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1. Materials and Methods 

1.1 Construction of Logical Model. 

To understand the neurogenesis of adult neural stem cells (aNSCs) in sub-ventricular zone 

(SVZ) of human brain, Notch signaling pathway and its cross-talk reactions with other pathway 

molecules (i.e. JAK2/STAT3, HIF1A, P53, RAS, PI3K/AKT, WDR12, and JIP1) are considered 

to construct a comprehensive logical dynamic model (Supplementary Table 1). The preliminary 

data for constructing the core pathway model is taken from the previously published work of the 

logical dynamic model of Notch pathway 
1
. Based on this pathway data, the entire model is then 

modified and restructured to simulate the developmental dynamics of adult neural stem cells 

(aNSCs) and the mutated Glioblastoma stem cells (GSCs). The overall reaction mechanisms of 

this pathway are then translated into logical equations, using universal logic gates AND, OR and 

NOT. The methodologies especially used for developing the logical equations of biochemical 

pathways are mainly adopted from the previously published works on the theoretical and 

experimental studies of the logical modeling and dynamic analyses of gene regulatory and cell 

signaling networks 
1-5

. The logical rules defining the dependencies of the pathway molecules are 

derived from related literatures and the chemical regulations of the constructed signaling network. 

The intracellular signaling cascade of Notch and its cross talk reactions can drive the 

phenotypic behaviors of aNSCs/qNSCs at various directions and thus create a distribution of 

multiple, distinct cell types (e.g. neurons, astrocyte, oligodendrocyte etc.) in the neurogenic niche 

of SVZ 
6,7

. It is observed that to reach a particular cellular phenotype, a specific set of molecules 

(markers) in the signaling cascade get activated, which forms a functional module or a sub-

network and helps to express a class of marker proteins responsible for a specific cell type 
7
. The 

dynamics of the pathway molecules are updated synchronously and the following rules (Eq.1-2) 

were considered while constructing the dynamic Boolean model of Notch and its cross talks 

reactions considered in this work. The initial states (1/ON or 0/OFF) of the input nodes are chosen 

randomly by generating random number for each input node from uniform distribution 

 (0,1)Unif  in the range of 0 to 1 and setting the cutoff at 0.5 (Eq. 2).      
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The pathway consists of 117 molecules out of which 53 are input molecules (Supplementary 

Table 2). Here, input molecules refer the molecules that do not possess any predecessor molecules 

(i.e. no upstream regulators) and during the signaling event they can be at either up-regulated 

(ON) or down-regulated (OFF) state (Eq.1). Hence, the possible highest numbers of expression 

patterns of these input molecules are 2
53 

(~9.0071993 X 10
15

). In presence of such enormous 

number of possibilities, mainly occurred due to the variations in the expressions of several 

extrinsic and intrinsic molecules, it is indeed obvious that adult and inactive NSCs (aNSCs) in the 

neurogenic niche of SVZ have to make right decision to opt any of the cellular states/phenotypes 
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either by proliferation and differentiation during the developmental process. The aNSCs can also 

choose to stop its cell division process (i.e. undergo cell cycle arrest or quiescent state) or undergo 

natural cell death process (i.e. apoptosis). Hence, it would be indeed an interesting work to trace 

the developmental dynamics and decision-making processes of aNSCs under the influence of 

such enormous input conditions through in-silico model simulations.    

Hence, to capture such huge possibilities at equilibrium, a robust simulation technique to 

stimulate the developmental dynamics of aNSCs with all input states (~ 9.0071993 X 1015) will 

be required. However, in practical scenario, logical dynamic simulations by considering all the 

input conditions and finding all possible attractors at equilibrium state are not feasible in terms of 

required computational cost. Hence, to reduce the computational cost, a fraction (total 106) 

random, non-redundant initial input sequences are generated by using uniform random number 

distribution and subsequently assigned binary states ON (1) or OFF (0) to each input node of the 

reconstructed model (Eq. 2). The entire random input sequences (106) are then further divided 

into 100 separate simulation batches (10,000 random sequences) and simulations are performed 

for all the 100 batches. Boolean functions shown in Eq. 2 for each node/molecule are provided in 

Supplementary Table 1. 

To capture different biological and realistic scenarios, the simulation of the model can be 

performed in the following three different ways depending on the availability of information of 

the input nodes. 

a) The logical states (binary) of the input molecules (mentioned in supplementary table 2) 

could be completely randomized and used as initial values to start the simulation. In this 

case, we can explore the activities of all possible combinations of the input molecules on 

the development of aNSC and GSCs. The simulation strategy is more close to the situation 

of real biological scenarios in which the stem cells (normal or tumorigenic) are exposed 

into a variety of the combinations of input signals (intrinsic and extrinsic) in the tissue.  

b) The expressions/activities (Up/Active or Down/Inactive) of the input molecules obtained 

from transcriptomics, proteomics, and metabolomics experiments could be used as initial 

values to start the simulation. In this case, the modeling strategy is more close to the 

context specific simulation of the individual biological cells.  

c) In case, the expression/activity levels of the input molecules are partially known, our 

developed models could also be used for simulation. Here, the input molecules which have 

known expression/activity level will be kept fixed (or time invariant) during simulation, 

and rest of the inputs will be randomized. Using this strategy, one can develop a predictive 

model for simulating and predicting the joint outcomes of the activities of both sets of 

input molecules having fixed/significant as well as random/uncertain/insignificant levels 

of expressions/activities in the normal and tumor cells. We used this modeling strategy to 

observe the effects of the transcriptomics information obtained from the TCGA-LGG and 

TCGA-GBM cohorts on our developed models (See Data Analysis section). 
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Supplementary Table 1. Master model of Notch signaling network 

AKT (t+1) = (PI3K(t) ) 

BAX (t+1) = (P53_P(t) ) 

BCL2 (t+1) = (NUC_NICD1(t) and COA(t) and CSL(t) and not COR(t) ) 

CCND1 (t+1) = (NICD_ACTIVE(t) and CSL(t) and not COR(t) and COA(t) ) 

CCND3 (t+1) = (NICD_ACTIVE(t) and CSL(t) and not COR(t) and COA(t) ) 

CD44 (t+1) = (NICD_ACTIVE(t) and CSL(t) and not COR(t) and COA(t) ) 

CDK2 (t+1) = (NICD_ACTIVE(t) ) 

MAML+P53_P (t+1) = (MAML(t) and P53_P(t) )  

COA (t+1) = (EP300(t) and MAML(t) and  HAT (t) and SKIP(t) ) 

COR (t+1) = (HDAC(t) and SAP30(t) and CIR(t) and SIN3A(t) and SMRT(t) ) 

FLIP (t+1) = (NUC_NICD1(t) and COA(t) and CSL(t) and not COR(t) ) 

GAMMA_SECRETASE (t+1) = (PRESENILIN1(t) and NICASTRIN(t) and APH1(t) and PEN2(t) ) or (NICASTRIN(t) and 

APH1(t) and PEN2(t) ) 

