajectories\_nogaps
  - The files called 'trajectories' contain only the position of each individual when it is not occluded
  - The files called

'trajectories\_nogaps' contain the position of each individual also when occluded

• The probability of correct identity contains a negative number when the position comes from an estimation

|      | <b>⊟ 5</b> • ( | ¢~ ∓           |                   | E                 | Book1 - Exce                                            | I                   | Ŧ        | -           |          |
|------|----------------|----------------|-------------------|-------------------|---------------------------------------------------------|---------------------|----------|-------------|----------|
| F    | File Hon       | ne Insert P    | age   Formi       | Data Rev          | ie\ View 0                                              | ffice ACRO          | Q Tell m | e Sign in   | Q_ Share |
| Pa   | sste<br>pboard | A<br>Font Alig | ≡ 9<br>Inment Nur | %<br>mber<br>▼ Co | onditional Fo<br>ormat as Tab<br>ell Styles +<br>Styles | ormatting +<br>le + | Cells Ed | P<br>liting |          |
| A    | 1              | • : :          | x v               | $f_{x}$           |                                                         |                     |          |             |          |
| - 76 | Beelet A. 1    |                |                   |                   |                                                         |                     |          |             |          |
| 4    | BOOKI "        |                | 6                 |                   | -                                                       |                     | 6        |             |          |
|      | A              | в              | C                 | D                 | E                                                       | F                   | G        | н           | 1        |
| 1    | V1             | V1             | Drobld1           | ¥2                | <b>V</b> 2                                              | Drobld2             | ¥2       | V2          | Drobld2  |
| 2    | 619.29         | 296.76         | 0.99676           | 602.69            | 12 /05 62                                               | 0 0004              | 720 21   | 250 79      | 0 99692  |
| 3    | 617.22         | 200.70         | 0.98676           | 602.00            | 405.00                                                  | 0.0004              | 720.42   | 255.78      | 0.99692  |
| 5    | 616.45         | 292.72         | 0.98676           | 603.02            | 495.50                                                  | 0.9994              | 730.45   | 263.08      | 0.99693  |
| 6    | 615 59         | 296.87         | 0.98676           | 603.31            | 495.54                                                  | 0.9994              | 730.50   | 205.00      | 0.99693  |
| 7    | 614 79         | 299.49         | 0.98676           | 603.71            | 495.50                                                  | 0.9994              | 730.57   | 265.6       | 0.99693  |
| 8    | 613.99         | 302.76         | 0.98676           | 603.72            | 495.51                                                  | 0.9994              | 730.64   | 267.26      | 0.99693  |
| 9    | 613.27         | 305.01         | 0.98676           | 604.43            | 495.36                                                  | 0.9994              | 730.74   | 268.9       | 0.99693  |
| 10   | 612 57         | 307.96         | 0.98676           | 605.48            | 495.29                                                  | 0.9994              | 730 79   | 270 19      | 0.99693  |
| 11   | 611.79         | 311.57         | 0.98676           | 605.41            | 495.18                                                  | 0.9994              | 730.7    | 271.01      | 0.99693  |
| 12   | 611.23         | 313.48         | 0.98676           | 605.59            | 495.08                                                  | 0.9994              | 730.69   | 272.24      | 0.99693  |
| 13   | 610.51         | 316.63         | 0.98676           | 605.44            | 495.03                                                  | 0.9994              | 730.48   | 273.29      | 0.99693  |
| 14   | 610.05         | 317.96         | 0.98676           | 606               | 494.79                                                  | 0.9994              | 729.61   | 273.87      | 0.99693  |
| 15   | 609.49         | 320.58         | 0.98676           | 605.48            | 494.81                                                  | 0.9994              | 728.73   | 274.12      | 0.99693  |
| 16   | 609.05         | 322.83         | 0.98676           | 605.97            | 494.7                                                   | 0.9994              | 728.03   | 275.81      | 0.99693  |
| 17   | 608.42         | 325.34         | 0.98676           | 606.51            | 494.64                                                  | 0.9994              | 727.69   | 278.77      | 0.99693  |
| 18   | 607.98         | 327.49         | 0.98676           | 606.86            | 494.52                                                  | 0.9994              | 727.19   | 280.07      | 0.99693  |
| 19   | 607.42         | 330.03         | 0.98676           | 606.74            | 494.52                                                  | 0.9994              | 726.74   | 280.97      | 0.99693  |
| 20   | 606.97         | 331.98         | 0.98676           | 607.34            | 494.42                                                  | 0.9994              | 726.41   | 283.08      | 0.99693  |
| 21   | 606.47         | 333.77         | 0.98676           | 607.71            | 494.37                                                  | 0.9994              | 726.08   | 284.21      | 0.99693  |
| 22   | 606.1          | 335.54         | 0.98676           | 607.5             | 494.43                                                  | 0.9994              | 725.79   | 285.87      | 0.99693  |
| 23   | 605.81         | 337.51         | 0.98676           | 607.51            | 494.43                                                  | 0.9994              | 725.56   | 287.15      | 0.99693  |
| 24   | 605.29         | 339.39         | 0.98676           | 607.6             | 494.38                                                  | 0.9994              | 725.26   | 288.44      | 0.99693  |
| 25   | 604.97         | 341.14         | 0.98676           | 607.74            | 494.38                                                  | 0.9994              | 724.83   | 288.88      | 0.99693  |
| 26   | 604.65         | 342.92         | 0.98676           | 608.15            | 494.3                                                   | 0.9994              | 724.5    | 289.99      | 0.99693  |
|      | < ▶            | Sheet1         | (+)               |                   |                                                         | :                   |          | 1           |          |
| Det  | adv            |                |                   |                   | FTF                                                     |                     | m        |             | 100%     |

