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Supplementary Methods 

S1.1 Detailed description of the CCSD(T)*/CBS scheme 

The linear-scaling domain-localized DPLNO approximation, and its accuracy, are primarily 

controlled by an electron pair cutoff threshold. There are three pre-set thresholds implemented in 

ORCA: LoosePNO, NormalPNO, and TightPNO, which are recommended for rapid estimation, 

general thermochemistry and kinetics, and non-covalent interactions and molecular 

conformations, respectively.1 They were benchmarked against two high-quality and distinct 

datasets: S662 for intermolecular interaction energies relevant to biomolecules and FH513 for 

reaction energies of medium-sized organic molecules. The effect of tightening the DPLNO 

threshold is very significant for these datasets: TightPNO setting reduces energy RMSD from 0.36 

to 0.06 kcal*mol^-1 for S66 and from 0.38 to 0.16 kcal*mol^-1 for HF51, compared to 

NormalPNO.1 Therefore, in order to obtain a high-quality approximation to CCSD(T) energies 

TightPNO thresholds must be properly chosen. 

Another key component of our efficient computational method is the complete basis set (CBS) 

extrapolation. We have applied the widely used two-point “EP1”4 extrapolation scheme originally 

proposed by Hobza and coworkers5. The total energy is computed as the sum of the MP2/CBS 

extrapolated energy and the difference between CCSD(T) and MP2 energies calculated with a 

smaller basis set. For the sake of computational efficiency we have used cc-pVTZ and cc-pVQZ 

basis sets for extrapolation of HF and MP2 energies using the formulas of Halkier6 and Helgaker7 

(𝛼34 = 5.46, 𝛽34 = 3.05 8). The difference between CCSD(T) and MP2 energies was estimated with 

the cc-pVTZ basis set as shown in Supplementary Equation 1. 

 𝐸𝑡𝑜𝑡𝑎𝑙
𝐶𝐵𝑆 ≈ 𝐸𝐻𝐹

𝐶𝐵𝑆 + 𝐸𝑀𝑃2
𝐶𝐵𝑆 + (𝐸𝐶𝐶𝑆𝐷(𝑇)

𝑐𝑐−𝑝𝑉𝑇𝑍 − 𝐸𝑀𝑃2
𝑐𝑐−𝑝𝑉𝑇𝑍) 1 



The most computationally demanding term in the Equation 1 is 𝐸𝐶𝐶𝑆𝐷(𝑇)
𝑐𝑐−𝑝𝑉𝑇𝑍

, which we need to 

calculate with at least TightPNO level of accuracy. To reduce computational cost further, we 

approximated this term using an idea similar to the CBS extrapolation approach above: TightPNO 

and NormalPNO-CCSD(T) energies were calculated with a smaller basis set and the difference 

was added to the NormalPNO-CCSD(T)/cc-pVTZ energy. Summarizing, the CCSD(T)/cc-pVTZ 

part in Supplementary Eq. 1 was estimated with Supplementary Equation 2.  

 𝐸𝐶𝐶𝑆𝐷(𝑇)
𝑐𝑐−𝑝𝑉𝑇𝑍 ≈ 𝐸𝑁𝑜𝑟𝑚𝑎𝑙−𝐷𝑃𝐿𝑁𝑂−𝐶𝐶𝑆𝐷(𝑇)

𝑐𝑐−𝑝𝑉𝑇𝑍 + (𝐸𝑇𝑖𝑔ℎ𝑡−𝐷𝑃𝐿𝑁𝑂−𝐶𝐶𝑆𝐷(𝑇)
𝑐𝑐−𝑝𝑉𝐷𝑍

− 𝐸𝑁𝑜𝑟𝑚𝑎𝑙−𝐷𝑃𝐿𝑁𝑂−𝐶𝐶𝑆𝐷(𝑇)
𝑐𝑐−𝑝𝑉𝐷𝑍 ) 

2 

Such a composite scheme for approximating CCSD(T)/CBS energies is computationally efficient, 

as it requires computation of Tight-DPLNO-CCSD(T) with at most a double-zeta basis set. The 

robustness of this suggested CCSD(T)*/CBS scheme is evaluated against two distinct datasets 

with high-quality CCSD(T)-F12 data available: S66 benchmark9 for weak intermolecular 

interactions and the extensive W4-11 benchmark10 for thermochemistry. CCSD(T)*/CBS 

performs excellent on both benchmarks (See Supplementary Table 1). 