HES1_MRNA (t+1) = (NUC_NICD1(t) and SMAD3(t) and CSL(t) and not HES1(t) ) or (NICD_ACTIVE(t) and CSL(t) and 

not COR(t) and COA(t) and not MAML+P53_P(t) and not HES1(t) ) 

HES1 (t+1) = (HES1_MRNA(t) ) 

HES5_MRNA (t+1) = (NICD_ACTIVE(t) and CSL(t) and not COR(t) and COA(t) and not HES5(t) ) 

HES5 (t+1) = (HES5_MRNA(t) ) 

HES7 (t+1) = (NICD_ACTIVE(t) and CSL(t) and not COR(t) and COA(t) ) 

HEY1 (t+1) = (NICD_ACTIVE(t) and CSL(t) and not COR(t) and COA(t) ) 

HEY2 (t+1) = (NICD_ACTIVE(t) and CSL(t) and not COR(t) and COA(t) ) 

HEYL (t+1) = (NICD_ACTIVE(t) and CSL(t) and not COR(t) and COA(t) and not MAML+P53_P(t) ) 

HIF1A (t+1) = (NUC_STAT3(t) ) 

IAP (t+1) = (NUC_NICD1(t) and COA(t) and CSL(t) and not COR(t) ) 

MYC (t+1) = (NUC_NICD1(t) and YY1(t) ) 

NECD1 (t+1) = (JAG1(t) and NOTCH1(t) and TACE(t) ) or (JAG2(t) and NOTCH1(t) and TACE(t) ) or (DLL1(t) and 

NOTCH1(t) and TACE(t) ) or (DLL3(t) and NOTCH1(t) and TACE(t) ) or (DLL4(t) and NOTCH1(t) and TACE(t) ) or 

(MAGP1(t) and NOTCH1(t) ) or (MAGP2(t) and NOTCH1(t) ) or (NOV(t) and NOTCH1(t) ) or (CNTN1(t) and NOTCH1(t) ) 

NECD2 (t+1) = (JAG1(t) and NOTCH2(t) and TACE(t) ) or (JAG2(t) and NOTCH2(t) and TACE(t) ) or (DLL1(t) and 

NOTCH2(t) and TACE(t) ) or (DLL3(t) and NOTCH2(t) and TACE(t) ) or (DLL4(t) and NOTCH2(t) and TACE(t) ) or 

(CNTN1(t) and NOTCH2(t) ) 

NECD3 (t+1) = (JAG1(t) and NOTCH3(t) and TACE(t) ) or (JAG2(t) and NOTCH3(t) and TACE(t) ) or (DLL1(t) and 

NOTCH3(t) and TACE(t) ) or (DLL3(t) and NOTCH3(t) and TACE(t) ) or (DLL4(t) and NOTCH3(t) and TACE(t) ) 

NECD4 (t+1) = (JAG1(t) and NOTCH4(t) and TACE(t) ) or (JAG2(t) and NOTCH4(t) and TACE(t) ) or (DLL1(t) and 

NOTCH4(t) and TACE(t) ) or (DLL3(t) and NOTCH4(t) and TACE(t) ) or (DLL4(t) and NOTCH4(t) and TACE(t) ) 
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NEXT1 (t+1) = (JAG1(t) and NOTCH1(t) and TACE(t) ) or (JAG2(t) and NOTCH1(t) and TACE(t) ) or (DLL1(t) and 

NOTCH1(t) and TACE(t) ) or (DLL3(t) and NOTCH1(t) and TACE(t) ) or (DLL4(t) and NOTCH1(t) and TACE(t) ) or 

(MAGP1(t) and NOTCH1(t) ) or (MAGP2(t) and NOTCH1(t) ) or (NOV(t) and NOTCH1(t) ) or (CNTN1(t) and NOTCH1(t) ) 

NEXT2 (t+1) = (JAG1(t) and NOTCH2(t) and TACE(t) ) or (JAG2(t) and NOTCH2(t) and TACE(t) ) or (DLL1(t) and 

NOTCH2(t) and TACE(t) ) or (DLL3(t) and NOTCH2(t) and TACE(t) ) or (DLL4(t) and NOTCH2(t) and TACE(t) ) or 

(CNTN1(t) and NOTCH2(t) ) 

NEXT3 (t+1) = (JAG1(t) and NOTCH3(t) and TACE(t) ) or (JAG2(t) and NOTCH3(t) and TACE(t) ) or (DLL1(t) and 

NOTCH3(t) and TACE(t) ) or (DLL3(t) and NOTCH3(t) and TACE(t) ) or (DLL4(t) and NOTCH3(t) and TACE(t) ) 

NEXT4 (t+1) = (JAG1(t) and NOTCH4(t) and TACE(t) ) or (JAG2(t) and NOTCH4(t) and TACE(t) ) or (DLL1(t) and 

NOTCH4(t) and TACE(t) ) or (DLL3(t) and NOTCH4(t) and TACE(t) ) or (DLL4(t) and NOTCH4(t) and TACE(t) ) 

NICD_ACTIVE (t+1) = (NUC_NICD1(t) ) or (NUC_NICD2(t) ) or (NUC_NICD3(t) ) or (NUC_NICD4(t) ) 

NICD1 (t+1) = (NEXT1(t) and GAMMA_SECRETASE(t) ) 

NICD2 (t+1) = (NEXT2(t) and GAMMA_SECRETASE(t) ) 

NICD3 (t+1) = (NEXT3(t) and GAMMA_SECRETASE(t) ) 

NICD4 (t+1) = (NEXT4(t) and GAMMA_SECRETASE(t) ) 

NOTCH1 (t+1) = (FURIN(t) and not NUMB(t) and not ITCH(t) and ALPHA_ADAPTIN(t) and NOTCH1_PRE(t) ) or (not 

NEDD4(t) and NOTCH1_PRE(t) ) or (POGLUT_1(t) and O_GLUCOSE(t) and NOTCH1_PRE(t) ) or (XYL(t) and 

O_GLUCOSE(t) and not XYLE(t) and NOTCH1_PRE(t) ) or (O_FUCOSE(t) and NGA(t) and FRINGE(t) and POFUT_1(t) 

and NOTCH1_PRE(t) ) or (GALACTOSE(t) and GASE(t) and O_FUCOSE(t) and NOTCH1_PRE(t) ) 

NOTCH1_PRE (t+1) = (NUC_NICD1(t) and COA(t) and CSL(t) and not COR(t) ) 

NOTCH2 (t+1) = (FURIN(t) and not NUMB(t) and not ITCH(t) and ALPHA_ADAPTIN(t) and NOTCH2_PRE(t) ) or 

(POGLUT_1(t) and O_GLUCOSE(t) and NOTCH2_PRE(t) ) or (XYL(t) and O_GLUCOSE(t) and not XYLE(t) and 

NOTCH2_PRE(t) ) or (O_FUCOSE(t) and NGA(t) and FRINGE(t) and POFUT_1(t) and NOTCH2_PRE(t) ) or 