- Each row corresponds to one frame of the video
  - Columns 1 and 2 are the x and y coordinates of individual 1, respectively, and so on
- There is an estimation of the probability of correct assignment for each frame and it is usually conservative
  - The probabilities for individual 1 are in column 3, for individual 2 in column 6, and so on



 Convert the pixel dimension into the standard length dimension using <u>ImageJ</u>





## Results (Calculation Example)

| -4 | A      | В      | С                | D         |        | E            |          | F                 |          |            | G          |            | н           | 1                   | J         | к                              | L                |
|----|--------|--------|------------------|-----------|--------|--------------|----------|-------------------|----------|------------|------------|------------|-------------|---------------------|-----------|--------------------------------|------------------|
| 1  |        |        |                  |           |        |              | Dista    | ance and Velocity | 1        |            |            |            |             | Turning Angle/frame |           | Average Angular Velocity (%)   | Meandering (°/m) |
| 2  | X1 .   | Y1     | Distance (pixel) | Speed (cm | n/s) N | Aaximum spee | d (cm/s) | Minimum speed     | d (cm/s) | Total dist | ance (cm)  | Average sp | eed (cm/s)  | With Direct         | Without D | Average Angular velocity ( 73) | Wednoering ( /m) |
| 3  | 611.93 | 165.43 | 0.012692955      | 0.38078   | 8655   | 6.9          | 36749959 |                   | 0        | ) 4        | 49.5680466 | i (        | 0.826593328 | -0.03818            | 0.038181  | 1.76812628                     | 5 214.0241233    |
| 4  | 612.28 | 165.28 | 0.006009252      | 0.18027   | 7564   |              |          |                   |          |            |            |            |             | 0.054786            | 0.054786  |                                |                  |
| 5  | 612.22 | 165.45 | 0.005962848      | 0.17888   | 5438   |              |          |                   |          |            |            |            |             | 0.007984            | 0.007984  |                                |                  |
| 6  | 612.14 | 165.61 | 0.01982703       | 0.59481   | 0894   |              |          |                   |          |            |            |            |             | 0.007215            | 0.007215  |                                |                  |
| 7  | 611.87 | 166.14 | 0.001943651      | 0.05830   | 9519   |              |          |                   |          |            |            |            |             | -0.0255             | 0.025498  |                                |                  |
| 8  | 611.82 | 166.17 | 0.005906682      | 0.17720   | 0451   |              |          |                   |          |            |            |            |             | 0.065998            | 0.065998  |                                |                  |
| 9  | 611.87 | 166.34 | 0.004472136      | 0.13416   | 4079   |              |          |                   |          |            |            |            |             | 0.007984            | 0.007984  |                                |                  |
| 10 | 611.93 | 166.22 | 0.027816861      | 0.83450   | 5842   |              |          |                   |          |            |            |            |             | -0.01037            | 0.010369  |                                |                  |
| 11 | 611.35 | 166.82 | 0.029030635      | 0.87091   | 9055   |              |          |                   |          |            |            |            |             | -0.02155            | 0.021548  |                                |                  |
| 12 | 612.07 | 166.33 | 0.006262765      | 0.18788   | 2942   |              |          |                   |          |            |            |            |             | 0.010796            | 0.010796  |                                |                  |
| 3  | 611.99 | 166.5  | 0.002981424      | 0.08944   | 2719   |              |          |                   |          |            |            |            |             | 0.007984            | 0.007984  |                                |                  |
| 4  | 611.95 | 166.58 | 0.010203485      | 0.30610   | 4557   |              |          |                   |          |            |            |            |             | -0.00554            | 0.005543  |                                |                  |
| 5  | 611.76 | 166.82 | 0.015365907      | 0.46097   | 7223   |              |          |                   |          |            |            |            |             | -0.00746            | 0.00746   |                                |                  |
| 6  | 611.46 | 167.17 | 0.008062258      | 0.24186   | 7732   |              |          |                   |          |            |            |            |             | -0.13883            | 0.138828  |                                |                  |
| 7  | 611.7  | 167.14 | 0.020002778      | 0.60008   | 3328   |              |          |                   |          |            |            |            |             | 0.015327            | 0.015327  |                                |                  |
| 8  | 611.46 | 167.69 | 0.024413111      | 0.73239   | 3337   |              |          |                   |          |            |            |            |             | -0.0025             | 0.002498  |                                |                  |
| 9  | 611.04 | 168.29 | 0.009219544      | 0.27658   | 6334   |              |          |                   |          |            |            |            |             | -0.00746            | 0.00746   |                                |                  |
| 0  | 610.86 | 168.5  | 0.006082763      | 0.18248   | 2876   |              |          |                   |          |            |            |            |             | 0.059945            | 0.059945  |                                |                  |
| 1  | 610.83 | 168.68 | 0.023175658      | 0.69526   | 9732   |              |          |                   |          |            |            |            |             | -0.01535            | 0.015354  |                                |                  |
