
RegulationSpotter: annotation and
interpretation of extratranscriptic DNA

sequence variants

Supplementary Material

Schwarz, Jana Marie1,2,3*,Hombach, Daniela2,3, Köhler, Sebastian2,4,5, Cooper, David N.6, 

Schuelke, Markus1,3, Seelow, Dominik2,4

Charité  -  Universitätsmedizin  Berlin,  corporate  member  of  Freie  Universität  Berlin,  Humboldt-

Universität  zu  Berlin,  and  Berlin  Institute  of  Health  (BIH),  1Department  of  Neuropediatrics,

2Centrum  für  Therapieforschung,  3NeuroCure  Cluster  of  Excellence  and  NeuroCure  Clinical

Research Center; Berlin, Germany

4Berlin Institute of Health (BIH), Berlin, Germany

5Einstein Center for Digital Future, Berlin, Germany

6Institute of Medical Genetics, Cardiff University, Cardiff, United Kingdom

Correspondence should be addressed to:

Jana Marie Schwarz

Department of Neuropediatrics,

Charité – Universitätsmedizin Berlin

Augustenburger Platz 1

13353 Berlin

Germany

Phone: +49 30 450 539 038

Fax: +49 30 450 539 965

Email: jana-marie.schwarz@charite.de

mailto:jana-marie.schwarz@charite.de


Annotation sources

Ensembl multicell regulatory features

The Ensembl regulatory1 build assembles epigenetic marks to a genome-wide set of regions that
are likely to be involved in gene regulation. The following features can be distinguished and are
integrated into RegulationSpotter (genome build GRCh 37 / Ensembl regulatory build version 91):

• Promoters

• Promoter flanking regions

• Enhancers

• CTCF binding sites

• Transcription factor binding sites

• Open chromatin regions

Ensembl regulatory features

Apart from the multicell  regulatory features (see above), the Ensembl regulatory build offers all
annotation tracks as single features. The following classes are integrated in RegulationSpotter:

• Histone modifications: 28 different histone modifications

• Open chromatin: DNase I hypersensitivity sites

• Polymerase binding sites: Polymerase II and III binding sites

• Transcription factor binding sites: 76 different transcription factor binding sites (TFBS)

Enhancer and TSS annotations

We retrieved annotations for enhancers and transcription start  sites (TSS) from the FANTOM5
project2 and the VISTA enhancer browser3 via the Ensembl regulatory build.

Additional FANTOM5 annotations

We included data on enhancer elements and their interactions with promoters from the FANTOM5 
project. Data were downloaded from
http://enhancer.binf.ku.dk/presets/enhancer_tss_associations.bed.

Genomic interaction data

We integrated data on the interaction of distant genomic elements generated by Hi-C experiments
from Rao et al.4, from 5C experiments for the ENCODE project5,6 generated by groups from the
University of Massachusetts and from the 4D Genome database. Data were downloaded from

5C data: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39510

Hi-C data: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525

4D Genome: https://4dgenome.research.chop.edu/

Phylogenetic conservation

We used the genomic evolutionary conservation scores phyloP7 and PhastCons8 derived from
multiple alignments of 45 vertebrate genomes to the human genome, downloaded from the UCSC
Genome browser from the following URLs:

phyloP: http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phyloP46way/

phastCons: http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phastCons46way/

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phastCons46way/
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phyloP46way/
https://4dgenome.research.chop.edu/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39510
https://email.charite.de/owa/redir.aspx?C=FxTHmpN02hK7MPbx5ywSLvqPsyR5hLGPRUtcNJ_Tv4kO4HgpcQfVCA..&URL=http%3A%2F%2Fenhancer.binf.ku.dk%2Fpresets%2Fenhancer_tss_associations.bed


CADD scores

We retrieved CADD scores for all possible SNVs in the human genome (GRCh37) from 
http://krishna.gs.washington.edu/download/CADD/v1.3/whole_genome_SNVs.tsv.gz and stored 
the highest value for each position in our database.

It should be noted that CADD scores are based on similar data than our region score and therefore
not used by RegulationSpotter to score a region. CADD scores are integrated in the output as a 
further information for our users but we recommend to use the hyperlink to their website for a 
variant-specific analysis.

Human variation

We integrated variants,  genotypes and genotype frequencies  from the 1000 Genomes Project
(1000G)9 extracted from

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.autosomes.phase3_shapeit2_mvnc
all_integrated_v5.20130502.sites.vcf.gz 

using tabix and from the Exome Aggregation Consortium (ExAC)10 version 0.3.