(GALACTOSE(t) and GASE(t) and  O_FUCOSE(t) and  NOTCH2_PRE(t) ) 

NOTCH2_PRE (t+1) = (NUC_NICD2(t) and COA(t) and CSL(t) and not COR(t) ) 

NOTCH3 (t+1) = (POGLUT_1(t) and O_GLUCOSE(t) and NOTCH3_PRE(t) ) or (XYL(t) and O_GLUCOSE(t) and not 

XYLE(t) and NOTCH3_PRE(t) ) or (O_FUCOSE(t) and NGA(t) and FRINGE(t) and POFUT_1(t) and NOTCH3_PRE(t) ) or 

(GALACTOSE(t) and GASE(t) and  O_FUCOSE(t) and  NOTCH3_PRE(t) ) 

NOTCH3_PRE (t+1) = (NUC_NICD3(t) and COA(t) and CSL(t) and not COR(t) ) 

NOTCH4 (t+1) = (POGLUT_1(t) and O_GLUCOSE(t) and NOTCH4_PRE(t) ) or (XYL(t) and O_GLUCOSE(t) and not 

XYLE(t) and NOTCH4_PRE(t) ) or (O_FUCOSE(t) and NGA(t) and FRINGE(t) and POFUT_1(t) and NOTCH4_PRE(t) ) or 

(GALACTOSE(t) and GASE(t) and  O_FUCOSE(t) and  NOTCH4_PRE(t) ) 

NOTCH4_PRE (t+1) = (NUC_NICD4(t) and COA(t) and CSL(t) and not COR(t) ) 

NOX (t+1) = (P53_P(t) ) 

NRARP (t+1) = (NICD_ACTIVE(t) and CSL(t) and not COR(t) and COA(t) ) 

NUC_NICD1 (t+1) = (GSK_3BETA(t) and not DVL(t) and not JIP1 (t) and NICD1(t) ) or (RAS(t) and NICD1(t) ) or 

(WDR12(t) and NICD1(t) ) or (MAML(t) and not CDK8(t) and not CYCC(t) and not FBW7(t) and NICD1(t) ) or (not 

NRARP(t) and NICD1(t) ) or (HIF1A(t) and NICD1(t) ) 

NUC_NICD2 (t+1) = (GSK_3BETA(t) and not DVL(t) and not JIP1 (t) and NICD2(t) ) or (MAML(t) and not CDK8(t) and not 

CYCC(t) and not FBW7(t) and NICD2(t) ) or (not NRARP(t) and NICD2(t) ) or (HIF1A(t) and NICD2(t) ) 
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NUC_NICD3 (t+1) = (GSK_3BETA(t) and not DVL(t) and not JIP1 (t) and NICD3(t) ) or (MAML(t) and not CDK8(t) and not 

CYCC(t) and not FBW7(t) and NICD3(t) ) or (not NRARP(t) and NICD3(t) ) or (HIF1A(t) and NICD3(t) ) 

NUC_NICD4 (t+1) = (GSK_3BETA(t) and not DVL(t) and not JIP1 (t) and NICD4(t) ) or (not FBW7(t) and NICD4(t) ) or 

(MAML(t) and not CDK8(t) and not CYCC(t) and not FBW7(t) and NICD4(t) ) or (not NRARP(t) and NICD4(t) ) or 

(HIF1A(t) and NICD4(t) ) 

NUC_STAT3 (t+1) = (STAT3_P(t) ) 

P53_P (t+1) = (P53(t) and not AKT(t) and not NICD1(t) ) 

PI3K (t+1) = (not PTEN(t) ) 

PTEN (t+1) = (not HES1(t) ) 

PUMA (t+1) = (P53_P(t) ) 

STAT3_P (t+1) = (HES1(t) and JAK2(t) and STAT3(t) ) or (HES5(t) and JAK2(t) and STAT3(t) ) 

BAD (t+1) = (not AKT(t) ) 

TENASCIN_C (t+1) = (NUC_NICD1(t) and COA(t) and CSL(t) and not COR(t) ) or (NUC_NICD2(t) and COA(t) and CSL(t) 

and not COR(t) ) 

GFAP (t+1) = (NUC_STAT3(t) ) 

NGN1 (t+1) = (not DTX1(t) and EP300(t) and MASH1(t) )  

BETA_TUBULIN_III (t+1) = (NGN1(t) ) 

NESTIN (t+1) = (not HES1(t) and not HES5(t) ) 

MASH1 (t+1) = (not HES1(t) and not HES5(t) ) 

NEUROD (t+1) = (not HES1(t) and not HES5(t) ) 

*APOPTOSIS (t+1) = (not FLIP(t) and not IAP(t) and not BCL2(t) and BAD(t) and PUMA(t) and NOX(t) and BAX(t) ) 

*NPC DIFFERENTIATION (t+1) = (BETA_TUBULIN_III(t) and NEUROD(t) and NESTIN(t) and not APOPTOSIS(t) and 

not ASPC DIFFERENTIATION(t) and not GBM DEVELOPMENT(t) ) 

*ASPC DIFFERENTIATION (t+1) = (GFAP(t) and not APOPTOSIS(t) and not NPC DIFFERENTIATION(t) and not GBM 

DEVELOPMENT(t) ) 

*GBM DEVELOPMENT (t+1) = (CCND3(t) and CCND1(t) and CDK2(t) and MYC(t) and TENASCIN_C(t) and GFAP(t) 

and not APOPTOSIS(t) and not NPC DIFFERENTIATION(t) ) 

*NSC RENEWAL (t+1) = (CCND3(t) and CCND1(t) and CDK2(t) and not APOPTOSIS(t) and not NPC 

DIFFERENTIATION(t) and not GBM DEVELOPMENT(t) and not ASPC_PROLIFERATION(t) ) 

* Phenotypes of the model. R.H.S = Logical states of the nodes at t
th

 time point. L.H.S = Logical state of the 

node at (t+1)
th 

time point.  

All the nodes considered in the logical model are further classified into four sub-classes: (i) 

Inputs, (ii) Intermediates, (iii) Targets, and (iv) Phenotypes. A detailed description of all the 

nodes included in the model is given below (Supplementary Table 2). 
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Supplementary Table 2: Detail descriptions of the nodes used in the logical model  

Input Molecules 

Sr. 

No. 