| 2  | 611.36 | 168.23 | 0.018601075      | 0.55803   | 2257   |              |          |                   |          |            |            |            |             | -0.00367            | 0.003666  |                                |                  |
| 3  | 611.03 | 168.68 | 0.019102065      | 0.57306   | 1951   |              |          |                   |          |            |            |            |             | 0.003808            | 0.003808  |                                |                  |
| 4  | 610.75 | 169.18 | 0.006036923      | 0.18110   | 7703   |              |          |                   |          |            |            |            |             | -0.03857            | 0.038567  |                                |                  |
| 5  | 610.77 | 169.36 | 0.006411795      | 0.19235   | 3841   |              |          |                   |          |            |            |            |             | 0.005744            | 0.005744  |                                |                  |
| 6  | 610.68 | 169.53 | 0.005754226      | 0.17262   | 6765   |              |          |                   |          |            |            |            |             | -0.02462            | 0.024616  |                                |                  |
| 7  | 610.71 | 169.7  | 0.035087193      | 1.05261   | 5789   |              |          |                   |          |            |            |            |             | -0.00594            | 0.005943  |                                |                  |
| 8  | 610.05 | 170.52 | 0.022236107      | 0.66708   | 3203   |              |          |                   |          |            |            |            |             | -0.00706            | 0.007064  |                                |                  |
| 9  | 610.48 | 170.01 | 0.015733898      | 0.47201   | 6949   |              |          |                   |          |            |            |            |             | -0.00378            | 0.003785  |                                |                  |
| 0  | 610.2  | 170.39 | 0.014974052      | 0.44922   | 1549   |              |          |                   |          |            |            |            |             | -0.10406            | 0.104056  |                                |                  |
| 1  | 610.07 | 170.82 | 0.01313604       | 0.3940    | 8121   |              |          |                   |          |            |            |            |             | -0.00317            | 0.003165  |                                |                  |
| 2  | 609.84 | 171.14 | 0.009339284      | 0.28017   | 8515   |              |          |                   |          |            |            |            |             | -0.02089            | 0.020894  |                                |                  |
| 3  | 610.07 | 170.98 | 0.001666667      |           | 0.05   |              |          |                   |          |            |            |            |             | 0.018725            | 0.018725  |                                |                  |
| 4  | 610.11 | 171.01 | 0.004955356      | 0.14866   | 0687   |              |          |                   |          |            |            |            |             | 0.008879            | 0.008879  |                                |                  |
| 5  | 610.21 | 171.12 | 0.020248457      | 0.60745   | 3702   |              |          |                   |          |            |            |            |             | -0.00044            | 0.000442  |                                |                  |
| 6  | 609.88 | 171.63 | 0.00664162       | 0.19924   | 8588   |              |          |                   |          |            |            |            |             | -0.05339            | 0.053392  |                                |                  |
| 7  | 610.07 | 171.57 | 0.014636332      | 0.43908   | 9968   |              |          |                   |          |            |            |            |             | 0.002752            | 0.002752  |                                |                  |
| в  | 609.85 | 171.95 | 0.003901567      | 0.11704   | 6999   |              |          |                   |          |            |            |            |             | 0.045839            | 0.045839  |                                |                  |
| 9  | 609.96 | 171.99 | 0.003887301      | 0.11661   | 9038   |              |          |                   |          |            |            |            |             | -0.0255             | 0.025498  |                                |                  |
| 0  | 610.06 | 171.93 | 0.011279283      | 0.33837   | 8486   |              |          |                   |          |            |            |            |             | 0.073672            | 0.073672  |                                |                  |
| 1  | 609.95 | 172.25 | 0.009386752      | 0.28160   | 2557   |              |          |                   |          |            |            |            |             | -0.07338            | 0.073376  |                                |                  |
| 2  | 609.87 | 172.52 | 0.00790218       | 0.23706   | 5392   |              |          |                   |          |            |            |            |             | -0.0302             | 0.0302    |                                |                  |
| 3  | 610.08 | 172.41 | 0.004055175      | 0.12165   | 5251   |              |          |                   |          |            |            |            |             | -0.1037             | 0.103696  |                                |                  |
| 4  | 610.2  | 172.39 | 0.016275407      | 0.48826   | 2225   |              |          |                   |          |            |            |            |             | -0.0025             | 0.002498  |                                |                  |
|    | 4      | 16     | 17 30            | 18 30     | 10.20  | 0 20.30      | 21 20    | 22.30             | 23.30    | 00.30      | 01 30      | 02.30      | 03 30       | 04 30               | 05 30     |                                |                  |