Data sets for training and validation

Positive data sets P1/P2 with functional variants from ClinVar and 
HGMD
We assume variants in sets P1/P2 ('positive' cases) to be ‘functional', i.e. to interfere with gene
function or expression.

Training data set (P1) with functional variants from HGMD® Professional

We included  457 variants from the Professional version of the Human Gene Mutation Database
(HGMD® Pro, version 2018/1) and the Genomiser publication11 which are located outside of any
protein-coding Ensembl transcript. We confined the variants from HGMD to those tagged with the
label  DM (denoting  disease-causing mutations).  We also  omitted  all  mutations  that  were  also
included the 1000 Genomes Project in homozygous state or in ClinVar12 release 2018-07-29 (data
set P2).

Internal validation data set (P2) with disease mutations from ClinVar

We included 173 variants from ClinVar with CLINSIG codes 4 (likely pathogenic) or 5 (pathogenic)
which could not be mapped to any protein-coding Ensembl transcript.

Negative training and validation data sets (N1 and N2) with non-
functional variants from the 1000 Genomes Project
Variants present in these data sets are common in the population, which is why we assume them
to be benign. Although we cannot rule out functional effects, these should at least be depleted in
comparison to the positive data sets P1/P2.

177,396 common polymorphisms located outside of protein-coding transcripts and present in the
homozygous state in more than 10 individuals, were randomly chosen from the 1000 Genomes
Project data9 and divided into data sets N1 and N2 (50,000 variants per file). We excluded all
variants also found in data sets P1/P2.

Region Score generation and validation

Feature weights, calculation and optimization of the region score

Feature weights and calculation of region score. RegulationSpotter generates a score reflecting the
evidence that a variant is located in a functionally relevant region. Each feature is given a specific
weight reflecting the assumed impact of the feature. The score represents the sum of the weights

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.autosomes.phase3_shapeit2_mvncall_integrated_v5.20130502.sites.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.autosomes.phase3_shapeit2_mvncall_integrated_v5.20130502.sites.vcf.gz
http://krishna.gs.washington.edu/download/CADD/v1.3/whole_genome_SNVs.tsv.gz


for all features annotated for a given variant. If one feature is annotated multiple times for the same
variant, it adds up only once to the score (see Supplementary Table 1 and 2 for features, details on
weights and scoring). Owing to the low number of real positive 'functional' training variants, we
decided  not  to  employ  machine  learning  approaches,  which  require  a  substantial  number  of
training cases. Instead, we opted to base the weights on current knowledge and models about the
roles of the different genomic features in gene regulation. The weights are therefore organized as
classes describing the features’ impact on gene regulation (high, medium, low contribution), each
with a different  numerical  value.  By  comparing relative  risks (see Supplementary Table 1 and
Supplementary Figure 1) of appearance of each dichotomous feature in data sets P1 versus N1,
we optimized the weights assigned to the respective features. Due to the low number of cases, we
decided not to adapt weights to the exact risk differences but to rather move features into another
class in case we over- or underestimated their effect. In addition, we chose to regard only features
with at least 7/458 occurrences in training set P1 to avoid spurious scoring. ‘Rare’ transcription
factor  binding  sites  are  combined  in  the  pseudo-feature  ‘rare  TFBS’.  Some  features  are
representative of the same entity (e.g. various promoter annotations from different sources).  In
such cases, only the single feature with the highest weight is scored. 

In order to find optimal weights for the phylogenetic conservation (phyloP and phastCons),  we
iterated through different combinations of values and selected the model that reached the highest
area under the curve for precision/recall. We found that a relatively low contribution of phylogenetic
conservation (Supplementary Table S2) to the final score yielded the best performance.