Names used in 

the Model 

Type of the 

Molecules 

Full Name/Gene 

Name of the Molecules 

Short Name Uniprot 

ID 

Ensemble ID 

1 ALPHA_ADAP

TIN 

Protein AP-2 complex subunit 

beta 

AP2B1 P63010 ENSG00000006125 

2 APH1 Protein Gamma-secretase 

subunit APH-1A 

APH1A Q96BI3 ENSG00000117362 

3 CDK8 Protein Cyclin dependent 

kinase 8 

CDK8 P49336 ENSG00000132964 

4 CIR Protein Corepressor interacting 

with RBPJ 1 

CIR1 Q86X95 ENSG00000138433 

5 CNTN1 Protein Contactin-1 CNTN1 Q12860 ENSG00000018236 

6 CSL Protein Recombining binding 

protein suppressor of 

hairless  

RBPJ Q06330 ENSG00000168214 

7 CYC Protein Cyclin-C CCNC P24863 ENSG00000112237  

8 DLL1 Protein Delta-like protein 1 DLL1 O00548 ENSG00000198719 

9 DLL3 Protein Delta-like protein 3 DLL3 Q9NYJ7 ENSG00000090932 

10 DLL4 Protein Delta-like protein 4 DLL4 Q9NR61 ENSG00000128917 

11 DTX1 Protein Deltex E3 ubiquitin 

ligase 1 

DTX1 Q86Y01 ENSG00000135144  

12 DVL1 Protein Segment polarity 

protein dishevelled 

homolog DVL-1 

DVL1 O14640 ENSG00000107404 

13 EP300 Protein E1A binding protein 

p300 

EP300 Q09472 ENSG00000100393 

14 FBW7 Protein F-box/WD repeat-

containing protein 7 

FBXW7 Q969H0 ENSG00000109670 

15 FRINGE Protein Beta-1,3-N-

acetylglucosaminyltrans

ferase lunatic fringe 

LFNG Q8NES3 ENSG00000106003 

16 FURIN Protein Furin FURIN P09958 ENSG00000140564 

17 GALACTOSE Metabolite Galactose NA NA NA 

18 GASE Protein β1,4-galactosyl-

transferase 

B4GALT1 P15291 ENSG00000086062 

19 GSK_3BETA Protein Glycogen synthase 

kinase-3 beta 

GSK3B P49841 ENSG00000082701 

20 HAT Protein Histone 

acetyltransferase 1 

HAT1 Q09472 ENSG00000128708 
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21 HDAC Protein Histone deacetylase 1 HDAC1 Q13547 ENSG00000116478 

22 ITCH Protein E3 ubiquitin-protein 

ligase Itchy homolog 

ITCH Q96J02 ENSG00000078747 

23 JAG1 Protein jagged-1 JAG1 P78504 ENSG00000101384 

24 JAG2 Protein jagged-2 JAG2 Q9Y219 ENSG00000184916 

25 JAK2 Protein Tyrosine-protein kinase 

JAK2 

JAK2 O60674 ENSG00000096968 

26 JIP1 Protein C-Jun-amino-terminal 

kinase-interacting 

protein 1 

MAPK8IP1 Q9UQF2 ENSG00000121653 

27 MAGP1 Protein Microfibril-associated 

glycoprotein 1 

MFAP2 P55001 ENSG00000117122  

28 MAGP2 Protein Microfibril-associated 

glycoprotein 2 

MFAP5 Q13361 ENSG00000197614 

29 MAML Protein Mastermind-like 

protein 1 

MAML1 Q92585 ENSG00000161021 

30 NEDD4 Protein E3 ubiquitin-protein 

ligase NEDD4 

NEDD4 P46934 ENSG00000069869 

31 NGA Metabolite N-acetylglucosamine NA NA NA 

32 NICASTRIN Protein Nicastrin NCSTN Q92542 ENSG00000162736 

33 NOV Protein Nephroblastoma 

overexpressed  

NOV P48745 ENSG00000136999 

34 NUMB Protein Protein numb homolog NUMB P49757 ENSG00000133961 

35 O_FUCOSE Metabolite O-Fucose NA NA NA 

36 O_GLUCOSE Metabolite O-GLUCOSE NA NA NA 

37 P53 Protein Cellular tumor antigen 

p53 

TP53 P04637 ENSG00000141510 

38 PEN2 Protein Presenilin enhancer 

gamma-secretase 

subunit 

PSENEN Q9NZ42 ENSG00000205155 

39 POFUT_1 Protein GDP-fucose protein O-

fucosyltransferase 1 

POFUT1 Q9H488 ENSG00000101346 

40 POGLUT_1 Protein Protein O-

glucosyltransferase 1 

POGLUT1 Q8NBL1 ENSG00000163389 

41 PRESENILIN1 Protein Presenilin 1 PSEN1 P49768 ENSG00000080815 

42 RAS Protein GTPase HRas HRAS P01112 ENSG00000174775 

43 SAP30 Protein Histone deacetylase 

complex subunit 

SAP30 

SAP30 O75446 ENSG00000164105 

44 SIN3A Protein Paired amphipathic 

helix protein Sin3a 

SIN3A Q96ST3 ENSG00000169375 
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45 SKIP Protein SKI Interacting Protein SNW1 Q13573 ENSG00000100603 