- Use the Microsoft Excel's formula to calculate the fish's movement frame by frame
- Measure the fish's rate of speed by dividing the calculation results with the time

### Some parameters we can get from this idTracker-based method

- Total distance traveled (cm)  $\Sigma \sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2 + (Z_2 - Z_1)^2}$
- Avg. swimming speed (cm/s) <u>Total distance (cm)</u> <u>Total Time (s)</u>
- Maximum speed (cm/s)
- Minimum speed (cm/s)

- Freezing Time (s) (Total Time when speed less than 1cm/s)
- Swimming Time (s) (Total Time when speed 1-10 cm/s)
- Rapid Movement Time (s) (Total Time when speed more than 10 cm/s)
  - Meandering (%m) (The degree of turning vs. travel distance)  $(\frac{Absolute turn angle (°)}{Total distance (cm)} \times 100)$

### Some parameters we can get from this idTracker-based method

- Turning Angle (°) 1 • Fast Type Late (Total time w  $\frac{tan(\frac{\Delta Y}{\Delta X}) \times 180}{\pi}$ • Slow Type Late (Total time w
  - Fast Type Latent Time (s) (Total time when Angular velocity above 0.5%ms)
  - Slow Type Latent Time (s) (Total time when Angular velocity below 0.5%ms)

• Angular Velocity (%ms)  
Turning Angle 
$$\times (\frac{Video\ duration\ (ms)}{Frame\ per\ second})$$

Absolute Turn Angle
 (Sum of all the Turning Angles without considering the sign of angular direction)

### **Example of circadian rhythm pattern for zebrafish**



Method 2 : Establish ImageJ-based method to measure circadian rhythm in fish

### **Required Programs summarized**

**Total Recorder** 

VirtualDub

ImageJ

### Microsoft Excel











# VirtualDub



- VritualDub is open source video capture/processing, it is designed to process linear video streams, including filtering and recompression
- The main purpose in this experiment is to convert from video is to recompress the video