Feature group Feature Source
Relative

risk 
Weight n (P1) n (N1) f (P1) f (N1)

CTCF1 CTCF ECBF 13.3 1 94 787 0.20935 0.01574

CTCF Binding Site EMF 1.7 0.1 12 794 0.02673 0.01588

Open 
chromatin1 

Open Chromatin|DNase1 ECBF 13.8 1 264 2129 0.58797 0.04258

Open chromatin EMF 3.9 0.5 26 737 0.05791 0.01474

DNase1 RS 100.8 10 162 179 0.3608 0.00358

Histone marks H2A.Zac ECBF 29.4 3 23 87 0.05122 0.00174

H2AK5ac ECBF 4.4 0.5 173 4368 0.3853 0.08736

H2AZ ECBF 18.9 2 193 1136 0.42984 0.02272

H2BK120ac ECBF 5.0 0.5 26 574 0.05791 0.01148

H2BK12ac ECBF 3.7 0.2 108 3247 0.24053 0.06494

H2BK20ac ECBF 4.5 0.5 14 345 0.03118 0.0069

H3K14ac ECBF 4.8 0.5 155 3611 0.34521 0.07222

H3K18ac ECBF 5.7 0.5 33 648 0.0735 0.01296

H3K23ac ECBF 8.2 1 14 190 0.03118 0.0038

H3K23me2 ECBF 48.9 5 112 255 0.24944 0.0051

H3K27ac ECBF 6.8 0.5 244 4013 0.54343 0.08026

H3K27me3 ECBF 1.6 0.1 407 28901 0.90646 0.57801

H3K36me3 ECBF 2.7 0.2 259 10840 0.57684 0.2168

H3K4ac ECBF 11.6 1 58 555 0.12918 0.0111

H3K4me1 ECBF 1.7 0.1 374 24670 0.83296 0.49339

H3K4me2 ECBF 14.4 1 286 2207 0.63697 0.04414

RS*H3K4me32 RS 78.0 5 245 350 0.54566 0.007

H3K4me32 ECBF 26.7 3 282 1175 0.62806 0.0235

H3K79me2 ECBF 9.0 1 106 1312 0.23608 0.02624

H3K9ac ECBF 19.5 2 241 1374 0.53675 0.02748

H4K20me1 ECBF 1.9 0.2 19 1115 0.04232 0.0223

H4K5ac ECBF 14.8 1 61 459 0.13586 0.00918

H4K8ac ECBF 9.1 1 117 1426 0.26058 0.02852

H4K91ac ECBF 10.9 1 34 346 0.07572 0.00692

Interactions FANTOM5 F5A 15.2 1 18 132 0.04009 0.00264

HiC 4D 3.9 0.2 235 6742 0.52339 0.13484

Polymerase 
marks

PolII ECBF 34.2 3 189 615 0.42094 0.0123

Promoters1 Promoter EMF 104.3 10 163 174 0.36303 0.00348

FANTOM TSS (strict) F5 164.6 20 34 23 0.07572 0.00046

Andersson promoters F5A 157.8 20 17 12 0.03786 0.00024

active promoter RS 87.6 10 129 164 0.28731 0.00328

promoter by tss RS 38.6 3 242 698 0.53898 0.01396

Promoter Flanking Region EMF 4.8 0.5 32 749 0.07127 0.01498

TFBS ATF3 ECBF 136.3 10 71 58 0.15813 0.00116

BCLAF1 ECBF 59.6 5 106 198 0.23608 0.00396

Brg1 ECBF 40.1 3 9 25 0.02004 0.0005

Cmyc ECBF 243.6 20 70 32 0.1559 0.00064

E2F6 ECBF 139.2 10 85 68 0.18931 0.00136

Egr1 ECBF 57.9 5 143 275 0.31849 0.0055



ELF1 ECBF 74.7 5 147 219 0.32739 0.00438

ETS1 ECBF 115.7 10 132 127 0.29399 0.00254

FOXA1 ECBF 24.5 2 42 191 0.09354 0.00382

FOXA2 ECBF 39.3 3 30 85 0.06682 0.0017

Gabp ECBF 46.8 5 61 145 0.13586 0.0029

HDAC2 ECBF 80.0 5 102 142 0.22717 0.00284

HEY1 ECBF 83.8 5 204 271 0.45434 0.00542

HNF4A ECBF 92.1 5 91 110 0.20267 0.0022

HNF4G ECBF 102.7 10 95 103 0.21158 0.00206

Ini1 ECBF 71.4 5 50 78 0.11136 0.00156

IRF4 ECBF 139.2 10 70 56 0.1559 0.00112

Jund ECBF 44.6 5 99 247 0.22049 0.00494

Max ECBF 98.3 5 83 94 0.18486 0.00188

NFKB ECBF 41.6 3 75 201 0.16704 0.00402

Nrsf ECBF 51.3 5 76 165 0.16927 0.0033

p300 ECBF 8.5 1 30 395 0.06682 0.0079

POU2F2 ECBF 76.2 5 132 193 0.29399 0.00386

PU1 ECBF 47.7 5 90 210 0.20045 0.0042

Rad21 ECBF 2.3 0.2 12 576 0.02673 0.01152

Sin3Ak20 ECBF 93.7 5 127 151 0.28285 0.00302

SP1 ECBF 56.6 5 96 189 0.21381 0.00378

Srf ECBF 39.4 3 29 82 0.06459 0.00164

TAF1 ECBF 71.6 5 220 342 0.48998 0.00684

TAF7 ECBF 45.5 5 40 98 0.08909 0.00196

Tcf12 ECBF 33.3 3 26 87 0.05791 0.00174

USF1 ECBF 48.7 5 109 249 0.24276 0.00498

Yy1 ECBF 60.5 5 151 278 0.3363 0.00556

ZBTB33 ECBF 37.1 3 21 63 0.04677 0.00126

ZBTB7A ECBF 22.7 2 33 162 0.0735 0.00324

TF binding site EMF 28.8 3 43 166 0.09577 0.00332

rare TFBS3 ECBF/RS 3.6 0.2 56 1736 0.12472 0.03472