46 SMAD3 Protein Mothers against 

decapentaplegic 

homolog 3 

SMAD3 P84022 ENSG00000166949 

47 SMRT Protein Nuclear receptor 

corepressor 2 

NCOR2 Q9Y618 ENSG00000196498 

48 STAT3 Protein Signal transducer and 

activator of 

transcription 3 

STAT3 P40763 ENSG00000168610 

49 TACE Protein Disintegrin and 

metalloproteinase 

domain-containing 

protein 17 

ADAM17 P78536 ENSG00000151694 

50 WDR12 Protein Ribosome biogenesis 

protein WDR12 

WDR12 Q9GZL7 ENSG00000138442 

51 XYL Metabolite Xylose NA NA NA 

52 XYLE Protein α1,3-xylosyltransferase XXYLT1 Q8NBI6 ENSG00000173950 

53 YY1 Protein YY1 transcription 

factor 

YY1 P25490 ENSG00000100811 

Intermediate Molecules 

1 AKT Protein AKT serine/threonine 

kinase 1 

AKT1 P31749 ENSG00000142208 

2 CD44 Protein CD44 antigen CD44 P16070 ENSG00000026508 

3 CDK2 Protein Cyclin-dependent 

kinase 2 

CDK2 P24941 ENSG00000123374 

4 NOTCH1 Protein NOTCH1 NOTCH1 P46531 ENSG00000148400  

5 NOTCH2 Protein NOTCH2 NOTCH2 Q04721 ENSG00000134250 

6 NOTCH3 Protein NOTCH3 NOTCH3 Q9UM47 ENSG00000074181  

7 NOTCH4 Protein NOTCH4 NOTCH4 Q99466 ENSG00000204301 

8 PI3K Protein Phosphatidylinositol 3-

kinase regulatory 

subunit alpha 

PIK3R1 P27986 ENSG00000145675 

9 PTEN Protein Phosphatidylinositol 

3,4,5-trisphosphate 3-

phosphatase 

PTEN P60484 ENSG00000171862 

10 MAML+P53_P Protein 

Complex 

MAML and P53 

proteins complex 

NA NA NA 

11 COA Protein 

Complex 

Transcription Co-

activator Complex 

NA NA NA 

12 COR Protein 

Complex 

Transcription Co-

repressor Complex 

NA NA NA 

13 GAMMA_SECR

ETASE 

Protein 

Complex 

Gamm Secreatase 

enzyme complex 

NA NA NA 
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14 HES1_MRNA mRNA 

Molecule 

mRNA of HES1 

Protein 

NA NA NA 

15 HES5_MRNA mRNA 

Molecule 

mRNA of HES5 

Protein 

NA NA NA 

16 NECD1 Truncated 

Protein 

Notch extra-cellular 

domain 1 

NA NA NA 

17 NECD2 Truncated 

Protein 

Notch extra-cellular 

domain 2 

NA NA NA 

18 NECD3 Truncated 

Protein 

Notch extra-cellular 

domain 3 

NA NA NA 

19 NECD4 Truncated 

Protein 

Notch extra-cellular 

domain 4 

NA NA NA 

20 NEXT1 Truncated 

Protein 

Notch extra-cellular 

truncated domain 1 

NA NA NA 

21 NEXT2 Truncated 

Protein 

Notch extra-cellular 

truncated domain 2 

NA NA NA 

22 NEXT3 Truncated 

Protein 

Notch extra-cellular 

truncated domain 3 

NA NA NA 

23 NEXT4 Truncated 

Protein 

Notch extra-cellular 

truncated domain 4 

NA NA NA 

24 NICD1 Truncated 

Protein 

Notch intra-cellular 

domain 1 

NA NA NA 

25 NICD2 Truncated 

Protein 

Notch intra-cellular 

domain 2 

NA NA NA 

26 NICD3 Truncated 

Protein 

Notch intra-cellular 

domain 3 

NA NA NA 

27 NICD4 Truncated 

Protein 

Notch intra-cellular 

domain 4 

NA NA NA 

28 NICD_ACTIVE* Hypothetical 

Node* 

Transcriptionally active 

Notch Intra-cellular 

domain 

NA NA NA 

29 NOTCH1_PRE Precursor 

Protein 

Precussor of Notch1 

receptor protein 

NA NA NA 

30 NOTCH2_PRE Precursor 

Protein 

Precussor of Notch2 

receptor protein 

NA NA NA 

31 NOTCH3_PRE Precursor 

Protein 

Precussor of Notch3 

receptor protein 

NA NA NA 

32 NOTCH4_PRE Precursor 

Protein 

Precussor of Notch4 

receptor protein 

NA NA NA 

33 NUC_NICD1 Nuclear 

Counterpart 

Nuclear counterpart of 

NICD1 

NA NA NA 

34 NUC_NICD2 Nuclear 

Counterpart 

Nuclear counterpart of 

NICD2 

NA NA NA 
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35 NUC_NICD3 Nuclear 

Counterpart 

Nuclear counterpart of 

NICD3 

NA NA NA 

36 NUC_NICD4 Nuclear 

Counterpart 

Nuclear counterpart of 

NICD4 

NA NA NA 

37 NUC_STAT3 Nuclear 

Counterpart 

Nuclear counter of 

STAT3 protein 

NA NA NA 

38 P53_P Phosphoryla

ted Protein 

Phosphorylated form of 

P53 protein 

NA NA NA 

39 STAT3_P Phosphoryla

ted Protein 

Phosphorylated form of 

STAT3 protein 

NA NA NA 

Target Proteins 

1 BAX Protein BCL2 associated X BAX Q07812 ENSG00000087088 

2 BAD Protein Bcl2-associated agonist 

of cell death 

BAD Q92934 ENSG00000002330 

3 BCL2 Protein Apoptosis regulator 

Bcl-2 

BCL2 P10415 ENSG00000171791 

4 CCND1 Protein G1/S-specific cyclin-

D1 

CCND1 P24385 ENSG00000110092 

5 CCND3 Protein G1/S-specific cyclin-

D3 

CCND3 P30281 ENSG00000112576 

6 FLIP Protein CASP8 and FADD-like 

apoptosis regulator 

CFLAR O15519 ENSG00000003402 

7 HES1 Protein HES1 HES1 Q14469 ENSG00000114315 

8 HES5 Protein HES5 HES5 Q5TA89 ENSG00000197921 

9 HES7 Protein HES7 HES7 Q9BYE0 ENSG00000179111 

10 HEY1 Protein HEY1 HEY1 Q9Y5J3 ENSG00000164683 

11 HEY2 Protein HEY2 HEY2 Q9UBP5 ENSG00000135547 

12 HEYL Protein Hairy/enhancer-of-split 

related with YRPW 

motif-like protein 

HEYL Q9NQ87 ENSG00000163909 

13 HIF1A Protein Hypoxia-inducible 

factor 1-alpha 

HIF1A Q16665 ENSG00000100644 

14 IAP Protein E3 ubiquitin-protein 

ligase XIAP 

XIAP P98170 ENSG00000101966 

15 MYC Protein Myc proto-oncogene 

protein 

MYC P01106 ENSG00000136997 

16 NOX Protein NADPH oxidase 1 NOX1 Q9Y5S8 ENSG00000007952 

17 NRARP Protein Notch-regulated 

ankyrin repeat-

containing protein 

NRARP Q7Z6K4 ENSG00000198435 

18 PUMA Protein Bcl-2-binding 

component 3 

BBC3 Q9BXH1 ENSG00000105327 
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19 GFAP Protein Glial fibrillary acidic 

protein 

GFAP P14136 ENSG00000131095 

20 NGN1 Protein Neurogenin-1 NEUROG1 Q92886 ENSG00000181965 

21 BETA_TUBULI

N_III 

Protein Tubulin beta-3 chain TUBB3 Q13509 ENSG00000258947 

22 NESTIN Protein Nestin NES P48681 ENSG00000132688 

23 MASH1 Protein Achaete-scute homolog 

1 

ASCL1 P50553 ENSG00000139352 

24 NEUROD Protein Neurogenic 

differentiation factor 1 

NEUROD1 Q13562 ENSG00000162992 

25 TENASCIN_C Protein Tenascin TNC P24821 ENSG00000041982 

Phenotypes 

1 Apoptosis  NA Apotosis or Natural 

Cell death 

NA NA NA 

2 NPC 

Differentiation 

NA Differentiations of 

Neural progenitor cells 

NA NA NA 

3 NPC 

Differentiation 

NA Differentiations of 

Astrocyte progenitor 

cells 

NA NA NA 

4 GBM 

Development 

NA Differentiated and 

developed 

Glioblastoma cells 

NA NA NA 

5 NSC Renewal NA Neural stem cell 

renewal 

NA NA NA 

* Hypothetical node is introduced for the simplification of the model simulation  

 

1.2 Marker proteins of aNSC, GSC and GBM models 

The marker proteins whose expressions are analyzed to observe the dynamics of different 

cellular states or phenotypes in the aNSC, GSC and General glioma models are enlisted, with 

appropriate references, in Supplementary Table 3. The temporal dynamics of all the attractor 

states observed in these three models are also shown in "Data Analyses" section (sub-section 3.2). 