# Change Video Output Format in VirtualDub

#### Video Audio Options Tools Help ? Х Video Color Depth CTRL+F Filters... Decompression format Output format to compressor/display Frame Rate... CTRL+R Autoselect Same as decompression format Color Depth... 16 bit RGB (555) 16 bit RGB (555) CTRL+P Compression... 16 bit RGB (565) 16 bit RGB (565) Select Range... 24 bit RGB (888) 24 bit RGB (888) 32 bit RGB (888) (dummy alpha channel) 32 bit RGB (888) (dummy alpha channel) Direct stream copy 4:2:2 YCbCr (UYVY) 4:2:2 YCbCr (UYVY) Fast recompress 4:2:2 YCbCr (YUY2) 4:2:2 YCbCr (YUY2) Normal recompress 4:4:4 planar YCbCr (YV24) 4:4:4 planar YCbCr (YV24) 4:2:2 planar YCbCr (YV16) 4:2:2 planar YCbCr (YV16) Full processing mode 4:2:0 planar YCbCr (YV12) 4:2:0 planar YCbCr (YV12) Smart rendering 4:1:0 planar YCbCr (YVU9) 4:1:0 planar YCbCr (YVU9) Preserve empty frames Luminance only (Y8, 16-235) Luminance only (Y8, 16-235) Grayscale (0-255) Grayscale (0-255) Copy source frame to clipboard CTRL+1 4:2:2 YCbCr 10-bit (v210) 4:2:2 YCbCr 10-bit (v210) Copy output frame to clipboard CTRL+2 4:2:2 YCbCr HD (HDYC) 4:2:2 YCbCr HD (HDYC) Copy source frame number to clipboard 4:2:0 YCbCr (NV12) 4:2:0 YCbCr (NV12) Other... Other... Copy output frame number to clipboard Scan video stream for errors.... Save as default OK Cancel Error mode...

Open the VirtualDub software

Video -> Color Depth

Select output format as 8-bit (Grayscale)

# Open the AVI file in VirtualDub

| File | Edit                         | View     | Go     | Video    | Audio | Options | Tools | Help |          |
|------|------------------------------|----------|--------|----------|-------|---------|-------|------|----------|
|      | Open                         | video    | file   |          |       |         |       |      | CTRL+O   |
|      | Reop                         | en vide  | eo fil | e        |       |         |       |      | F2       |
|      | Appe                         | nd AV    | l seg  | ment     |       |         |       |      |          |
|      | Previe                       | ew inp   | ut     |          |       |         |       |      | SPACE    |
|      | Previe                       | ew filte | ered   |          |       |         |       |      | ENTER    |
|      | Previe                       | ew out   | put f  | from sta | rt    |         |       |      | F5       |
|      | Run v                        | video a  | naly   | sis pass |       |         |       |      |          |
|      | Save                         | as AVI   |        |          |       |         |       |      | F7       |
|      | Save old format AVI SHIFT+F7 |          |        |          |       |         |       |      | SHIFT+F7 |
|      | Save segmented AVI           |          |        |          |       |         |       |      |          |
|      | Close                        | video    | file   |          |       |         |       |      | CTRL+W   |

- File -> Open video file (Ctrl+O)
- Select the video file (.avi format)



# Save the Output of VirtualDub



Quit

# ImageJ



- ImageJ is open source Java-based image processing. It can display, edit, analyse, process, and save images
- The main purpose in this experiment is to analyse the pixel value change in the video
- This platform supported by many plugins that ease the analysis

# **Open VirtualDub Video in ImageJ**



• Open the VirtualDub file

# Convert Video Image Into Greyscale

| 📴 (Fiji Is Just) Imag | eJ                                                 |                                  |     |                                           | _          |                           | $\times$   |
|-----------------------|----------------------------------------------------|----------------------------------|-----|-------------------------------------------|------------|---------------------------|------------|
| File Edit Imag        | e Process                                          | Analyze                          | P   | lugins Window H                           | elp        |                           |            |
| ЦОСС                  | ∕, ∠ ***,                                          | * A <                            | 2   | 🖑 Dev Stk l                               | ut 🖉 🌡     | ′ ଥ                       | >>         |
| Opening: D:\BT\Pro    | gress\2018\Aug                                     | just\20180                       | 823 | \VirtualDub\00.30.avi                     | Click he   | re to sea                 | rch        |
|                       | III AVI Reader                                     |                                  | ×   |                                           | } =        | <ul> <li>Style</li> </ul> | es - Cr Si |
| Es                    |                                                    |                                  |     | Fs.                                       | Drav       | ving                      |            |
| 11 - 10 - 9 8 7 -     | First Frame:                                       | 800                              |     | 1 • 1 • 1 • 2 • 1 • 3 • 1 • 4 • 1 • 5 • 1 | ·6·1·7·1·8 | 9 1 10                    | 11   12    |
| to add <sup>.</sup>   | □ Use Virt<br>I Use Virt<br>Convert<br>□ Flip Vert | ual Stack<br>to Grayscal<br>ical | e   |                                           |            |                           |            |
| o add text            | ОК                                                 | Cancel                           |     |                                           |            |                           |            |

- Select the interested frames
- Convert the VirtualDub into grayscale (8bit)