Supplementary Table S1:  The 75 dichotomous features used to calculate the X-score, along with their
relative risk of occurring in the disease mutation group (data set P1/N1). For every variant, every feature is
scored only once even if it is annotated multiple times. Sources: EMF = EnsemblMulticellFeatures; ECBF =
EnsemblCellBasedFeatures;  RS = RegulationSpotter;  4D: 4D data (HiC, 4D, 5C);  F5:  FANTOM 5; F5A:
FANTOM 5 / Anderson
1 Only the feature with the highest weight within this group is scored.
2 If two H3K4me3 annotations are present, only the one with the higher weight is scored.
3 rare TFBS: BAF155, BAF170, BATF, BCL11A, BCL3, BHLHE40, Cfos, Cjun, CTCFL, EBF1, FOSL1,

FOSL2, Gata2, HDAC8 Junb, MEF2A, MEF2C, Nanog, Nfe2, NR4A1, Nrf1, Pax5, Pbx3, POU5F1,
RXRA, SIX5, SP2, THAP1, Tr4, XRCC4, ZEB1, 

Conservation measure Weight

phyloP 10

phastCons 10

Supplementary Table S2:  Scoring weights for phyloP and phastCons. For each variant,  the degree of
evolutionary conservation is determined using phyloP and phastCons scores. Both add to the score with their
value multiplied by a weighting of 10. PhyloP values are internally normalised to values between 0 and 1.





Supplementary  Figure  S1: Distribution  of  the  relative  risks  of  regulatory  features  displayed  by
RegulationSpotter. Relative risks were determined with help of data sets P1 and N1. The text before the
asterisk indicates the data source, please see Supplementary Table S1 for details.

To allow a meaningful interpretation of the region score we decided to assess its distribution in a
set  of  known extratranscriptic  disease mutations  and harmless extratranscriptic  variants.   In  a
balanced  test  set  (457  disease  mutations  from  training  set  P1  plus  457  randomly  chosen
polymorphisms from N1, we iterated through different region sore thresholds to determine the one
which separates the two groups of variants best from each other. We chose the threshold that
delivered the highest F1-score to be used to display a simple interpretation of the region score.
This  can be either or ‘non-functional’ or ‘functional’. To provide further information for our users, we
add  the  label  ‘much  evidence’  to  the  result  if  the  score  is  above  or  below  the  threshold  of
PPV=98% or NPV=98%, respectively. 

In case of available genotypes from 1000G (variant present in homozygous state in more than four
individuals)  or  ClinVar  (variant  present  in  ClinVar  with  CLINSIG  code  4  or  5),  a  variant  is
automatically denoted as polymorphism (i.e. harmless) or disease-causing. The calculated region
score is nevertheless displayed as additional information for the user.

Usage of RegulationSpotter

Analysis of VCF files

RegulationSpotter accepts single-sample VCF files in VCF 4.1 format. Analysis of a WGS project
with 3.5 million variants takes approximately 4-12 hours, depending on the server load. This length
of  time  can  be  drastically  reduced  by  filtering.   Adjustable  options  include  the  possibility  of
restricting  the analysis  to  homozygous variants and to set  a coverage threshold as well  as  a
frequency filter for variants present in the 1000 Genomes Project (1000G) data9 and in ExAC10 (for
intratranscriptic variants). Given the huge number of extratranscriptic variants, we suggest limiting
the study of variants to those located within a candidate gene, including its promoter region, or in
modifiers interacting with that gene. 