Oscillatory behaviors of the state transitions of marker proteins are observed in the corresponding 

cyclic attractor states (e.g. NSC Differentiation), whereas steady state saturation (high or low) is 

observed for the marker proteins in fixed-point attractor states (e.g. Quiescent state).  
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Supplementary Table 3. Information of the marker proteins mapped with different 

phenotypes  

Cellular Phenotypes Marker Proteins References 

Apoptosis Pro-apoptotic: PUMA, NOX, BAD, BAX 
8,9

 

Anti-apoptotic: FLIP, IAP, BCL2 

Neural Stem Cells Renewal CYCLIN-D3, CYCLIN-D1, CDK, HES1, HES5 
10-12

 

Neural Progenitor Cells NESTIN, NEUROD, β-TUBULIN 
13

-III 
14

 

Astrocyte Progenitor Cells GFAP 
15

 

Glioblastoma Stem Cells CYCLIN-D3, CYCLIN-D1, CDK, HES1, HES5, FLIP, 

IAP, BCL2  

16
 

Glioblastoma tumor Cells CYCLIN-D3, CYCLIN-D1, CDK, C-MYC, TENASCIN-

C, GFAP 

17,18
 

Expression patterns of each of these proteins in different attractor states (or cellular states) 

observed in aNSC, GSC and General glioma models are described in the later sections 

(Supplementary Figs 2,3, and 4). The expressions of these marker proteins are denoted in the 

model simulation by discrete binary states 0 or 1. The occurrences of a particular 

phenotypic/cellular state in the model are mapped with a Boolean function of the corresponding 

marker proteins of that phenotype and therefore its expression values (or activity patterns) will be 

varied in the discrete binary domain of{0, 1} . 

1 2 3

1 2 3

:

:

: { , , ,....} {0,1}

: { , , ....} {0,1}

f M P

f Boolean Function

P Phenotypes p p p

M Marker Proteins m m m





  

  

  

1.3 Determining the phenotypes and cellular states 

There are total five phenotypic functions considered in the developed dynamic model, which 

are dependent on the expression of specific marker proteins of normal and tumorigenic brain 

cells. These five phenotypes are i) Apoptosis, ii) NSC Renewal, iii) NPC Differentiation, iv) ASPC 

Differentiation, and v) GBM Development. Depending on the distribution of input signals 

different marker proteins are expressed with different distribution, which in turn will regulate the 

expressions of different phenotype in the binary domain{1,0}. Theoretically, it can be considered 

that in total 2
5 

or 32 single and combinations of phenotypes are possible to be occurred with equal 

probability in the attractor distribution space. The probability to reach any of the phenotype would 

be random and unbiased if the logical model is purely random. Also, in case of a random logical 

network model, it can also be assumed that the flow of signal transduction within the signaling 

network would be purely unbiased and can lead the reaction cascades towards the development of 
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any phenotype under a set of specific intra and extra-cellular stimuli. However, in reality, the 

topology of the constructed logical model is not completely random and unbiased in nature as the 

logical rules defined for the Notch signaling network is mainly taken from experimental 

evidences. The normal functioning of Notch signaling network is specifically oriented towards the 

neural stem cell renewal and its differentiation into neural progenitor cells 
19

. Similar to the 

experimental findings, it is also observed that at the time of Notch pathway simulation, only a few 

phenotypic states occur in the attractor space and those states are denoted as "Cellular states". A 

cellular state can be an individual phenotype (such as Apoptosis) or a combination of multiple 

phenotypes (e.g. NSC Renewal/NPC Differentiation). The following attributes are also considered 

during the model simulation to define two typical cellular states: Quiescent cells and GSC 

Renewal.  

: 1 : ( ) {0}; , 1,2,...,5iCellular States Quiescent (t) iff Phenotypes P t where i

GSC Renewal(t)= NSC Renewal(t) and not Apoptosis(t)

    
 

Quiescent state is a distinct cellular state, which is found at ON state only when all the 

phenotypes are at OFF state. In this state all other cellular activities such as proliferation, 

differentiation and apoptosis are found at dormant stage or at lower rate 
20

. Similarly, GSC 

renewal will be at ON state if the phenotype Apoptosis is at OFF state and NSC Renewal is at ON 

state.  

It is also observed that based on the steady state distributions and the temporal expressions 

patterns (1 or 0) of the intermediate and target molecules of Notch pathway, these cellular states 

can be found in either "Fixed-point" or "Periodic" attractors space. In the fixed-point state, the 

binary expressions of the cellular state and the pathway molecules will show homeostatic 

behavior, whereas in the periodic state it will be oscillatory in nature.  

1.4 Calculation of normalized frequencies of cellular states, Shannon entropy and Activity 

Ratio (AR) scores  

Earlier it is mentioned that exploring the entire input space of the 53 input nodes (i.e. 2
53

 = ~ 

9.0071993 X 10
15

) of this logical model to find out all possible attractor states is a 

computationally challenging task. Hence, to reduce the computational cost and time, a heuristic 

search algorithm (simulation based) is used here to find the maximum number of attractors of this 

logical model. The basic criterion of this algorithm is to run the simulation by taking randomly 

non-redundant, finite set of initial states (say N = 10
6
) from the overall population (9.0071993 X 

10
15

) of input states. The random initial states are further divided into 100 separate batches (i.e. 

each batch will contain 10,000 random input sequences) and the frequencies of all the attractor 

states (or cellular states) are calculated for each batch of simulation. The frequencies of each 

cellular state are further normalized by dividing its total frequency observed in a simulation batch 

with respect to the total number of random initial conditions (i.e. 10,000) used for simulation. It 

should be noted that degeneracy of the observed attractor states with respect to a particular 

cellular state is possible, which means multiple sets of similar attractor states can be mapped with 

a particular cellular state depending on the expression state(s) of the marker protein(s) in those 

attractor distribution ( )A .  
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Let us consider that such attractor distributions are calculated from the initial input states 

distribution ( )I  in any of the simulation batch. Hence, it can be said that the distribution of the 

cellular states ( )C  is also dependent on the distribution of the attractor states ( )A  and can be 

mapped with Boolean function : ( ) ( )f A C  . 

Let us also consider that in an arbitrary batch of simulation (Bi), there exists a set of cellular 

states  1 2 3
, , , ....,

m
i i i i iC C C C C . Here, 'i' is the simulation batch number and 'm' is the total number 

of observed cellular states or the size of maximum information content possible to be observed in 

the attractor distribution ( )A  generated in the simulation draw Bi.  

 If the probability mass functions (i.e. information) of all the elements of the sets of cellular 

states ( )iC drawn from the simulation batches (B = 100) are taken into the consideration, then 

according to the "principle of maximum entropy" the probability mass function with highest 

information entropy will be chosen as the "proper one" for further data analyses 
21

. The 

information entropy of a given batch of simulation can be calculated by calculating the Shannon 

entropy score of the observed cellular states.         

Definition 1: The Shannon entropy H(Ci) of the i
th

 instance of a simulation containing the 

distribution of cellular states  1 2 3
, , , ....,

m
i i i i iC C C C C is the negative logarithm of the probability 

mass function of the observed cellular states in that instance of simulation. 