# **Crop the Interested Area**





- Select the tanks with rectangle selection
- Crop the area: Image -> Crop (Ctrl+Shift+X)

# **Duplicate the Video**

| Process       | Apolyzo Długi | · · · · · · · · · · · · · · · · · · · |             |
|---------------|---------------|---------------------------------------|-------------|
| Type          | Analyze Flugi | 🗊 Duplicate                           | $\times$    |
| Adjust        | •             |                                       |             |
| Show Info     | Ctrl+I        |                                       |             |
| Properties    | Ctrl+Shift+P  | Title:                                | 00.30-1.avi |
| Color         | •             |                                       | 1           |
| Stacks        | •             |                                       |             |
| Hyperstacks   | •             | Duplication                           | te stack    |
| Crop          | Ctrl+Shift+X  | , comprise                            |             |
| Duplicate     | Ctrl+Shift+D  | Range:                                | 1-283       |
| Rename        |               | -                                     |             |
| Scale         | Ctrl+E        |                                       |             |
| Transform     | •             |                                       | OK Cancel   |
| Zoom          | •             |                                       |             |
| Overlay       | •             |                                       |             |
| Lookup Tables | •             |                                       |             |
| Annotate      | •             |                                       |             |
| Drawing       | *             |                                       |             |
| Video Editing | •             |                                       |             |
| Axes          | •             |                                       |             |
| Convert       |               |                                       |             |
| Convolve      |               |                                       |             |
| Threshold     | •             |                                       |             |

- Duplicate the file to ease the analysis
- Image -> Duplicate (Ctrl+Shift+D) -> Duplicate stack

# Adjust the Threshold

| Image Process | Analyze Plug | ins Window Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|---------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Туре          | •            | Dev Stk Lut 0 1 81 >> hap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Adjust        | •            | Brightness/Contrast Ctrl+Shift+C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Show Info     | Ctrl+I       | Window/Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Properties    | Ctrl+Shift+P | Color Balance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Color         | •            | Threshold Ctrl+Shift+T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Stacks        | •            | Color Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Hyperstacks   | •            | Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Crop          | Ctrl+Shift+X | Canvas Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Duplicate     | Ctrl+Shift+D | Line Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Rename        |              | Coordinates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Scale         | Ctrl+E       | Auto Local Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Transform     | •            | Auto Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Zoom          | ,            | Bleach Correction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Overlay       | •            | Auto Crop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Lookup Tables | •            | Auto Crop (guess background color)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| LUUKUP TADIES |              | Scale to DPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Annotate      | •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Drawing       | •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Video Editing | •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Axes          | +            | and the second se |  |  |  |  |  |
| Convert       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Convolve      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Threshold     | +            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |

- Adjust the threshold Image -> Adjust -> Threshold (Ctrl+Shift+T)
- Select the dark background

| I Threshold                         | $\times$ |
|-------------------------------------|----------|
|                                     |          |
| 53.71 %                             |          |
| ▲ ▶ 128                             |          |
| ▲ ▶ 255                             |          |
| Default 💌 B&W 💌                     |          |
| 🔽 Dark background 🔲 Stack histogram | 1        |
| Auto Apply Reset Set                |          |

| $\begin{tabular}{ll} \hline \end{tabular}$ Convert Stack to Binary $\end{tabular}$                                        |
|---------------------------------------------------------------------------------------------------------------------------|
| Method: Default   Background: Dark                                                                                        |
| Calculate threshold for each image<br>Only convert current image<br>Black background (of binary masks)<br>List thresholds |
| OK Cancel                                                                                                                 |

# Use Stack Difference Plugin



- Stack Difference to see the only object that move (have pixels changed)
- Use stack difference Plugins -> StackDifference

# Use the Original Video as Template



Select the interested area in original VirtualDub file

# **Restore Selection from the Original Video**

| ji <mark>I</mark> s Just) ImageJ                         |         | *                 |              |
|----------------------------------------------------------|---------|-------------------|--------------|
| Edit Image                                               | Process | Select All        | Ctrl+A       |
| Undo                                                     | Ctrl+Z  | Select None       | Ctrl+Shift+A |
| Cut                                                      | Ctrl+X  | Restore Selection | Ctrl+Shift+E |
| Conv                                                     | Ctrl+C  | Fit Spline        |              |
| Copy to System<br>Paste Ctrl+V<br>Paste Control<br>Clear |         | Fit Circle        |              |
|                                                          |         | Fit Ellipse       |              |
|                                                          |         | Interpolate       |              |
|                                                          |         | Convex Hull       |              |
|                                                          |         | Make Inverse      |              |
| Clear Outside                                            |         | Create Selection  |              |
| Fill                                                     | Ctrl+F  | Create Mask       |              |
| Draw                                                     | Ctrl+D  | Proportion        | Ctrl+V       |
| Invert Ctrl+Shift+I                                      |         | Properties        | Cui+r        |
| Coloction                                                |         | Scale             |              |
| Selection                                                |         | Rotate            |              |
| Options                                                  | •       | Enlarge           |              |