In Supplementary Table 1, the extrapolation schemes are noted with the “small” basis set, which 

is used to calculate ΔCCSD(T) with respect to MP2, the MP2/CBS energy obtained using 

extrapolation with basis set with higher cardinal number. CCSD(T)*/CBS is equal to the 

TightPNO-CCSD(T)*/CBS(TZ) scheme, which was applied for obtaining our reference training 

dataset. TightPNO-CCSD(T)* denotes that the ΔTightPNO term is the difference between 

TightPNO and NormalPNO energy using a basis set with lower cardinal number. The data in 

Supplementary Table 1 shows that CCSD(T)*/CBS provides excellent balance between cost and 

performance with errors no worse than the canonical CCSD(T)/CBS(aDZ) method. It also should 

be noted that incorporating the ΔTightPNO approach helps to achieve much lower error, compared 

to NormalPNO, without sacrificing much computational efficiency.  

S1.2 Neural network model details 

S1.2.1 Neural network architecture 

The models trained in this work all utilize variable size networks for different atomic species. This 

is done since the molecules in the ANI-1x datasets are proportioned 48% H, 30% C, 13% N, and 

9% O. Supplementary Table 2 provides details of each model architecture used in this work. 

S1.2.2 Atomic environment vector parameters 

The ANI model atomic environment vector (AEV) is computed using the in-house NeuroChem 

software suite. These AEVs are computed identically to those published in the ANI-1 work.11 In 

this work the atomic elements C, H, N, and O are described by the AEVs (using the parameters 

below) yielding a total of 384 AEV elements per atom. The AEV parameters used to train each 

model are supplied below. 

Radial Parameters: 

• Radial cutoff = 5.2 Å 



• 𝜂𝑅𝑎𝑑𝑖𝑎𝑙 = [16] 

• 𝑅𝑠
𝑅𝑎𝑑𝑖𝑎𝑙 = [0.900000, 1.168750, 1.437500, 1.706250, 1.975000, 2.243750, 2.51250,  

                  2.781250, 3.050000, 3.318750, 3.587500, 3.856250, 4.125000, 4.39375, 
 4.662500, 4.931250] Å 

 

Angular Parameters: 

• Angular cutoff = 3.5 Å 

• 𝜂𝐴𝑛𝑔𝑢𝑙𝑎𝑟 = [8] 

• 𝑅𝑠
𝑅𝑎𝑑𝑖𝑎𝑙 = [0.900000, 1.550000, 2.200000, 2.850000] Å 

• 𝜁 =  [32.00000]  
• 𝜃𝑠 = [0.19634954, 0.58904862,0. 9817477, 1.3744468, 1.7671459, 

 2.1598449, 2.552544, 2.945243] 
 

S1.2.3 Training details 

Prior to training the ANI models, a linear fitting to the energy per atomic species is performed—

essentially, an empirical self-energy term for each element. This linear fitting is over the entire 

dataset and the fit is performed with respect to the number of each atomic element in a given 

molecule as the input. The ANI models are then trained to the QM calculated energy minus the 

linear fitted prediction. The energy obtained from this process is roughly analogous to the process 

of computing an atomization energy, but without any per-atom bias. The linear fitting parameters 

(in Hartrees) used in this work are provided below. 

ANI-1x DFT Linear fitting parameters: 

• H = -0.600952980000 

• C = -38.08316124000 

• N = -54.70775770000 

• O = -75.19446356000 

ANI-1x CCSD(T)*/CBS Linear fitting parameters: 

• H = -0.5991501324919538 

• C = -38.03750806057356 

• N = -54.67448347695333 

• O = -75.16043537275567 

ANI-1x DFT to CCSD(T)*/CBS ∆ Linear fitting parameters: 

• H = -0.003172990955487249 

• C = 0.04396089482092749 

• N = 0.03789128635905942 

• O = 0.029194038876402876 



The following hyperparameters are used during training for all ANI models. These parameters 

have been determined through rigorous hyperparameter searches in prior ANI potential11,12 

development. 

• Mini-batch size: 2560 molecules 

• Initial learning rate: 1.0E-3 

• Patience for annealing learning rate: 100 

• Multiplier for annealing learning rate: 0.5 

• Learning rate for training termination: 1.0E-5 

• ADAM13 stochastic optimization is used with default parameters  

A single epoch of training the ANI-1x DFT models takes 12.5s while a single epoch for training 

the ANI-1x CCSD(T)*/CBS model takes 1.25s on a single Titan V. Approximately 1450 epochs 

of training are carried out on all models before convergence. This leads to a total training time of 

5 hours for the DFT models, 5.5 hours for training the DFT plus transfer and ∆-learning models, 

and 0.5 hours for training the model which was only trained to the CCSD(T)*/CBS data. 