 
2

1

, ( ) [ ln(P( ))]

P( ).log P( ) (3)m m

i i

m

i i

m

Hence Shannon Entropy H C E C

C C


  

 
 

Theorem 1: If 1 2 3( ), ( ), ( ),...., ( )nA A A A    are the attractor distributions generated from 

initial input states 1 2 3( ), ( ), ( ),....., ( )nI I I I    and their corresponding normalized frequency 

distributions of cellular states are 1 2 3( ), ( ), ( ),....., ( )nC C C C    , then the simulation instance 

containing highest Shannon entropy score H(Ci) will posses maximum numbers of different 

types of cellular states  1 2 3
, , , ....,

m
i i i i iC C C C C .  

Proof: Let us assume that i=1, 2, 3,...n are the different instances of Boolean simulations 

performed under a set of equal number of initial expressions vectors (say N), in which the 

expressions of the elements (i.e. input molecules) are randomly distributed. Let us consider the 

distribution of the random initial expressions sequences is ( )iI . Let us also consider that each of 

the simulation instances is producing a distribution of attractor states ( )iA , which can be 

mapped with a distribution of cellular states : ( ) ( )i if A C  . Here,  1 2 3
, , , ....,

m
i i i i iC C C C C is 

the normalized frequency of the individual cellular states (total numbers m) observed in the 

attractor distribution ( )iA of i
th

 simulation instance. It could be possible that the total number of 

individual cellular states (m) observed in a particular simulation instance may not be equal for all 

the simulation instances.  
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Let us assume that the probabilities of each of the cellular states in a given simulation 

instances are 1 2 3P( ),P( ),P( ),....,P( )m
i i i iC C C C . 

If there are {0,1}1 2 3 z
, , p p p ,....,p   numbers of fixed phenotypes considered in the model, 

which are mapped with the cellular states  1 2 3
, , , ....,

m
i i i i iC C C C C , then theoretically there exist 

maximum ( 2 )zM    numbers of cellular states and the maximum Shannon entropy score by 

definition 1 will be   2

1

( ) P( ).log P( )m m

M

m

Max H C C C


  .    

 

Hence, the maximum Shannon entropy of any arbitrary simulation instance 'i' is, 

2

1

2

2

2

1

2

Max ( ( )) P( ).log P( ).

, P( ).log P( ) 0

, log P( ) 0 P( ) 0

P( ).log P( ) 0

, max( ),

P( ).log {P(

m m

m m

m m

m m

m

M

i i i

m

i i

i i

m

i i

m

i i

H C C C

Here C C

Since C C

For any arbitrary number of cellular states 'm',

C C

Therefore when m m

C C





 

 

  

 









max( )

1

)} Max ( ( )).m

m

i

m

H C




  

 

Hence, it is proven that at the level of maximum Shannon entropy score, there exists maximum 

number of distinct cellular states (i.e. max(m)).   

 

Activity Ratio Score: This novel scoring technique is a metric to determine the contribution of 

an arbitrary pathway molecule (Xi) in the cell-signaling network to drive the cellular dynamics 

towards a particular cellular state. This scoring technique is specifically useful for extracting the 

important proteins from the set of input proteins, which are helping the signaling cascade to reach 

the specific phenotype. In the pathway simulation, given a set of total random input sequences 

(N), if Sk is the total number of random input sequences which direct the model simulation 

towards a particular cellular state ( )m
iC , then the activity ratio of any arbitrary input molecule (Xi) 

will be calculated by using the following equations (Eq. 4 and 5).  

 

 



16 

 

 

 

 

 

 

 

Here, the proportion |( )
i jX X C C    of an input protein ( )iX  in a given cellular state ( )iC is 

defined as the ratio of the difference of the number of times the input protein is up-regulated and 

down-regulated to the total number random input sequences directed towards a specific cellular 

state in the simulation.  

Lemma 1: In an arbitrary simulation instance, started from a finite set of random initial 

conditions, the value of AR score of any input node is bounded in the range of -1.44 to +1.44.  

Proof: Let us assume that in an arbitrary simulation instance there are kS numbers of input 

sequences 1 2 3( { , , ,..., })
kS

Y Y Y Y Y out of N random sequences generating the cellular state iC .  

Hence, it can be written as,  

   

   

 

   

 

1 1

1 1

1

1 1

1

: 1 : 0

,

if, : 0 0, : 1

1
: 1 1

, : 1 0, : 0

1
: 0 1

k k

k k

k

k k

k

S S

l i l i k

l l

S S

l i l i k

l l

S

l i

lk

S S

l i l i k

l l

S

l i

lk

Y X Y X S

Now

Y X Y X S

Y X
S

else Y X Y X S

Y X
S

 

 



 



   

   

 
   

 

   

 
   

 

 

 



 



 

   

   

 1 2 3

2| |

|

1 1
|

, , , ....,

(4)

1
( ) : 1 : 0 (5)

, :

:

Xi
j

ji
i

k k

i j

i j

m

X X C C X X C C

S S

X X C C l i l i
k l l

X X C C

i

Activity Ratio AR Log e

Y X Y X
S

Let usassume C Set of Cellular States C C C C

m Total Number Phenotypesobserved

X X Set of





   

 

 
 

 

 
    

 

 



 

 

1 2 3 1

1 2 3

{ , , ,..., }

1

: { , , ,..., }

,

k

N

j

S

k

Input Molecules X X X X

N Total Input proteins

Y Set of Input sequences Y Y Y Y reaching tocellular stateC

Where S Total number of input sequences reaching toa particular celllar statesout of N rand





 



. . k

omsequences

i e S N
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 

 

 

 

|

1

|

1

|

1

|

|

From Eq. 5, it can be written as,

1
( ) : 1 0 1

,

1
( ) 0 : 0

1
( ) : 0 1

1 ( )

1 ( ) 1

1.44

k

i j

k

i j

k

i j

i j

i j

S

X X C C l i
k l

S

X X C C l i
k l

S

X X C C l i
k l

X X C C

X X C C

X

Y X
S
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Y X
S

Y X
S
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




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 



 



 

 

 
     

 

 
    

 

 
     

 

  
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 







 2| |
1.44Xi

j
ji

i
X C C X X C C

Log e


   
  

 

 In the input list, if a particular protein is essential (activator) for a particular cellular state, 

then its expression would be constitutively 1 in the set of all random sequences SK. In that case, 

the numerator of the proportion |( )
i jX X C C   will be equal to kS and maximum and thus the value 

of the proportion will be equal to +1. Similarly, for a protein, which is inhibitor (or negative 

inducer) of a particular cellular state, it can be shown that the proportion will be equal to -1. The 

Log2 of the exponential of this proportion value is simply taken as scaling factor to stretch the 

distributions of the scores in the region of -1.44 to +1.44. This scaling is specifically useful for 

gaining high resolutions among the activity patterns of a large set of input proteins in the 

development of a particular cellular state. If AR score of a protein is either +1.44 or -1.44 in a 

given cellular state, then it can be said that the specific protein is highly essential and positive or 

negative inducer for that particular cellular state.   