- Click on the duplicated VirtualDub file
- Restore the selection from original file
   Edit -> Selection -> Restore
   Selection (Ctrl+Shift+E)

# Use Time Series Analyzer Plugin



 Use <u>Time Series Analyzer</u> Plugins -> Time Series Analyzer V3

# Get Average of Pixel Intensity Change



### Use <u>Time Series Analyzer</u> Add -> Get Average

## Get The Dynamic Pixel Change Data Over Time



Save the file

# Record Macro can speed up calculation

|          | <u>ـ</u>                               |                                                                |  |  |
|----------|----------------------------------------|----------------------------------------------------------------|--|--|
| Slide Sl | Macros 🔹 🔸                             | Install                                                        |  |  |
|          | Shortcuts •                            | Run                                                            |  |  |
| Plugins  | Utilities •                            | Edit                                                           |  |  |
| . ২ ি    | New •                                  | Startup Macros                                                 |  |  |
|          | Compile and Run                        | Record                                                         |  |  |
|          | Install Ctrl+Shift+M<br>Install PlugIn | Pencil Tool Options<br>Paintbrush Tool Options                 |  |  |
| Cl       | 3D Viewer<br>Analyze ►                 | Flood Fill Tool Options<br>Set Drawing Color                   |  |  |
| • C      | BigDataViewer  Bio-Formats Cluster     | About Startup Macros<br>Save As JPEG [j]<br>Save Inverted FITS |  |  |
|          | Color Inonactor 2D                     | -                                                              |  |  |

- The macro recorded based on the mouse click
- Plugins -> Macros -> Record

### **Record the Features into Macro**





ROI must be adjusted when new experiment conducted with position change

# Create the Macro

| 📴 (Fiji Is Just) ImageJ                                                        |           |           | $\times$ |  |  |
|--------------------------------------------------------------------------------|-----------|-----------|----------|--|--|
| File Edit Image Process Analyze Plugins Window Help                            |           |           |          |  |  |
|                                                                                | 0 8       | ঞ         | $\gg$    |  |  |
| Paintbrush Tool                                                                | Click her | e to sear | ch       |  |  |
| 💷 Recorder                                                                     | _         |           | ×        |  |  |
| Record: Macro 💌 Name: Macro.ijm Create                                         | ?         |           |          |  |  |
| <pre>//run("Threshold");</pre>                                                 |           |           | ^        |  |  |
| <pre>run("Convert to Mask", "method=Default background=Dark calculate");</pre> |           |           |          |  |  |
| run("Time Series Analyzer V3"):                                                |           |           |          |  |  |
| makeRectangle(24, 26, 258, 428);                                               |           |           |          |  |  |
| roiManager("Add");                                                             |           |           |          |  |  |
| makeRectangle(284, 22, 258, 428);                                              |           |           |          |  |  |
| roiManager("Add");                                                             |           |           |          |  |  |
| makeRectangle(562, 22, 258, 428);                                              |           |           |          |  |  |
| roiManager("Add");                                                             |           |           |          |  |  |
| makeRectangle(22, 470, 254, 420);                                              |           |           |          |  |  |
| roiManager("Add");                                                             |           |           |          |  |  |
| makeRectangle(286, 476, 252, 418);                                             |           |           |          |  |  |
| roiManager("Add");                                                             |           |           |          |  |  |
| makeRectangle(552, 476, 252, 418);                                             |           |           |          |  |  |
| roiManager("Add");                                                             |           |           | ~        |  |  |

🏄 \*Macro.ijm.ijm

Ctrl-N

Ctrl-O

Ctrl-S

Ctrl-W

9 roiManager("Add");

11 roiManager("Add");

13 roiManager("Add");

15 roiManager("Add");

17 roiManager("Add");

19 roiManager("Add");

Batch

•

New

Save

Close

Save as...

20

Run

Open...