S1.2.4 Ensemble held out test set results 

Supplementary Table 3 provides the 1/8th held out test set mean absolute error (MAE) and root 

mean squared error (RMSE) for the DFT trained ANI-1x and CCSD(T)*/CBS trained ANI-1ccx 

and ANI-1ccx-R single models from the ensemble. The ANI-1ccx models were trained to a small 

dataset (500k) still fits to its reference as well as the ANI-1x models trained to a larger dataset 

(5M). However, the ANI-1ccx-R models, which were only trained to the coupled cluster data with 

no transfer learning, performs significantly worse on the held-out test set. From this we conclude 

that transfer learning is performing as designed by providing the performance of a model trained 

to 5M datapoints with only 500k datapoints. 

 

S1.3 Active learning molecular torsions 

Since molecular dynamics simulations and normal mode perturbation is used for sampling the 

ANI-1x dataset, molecular torsion barriers can be poorly described by the ANI-1x potential. In 

other words, ANI torsion barriers tend to have higher error than near equilibrium conformations 

due to the sampling methods used to generate training data. To reduce this error and improve 

barrier sampling, we develop an iterative and entirely ML driven active learning technique for 

automatically sampling molecular torsions. We begin with a dataset of SMILES [opensmiles.org] 

strings; in this work we start with a portion of the ChEMBL14–16 database containing less than 20 

total atoms. We also include the SMILES strings for molecules in the Genentech torsion 

benchmark17 since these molecules represent a diverse set of dihedrals in the simplest chemical 

environment that they can be found. From the resulting set of SMILES strings we carry out active 

learning iterations as follows: 

1. Randomly select N smiles from the database 

2. Embed the N molecules in 3D space 



3. Randomly select a rotatable bond, and direction of rotation 

4. Conduct relaxed scan every 10 degrees (36 points) of each selected torsion using the 

current ANI model 

5. Carry out an ensemble disagreement test (see our work on active learning for details; a 

selection criterion of 𝜌̂ = 0.2 kcal*mol^-1 is used in this work)12 on the 36 * N generated 

molecular conformations 

6. For all M conformations that fail the ensemble disagreement test, compute ANI normal 

modes 

7. Randomly perturb the M conformations along the normal modes to a maximum distance 

of 0.2Å along each mode. Generate 4 normal mode sampled (NMS) points for each M 

8. Generate DFT energies and forces for all NMS points 

9. Add resulting data to the training dataset and retrain ANI model 

10. Go back to 1 and iterate 

We complete 20 iterations of the above scheme resulting in the generation of 202k extra DFT 

datapoints. We subsample 19k points from this dataset generation using our CCSD(T)/CBS 

extrapolation scheme. Supplementary Figure 1 compares ANI-1ccx and ANI-1x with and without 

the active learning generated dihedral corrections. 

 

 

Supplementary Tables 

Supplementary Table 1: Computational efficiency for example small molecules and performance 

of the CCSD(T)/CBS approximation (CCSD(T)*/CBS) evaluated against CCSD(T)-F12 reference 

data and compared to other composite schemes. 

Method 
CPU-core hoursa MAE / RMSD, kcal*mol^-1 

Alanine Aspirin S66b W4-11c 

CCSD(T)/CBS(aDZ) 1.53 42.79 0.08 / 0.10 1.58 / 1.85 

CCSD(T)/CBS(haTZ) 9.13 427.00 0.03 / 0.04 1.31 / 1.53 

NormalPNO-CCSD(T)/CBS(aDZ) 0.78 4.63 0.31 / 0.39 2.35 / 2.59 

NormalPNO-CCSD(T)/CBS(haTZ) 1.85 16.83 0.27 / 0.36 1.91 / 1.66 

TightPNO-CCSD(T)/CBS(TZ) 1.56 16.70 0.16 / 0.10 1.40 / 1.50 

CCSD(T)*/CBS (our reference) 1.44 7.44 0.09 / 0.10 1.46 / 1.55 

a Calculations performed on an Intel(R) Xeon(R) E5-2630 v3 @ 2.40GHz CPU 
b Reference data from 9 
c Reference data from 10, averaged for all subsets of W4-11. 

d Original reference data from 2 
e Revised S66 data from 18 

 

Supplementary Table 2: Fully connected neural network architectures for each atom type. 