These options are available in our upload interface. Uploaded data are available only via a unique
secret URL, which is displayed to our users during the upload process. We strongly recommend to
zip large VCF files prior to upload to reduce the upload time, which might be long, depending on
the internet speed (e.g. the upload of 1 GB at an upload speed of 5 Mbps takes approximately 30
minutes).  The  data  are  automatically  deleted from the webserver  after  3  weeks  unless  users
actively delete their project or request an extension by E-mail.

To  speed  up  analyses,  a  dedicated  job  scheduling  system ensures  the  analysis  of  uploaded
variants  in  a  highly  parallel  fashion.  Intragenic  variants  are  analysed  by  MutationTaster  and
RegulationSpotter, extratranscriptic variants only by the latter. Once finished, the pipeline produces
a variant selection interface where users also can display a summary of the number of analysed
variants and navigate to the log file to see discarded variants (see Supplementary Figure S2).
Users can download analysis  results or  filter  and sort  their  data to watch them directly online
(recommended). The variants meeting the filter criteria are presented in a table, with most relevant
intra- and extratranscriptic features also displayed in a colour-coded matrix (see Supplementary
Figure S3). Additional information includes the nature of the variant itself, its presence in public
databases  (1000G,  ExAC,  ClinVar),  the  RegulationSpotter  region  score,  CADD  score  and
MutationTaster prediction results (for variants within protein-coding transcripts). The software also
provides hyperlinks to the detailed annotation of RegulationSpotter (see Supplementary Figure S4)
and MutationTaster (if available) to facilitate further study of every variant's potential effects.

RegulationSpotter is freely available at https://www.regulationsioer.irg. No login is required. We
provide a thorough documentation along with a tutorial on our website. With simple hyperlinks
(position and alleles), RegulationSpotter can easily be used as a downstream application of WGS
analysis.

http://www.regulationspotter.org/


Supplementary Figure S2: Screenshot of RegulationSpotter variant selection page. After uploading a VCF
file to RegulationSpotter’s QueryEngine, a variant selection page is shown. At the bottom, users can display
a summary of the submitted variants and navigate to the QueryEngine log with links to discarded variants.
Results can be downloaded or sorted and filtered for watching them directly online.



Supplementary Figure S3: Screenshot of the colour-coded results matrix. Variants chosen to be displayed
are organised in a summary table (left part) and a colour-coded matrix (right part) in order to allow a quick
overview of every variant. Users can follow hyperlinks to study every variant in further detail.

Analysis of single variants

Users can enter single variants by physical position (GRCh37), reference and alternative allele.
The single variant results page (see Supplementary Figure S4) contains detailed information about
the regulatory features potentially affected by the variant.  We group the features by their type,
irrespective of their source, but indicate the latter.  For every annotation, we offer hyperlinks to
detailed explanations in our documentation as well as to the respective data source (e.g. NCBI13 or
Ensembl). We also include hyperlinks to ePOSSUM14, our tool for TFBS analysis which we did not
directly integrate into RegulationSpotter owing to its relatively long processing time. Genome-wide
interactions between enhancers and promoters/TSSs are listed in the interface and can be studied
in depth in a dedicated graphical interface (Supplementary Figure S5), together with hyperlinks to
Ensembl and detailed information about the interacting elements.

Supplementary Figure S4: Screenshot of a part of RegulationSpotter’s detailed results. The detailed output
lists  all  analysis  results  and  annotations  that  are  available  for  a  given  variant.  Hyperlinks  to  external
resources allow to quickly access additional annotation on the variant and its genomic context.



Supplementary Figure S5: Screenshot of the graphical depiction of (distant) genomic interactions.

Implementation
RegulationSpotter runs on a 48-CPU system with 512 GB RAM under Linux (CentOS 6). All data
used by RegulationSpotter are physically integrated and stored in a PostgreSQL 9.5 database. 
RegulationSpotter program scripts are written in Perl (version 5.10) and run on an Apache 2.2 web
server with HTTPS web protocol. All user interfaces are written in HTML with usage of JavaScript
functions and were thoroughly tested for the Firefox browser under Linux, MacOS and Microsoft
Windows. Additional testing involves Google Chrome and Safari. We employ TORQUE (version
4.2) as our job scheduling system. 
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