Open Recent

File Edit Language Templates Run Tools Tabs

hold...");

8 makeRectangle(24, 26, 258, 428);

10 makeRectangle(284, 22, 258, 428);

12 makeRectangle(562, 22, 258, 428);

14 makeRectangle(22, 470, 254, 420);

16 makeRectangle(286, 476, 252, 418);

18 makeRectangle(552, 476, 252, 418);

Kill

e(210, 50, 826, 918);

hold("Default dark");

fference ", "gap=1");

eries Analyzer V3");

# Save the Macro

- File -> Save (Ctrl+S)
- Save the macro as .ijm extension



# Run the Macro

| 匪 (Fiji Is Just) Imag | geJ                                            | <u>ــــــــــــــــــــــــــــــــــــ</u> |              | ×  |
|-----------------------|------------------------------------------------|---------------------------------------------|--------------|----|
| File Edit Ima         | Install                                        | Macros                                      | •            |    |
|                       | Run                                            | Shortcuts                                   | •            | >> |
| Wand (tracing) too    | Edit                                           | Utilities                                   | •            |    |
|                       | Startup Macros                                 | New                                         | •            |    |
|                       | Record                                         | Compile and R                               | un           |    |
|                       | Pencil Tool Options<br>Paintbrush Tool Options | Install<br>Install PlugIn                   | Ctrl+Shift+M |    |
|                       | Flood Fill Tool Options                        | 3D Viewer                                   |              |    |
|                       | Set Drawing Color                              | Analyze                                     | •            |    |
|                       | About Startup Macros                           | BigDataViewer                               | •            |    |
|                       | Save As JPEG [i]                               | Bio-Formats                                 | •            |    |
|                       | Save Inverted FITS                             | Cluster                                     | •            |    |

• Plugins -> Macro -> Run

# Select All Regions

| □ - I                    | 📴 RO —         |   |             |
|--------------------------|----------------|---|-------------|
| Auto ROI Properties      | 5271-0240-0153 | • | Add [t]     |
| Recenter                 | 5271-0236-0413 |   | Update      |
| Recenter Parameters      | 5271-0230-0091 |   | Delete      |
| Get Average              | 5271-0685-0412 |   | Rename      |
| Get Total Intensity      | 5271-0685-0678 |   | Measure     |
| Reset                    |                |   | Deselect    |
| Translate ROi's          |                |   | Properties  |
| Add On Click             |                |   | Flatten [F] |
| Persist                  |                |   | More »      |
| New thread for measuring |                |   | Show All    |
| -                        |                | • | 🗆 Labels    |

# Copy the Result



- Select all the result
- Copy and paste into the excel file

#### Comparison of idTracker- and ImageJ-based method to measure circadian rhythm in fish

|                                                         | idTracker           | ImageJ                            |
|---------------------------------------------------------|---------------------|-----------------------------------|
| Programming language based                              | Matlab              | Java                              |
| Endpoint output                                         | More representative | Only in pixel intensity changes   |
| Occluded fish analysis                                  | Hard to analyse     | Easy to analyse                   |
| Built in Macro for Automatization                       | Not Available       | Available                         |
| Analysis time needed (6 tanks, @1 fish)                 | 5'35"               | 3'(without macro), 2'(with macro) |
| Analysis time needed (6 tanks, @3 fish)                 | 13"                 | 3'(without macro), 2'(with macro) |
| Video format supported                                  | Many format         | Only AVI                          |
| Size of the fish dependency                             | No                  | Yes                               |
| Individual fish tracking                                | Able                | Not able                          |
| Dead fish / noise                                       | Can be excluded     | Possible to be counted            |
| Data storage consumption size (24 videos analysis size) | Smaller (~15.5Gb)   | Bigger (~349Gb)                   |
| Trajectories                                            | Able                | Not able                          |
| RAM consumption                                         | 10 Gb               | 4 Gb                              |
| CPU Usage                                               | 75% @3.3GHz         | 10% @3.3GHz                       |



Movie 1. Comparison of circadian locomotion activity between zebrafish and catfish. This video is played at 5x faster speed.



Movie 2. Comparison of circadian locomotion activity between younger (6 month old) and elder (16 month old) zebrafish. This video is played at 5x faster speed.



Movie 3. Comparison of circadian locomotion activity for zebrafish acclimated at different ambient temperature of 18, 25 and 30°C. This video is played at 5x faster speed.



Movie 4. Comparison of circadian locomotion activity for zebrafish exposed to 0.1% ethanol for 30 min (acute) or one week (chronic). This video is played at 5x faster speed.