Hydrogen Network Architecture 

 Layer1 Layer2 Layer3 Layer4 

Nodes 160 128 96 1 

Activation CELU19 CELU CELU Linear 

Regularization MAX NORM 

(1.0E-4) 

MAX NORM 

(1.0E-5) 

MAX NORM 

(1.0E-6) 

None 

Carbon Network Architecture 

 Layer1 Layer2 Layer3 Layer4 

Nodes 144 112 96 1 

Activation CELU CELU CELU Linear 

Regularization MAX NORM 

(1.0E-4) 

MAX NORM 

(1.0E-5) 

MAX NORM 

(1.0E-6) 

None 

Oxygen and Nitrogen Network Architecture 

 Layer1 Layer2 Layer3 Layer4 

Nodes 128 112 96 1 

Activation CELU CELU CELU Linear 

Regularization MAX NORM 

(1.0E-4) 

MAX NORM 

(1.0E-5) 

MAX NORM 

(1.0E-6) 

None 

 

Supplementary Table 3: ANI held out test set performance. In the case of ANI-1x the errors are with 

respect to the reference DFT, while for ANI-1ccx and ANI-1ccx-R the errors are with respect to the 

CCSD(T)*/CBS reference.  

Model ID 
(from 8x ensemble) 

ANI-1x test set 

performance 

ANI-1ccx test set 

performance 

ANI-1ccx-R test set 

performance 

MAE RMSE MAE RMSE MAE RMSE 

1 1.75 2.55 1.78 2.54 2.30 3.35 

2 1.78 2.60 1.82 2.80 2.26 3.30 

3 1.77 2.58 1.78 2.63 2.26 3.26 

4 1.73 2.53 1.77 2.55 2.24 3.23 

5 1.76 2.66 1.76 2.51 2.24 3.25 

6 1.73 2.54 1.75 2.50 2.26 3.26 

7 1.75 2.62 1.76 2.47 2.24 3.34 

8 1.76 2.61 1.79 2.59 2.21 3.20 

Mean 1.75 2.59 1.78 2.57 2.25 3.27 

 

 

Supplementary Table 4. Computed conformer ∆E on the GDB-10to13 benchmark (all 

conformers within 100 kcal*mol^-1 of the global minimum) for the transfer learning-based ANI-

1ccx and the ∆-learning based ANI-1ccx-∆ potential. Uncertainties are the standard deviation of 

each ANI model’s error from the ANI ensemble used for the mean prediction. Energy units are 

kcal*mol^-1. 

 ANI-1ccx ANI-1ccx-∆ 



MAD 1.46±0.02 1.44±0.04 
RMSD 2.07±0.04 2.04±0.15 

 

 

 

 

Supplementary Table 5. GDB-10to13 benchmark results comparing various ANI potentials and 

DFT.  Errors for conformer energy differences (∆𝐄) and potential energies (𝐄) for all ANI 

potentials. ωB97X/6-31G* errors are also provided. The blank cells are for values which cannot 

be compared because absolute energy differences between DFT and CCSD(T)*/CBS are 

arbitrary. µ and σ are the arithmetic mean and standard deviation, respectively. M and R are the 

MAE and RMSE, respectively. Units of energy are kcal*mol^-1. 

Model ∆𝐄𝐌
𝛍

 ∆𝐄𝐌
𝛔  ∆𝐄𝐑

𝛍
 ∆𝐄𝐑

𝛔 𝐄𝐌
𝛍

 𝐄𝐌
𝛔  𝐄𝐑

𝛍
 𝐄𝐑

𝛔 

ANI-1x 3.84 0.07 5.82 0.12 -- -- -- -- 

ANI-1ccx 2.24 0.02 3.24 0.04 2.22 0.05 3.02 0.04 

ANI-1ccx-∆ 2.21 0.07 3.18 0.10 -- -- -- -- 

ANI-1ccx-R 2.77 0.05 3.97 0.08 2.72 0.08 3.65 0.08 

ωB97X/6-31G* 3.37 -- 4.99 -- -- -- -- -- 

 

Supplementary Table 6: Performance of the two target methods and two ANI potentials used in this 

work. The performance comparison is on the HC7 hydrocarbon reaction energy benchmark and the 

ISOL6 organic molecule isomerization energy benchmark. 

 CCSD(T)*/CBS ANI-1ccx 𝝎B97X/6-31g(d) ANI-1x 

HC7 1.6/1.8 2.5/2.9 16.4/22.2 19.1/24.6 

ISOL6 0.5/0.5 1.5/1.8 3.8/4.7 4.6/5.3 

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Table 7: Reference and calculated energies (kcal*mol^-1) for the HC7/11 

benchmark. Reference calculations are obtained from Peverati, Zhao, and Truhlar a. The rows of 

the table correspond to the index given in the HC7/11 portion of Figure 3 in the main article. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reaction details Referencea ANI-1ccx CCSD(T)*/CBS ANI-1x 𝝎B97X/6-31g(d) 

E1 → E2 14.34 15.84 13.72 36.31 28.77 

E1 → E3 25.02 30.71 23.23 54.43 41.09 

Octane-a →  Octane-b 1.90 0.22 -1.36 2.79 1.75 

4C𝐻4 + 𝐶6𝐻14 → 5𝐶2𝐻6 9.81 7.72 8.74 7.00 6.26 

6C𝐻4 + 𝐶8𝐻18 → 7𝐶2𝐻6 14.84 11.67 13.09 10.49 9.30 

Adamantane → 3C𝐻4 + 2𝐶2𝐻2 193.99 196.48 196.27 237.51 238.83 

E4 → 3C𝐻4 + 2𝐶2𝐻2 127.22 127.86 127.43 158.05 157.65 

 a Reference data from20 

E1 (1) E2 (22) E3 (31) 
E4 

(Bicyclo[2.2.2]octane) 



 

Supplementary Table 8: Reference and calculated energies (kcal*mol^-1) for the ISOL6a 

benchmark. Reference calculations are obtained from Peverati, Zhao, and Truhlar b. The rows of 

the table correspond to the index give in the ISOL6 portion of Figure 3 in the main article. One 

reaction involving the atomic element fluorine (F) was left out since the ANI potential in this 

work is only fit to CHNO. 

 

  

Reaction Referencea ANI-1ccx CCSD(T)*/CBS ANI-1x 𝝎B97X/6-31g(d) 

1 9.77 9.16 10.45 6.45 9.32 
2 21.76 21.48 21.07 20.85 20.80 
3 6.82 3.82 6.39 -2.18 1.03 
4 33.52 35.36 33.30 27.84 26.43 
5 5.30 6.87 5.62 1.06 0.40 

 a Reference data from21 

 b Reference data from20 

3 (10) 

4 (13) 

1 (3) 

2 (9) 
5 (14) 



Supplementary Figures 

 

Supplementary Figure 1: Comparison of ANI model performance with and without transfer 

learning and dihedral active learning reparameterization on 45 torsion profiles containing the 

atomic elements C, H, N, and O. The ANI potentials with ‘-d’ appended are reparametrized for 

better torsions and with ‘-nd’ represent no reparameterization data was used during training. The 

grey dots represent the MAD of a given torsion scan vs. gold standard CCSD(T)/CBS. The box 

extends from the upper to lower quartile of the MAD distribution, the black horizontal line in the 

box is the median MAD. All ANI methods carried out using restrained optimization with ANI 

forces. 

 

 

 

 



 

Supplementary Figure 2: Diagram of the delta learning techniques evaluated in this work. ∆-

learning uses the pretrained ANI DFT model to predict an energy, then a second network is trained 

to correct the DFT prediction to better predict the CCSD(T)/CBS-extrapolated data. The resulting 

scheme requires two networks for prediction and is thus more expensive than the transfer learning. 

 



 

Supplementary Figure 3: Comparison of four different ANI potentials at predicting relative 

energies (∆E) between all conformers for each molecule in the GDB-10to13 (CCSD(T)/CBS* 

computed) benchmark. These log-scale density correlation plots show a) ANI-1ccx (transfer 

learning-based CCSD(T)*/CBS trained model), b) ANI-1ccx-∆ (∆-learning based CCSD(T)*/CBS 

trained model), c) ANI-1ccx-R (model trained only to the CCSD(T)*/CBS dataset), and d) ANI-

1x (DFT trained model).  

 

 

 

 

 

 

 

 



 

Supplementary Figure 4: Per atom corrected atomization energy difference (∆𝐸𝑎) distribution for 

ωB97X/6-31G* and ANI-1ccx vs. CCSD(T)*/CBS reference data. An average correction of 18.5 

kcal*mol^-1 was applied to the DFT data so it better fits the CCSD(T)*/CBS atomization energies. This 

correction came from a non-trivial linear fitting to the atomization energy difference between DFT and 

CCSD(T)*/CBS, based on the number of each atomic element. No such correction was applied to the ANI-

1ccx data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  



 

Supplementary Figure 5: Comparison of C-C center of mass radial distribution functions (RDF) from 

experiment22 and ANI-1ccx. Simulations was carried out with the NVT ensemble using the Langevin 

thermostat set to 300K. 

 



 















 

 

Supplementary Figure 6: Dihedrals scans with ANI-ccx used to compute the errors listed in Figure 4. 

The molecules are numbered according to reference 19, listing only atoms with C,H,N and O. 
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