1.5 Calculation of phenotype cost function 

The emergence route of intra-tumor heterogeneity in GBM tumor cells from a common origin 

of mutated cells can be best analyzed with the help of tumor cell evolution phylogeny 
22

. If the 

overall expressions of all the pathway molecules at t
th 

time are considered as a 'state' of the cell 
1 2 3{ , , ,...... : }m

t t t t tZ M M M M m Total molecules  , then the entire developmental routes through 

which different states
1 2{ , , ,...... : }t t t t TZ Z Z Z T Total simulationtime     reach at the attractor states 

(singleton or periodic) are called as ‘State Transition Graph’ or STG 
23

. The nodes of a STG are 

the states and edges are directed which defines the transition of one state to another state at every 

Boolean update. Hence, State Transition graph is able to depict the expression dynamics of all the 

pathway components and the transformation of the cells towards different cell types, starting from 

a common origin of tumor initiating cells (states). It is observed that for reaching at a particular 

attractor state, STG has to pass through few transition/intermediate states or nodes 

1 2{ , , ,......}t t tS S S 
and then land into either fixed-point node { }t sS 

or cyclic attractor 

nodes
1 2 3{ , , ,...... }t t t t lL L L L   

. It is considered that the transition from one state to another state of 

a cell is also associated with a signaling cost function (i.e. for chemical reactions/any physical 

processes) and it affects the overall state transition rate. Hence, it can be also assumed that the 

probability of a particular attractor/cellular state ( )iC in equilibrium state starting from initial 
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states depends on the overall distance (i.e. transition steps) and the total number of molecular 

transitions to reach at that particular state. Hence, to quantify the average signaling cost 

functions ( )
iC in each simulation batch for each cellular state is considered to be the functions of 

total transitions steps and periodicity (in case of cyclic attractor), and the total number of 

molecular alterations performed starting from initial state to the attractor state. This function is 

defined in Eq. 6.   

1 1

1

0 0

0

( )
(6)

, ( ) (7)
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t t t t
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d d
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
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odicities of the cyclic attractor)

Total mutational costs of the entire model

d d Hamming distance between two states in the transient and periodic paths

P =Total number of occurrences of 



  





iC  in a simulation batch

           

Calculation of "Hamming distance" between two successive nodes (or cellular states) in STG 

is particularly interesting to know the temporal changes or evolution of the expression dynamics 

of the pathway molecules in the successive time points 
24

. Let us assume that 
1 2 3{ , , ......., }N

t t t t tS X X X X & 1 2 3

1 1 1 1 1{ , , ......., }N

t t t t tS X X X X     are the expression vectors 

referring to the any arbitrary successive states in STG. The expression of the elements ( )k

jX lies 

in binary domain i.e. {0,  1} . The Hamming distance (
1j jS Sd
 ) can be calculated by using the 

following Eq. 8. 

1 1

1

( ) (8)
j j

N
k k

S S j j

k

d X X
 



   

Moreover it is also assumed that, apart from the signaling cost a mutated model in which few 

molecules are constitutively activated/suppressed will also induce mutational cost ( ) in the cells 

at the time of its transitions. The mutational cost function for a specific model is dependent on the 

total number of induced mutations ( ) and the change in the total number of added and omitted 

cellular states in the mutated model with respect to the non-mutated model ( 0)  .  

Let us consider, in the non-mutated model there are total maximum X number of Cellular 

states 1 2 3( : , , ,...... )n n n n n

XC C C C C observed and in the mutated model there are total maximum Y 

number of Cellular states 1 2 3( : , , ,...... )m m m m m

XC C C C C  observed. Suppose in the mutated model there 

are total  mutations induced. Hence, the mutational cost ( ) is defined as follows (Eq. 9). 
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 
| ( ) | | ( ) |

(9)

| ( ) |

|

n n m m n m

n m

n m

n n m

C C C C C C

C C

Total induced mutationsinthemutated model

C C Total number of cellular states

C C C Total number of cellular states which are not appeared in the mutated model

C





    
  





 

  

( ) |m n mC C Total number of cellular states which are newly appeared in the mutated model  

 

Hence, the phenotype cost function ( )
iC is defined as the sum of total signal cost and the 

mutational cost (if any) for a particular state ( )iC in the STG of a Boolean model. It is defined as 

follows (Eq. 10). 

(10)
i iC C    

    Phenotype Predictor Score: The predictor score[ ( )]iC of a particular cellular state observed 

in the simulation defines as the ratio of the total number of observed occurrences ( )
iCP to the total 

cost ( )
iC  requires for reaching at i

th
 cellular state ( )iC in the attractor space. Hence, this 

parameter can be defined as follows (Eq. 11). 

 

( )
( ) (11)

( )

)& ( )

i

i

i i i i

C

i

C

C C C C

E P
C

E

Where, E(P E Expected values of P  and  out of N number of simulation batches

 


  

       

The probability density of the phenotype predictor score ( )
P

 


is previously discussed in 

various literatures 
25,26

, where 2( , )P PP   , 2( , )    , ( , ) 1Corr P     , and the 

probability density function ( )f   is given as follows (Eq. 12). 
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The function ( )f   follows the general properties of the Cauchy-like distribution 
25

.   

2 Model constructions and validation 

2.1 Exploration of maximum number of attractor states using Shannon entropy in aNSC 

model. 

In the aNSC model simulation, the expected normalized frequencies and distributions of the 

cellular states under the steady state situation of each simulation batch are found to be highly 

uncertain. Hence, by considering all the distinct cellular states appeared in each simulation batch 

as "events", Shannon entropy scores are calculated for every batch (Supplementary Fig. 1A). The 

maximum information or Shannon entropy score, 1.456 Shannon, is achieved in the batch number 

21, which is subsequently opted for further analyses. Selection of this simulation batch with 

highest information entropy strongly asserts that the probability of obtaining maximum number of 

attractor or cellular states with highest normalized frequency is maximum (using Theorem 1), 

indicating that the 10,000 random initial states used in each batch are sufficient enough to explore 

maximum number possible attractor states of the model.  

2.2 Developmental model captures the emergence of cellular heterogeneity in the aNSCs niche.   

Total 8 different cellular states (i.e. phenotypically distinct, heterogeneous cell types) 

obtained, out of which 3 cellular states (viz. Quiescent, Apoptosis and Neuron Progenitor Cells 

(NPC) Differentiation) belong to fixed-point (singleton) attractor states referring either the fully 

differentiated (matured), inactive (i.e. quiescent) or dead cells (i.e. apoptotic) (Supplementary Fig. 

1B). The remaining 5 cellular states (viz. NSC Renewal/NPC Differentiation/Apoptosis, NSC 

Renewal/NPC Differentiation, NSC Renewal/Apoptosis, Astrocyte Progenitor Cell or ASPC 

Differentiation, and Glioblastoma Stem Cell or GSC Renewal) belong to cyclic (periodic) 

attractor space and are mainly corresponding to the periodic behavior of cell cycle divisions (i.e. 

proliferation, growth) followed by differentiation or apoptosis (Supplementary Fig. 1B). 

However, unlike the differentiation of neural progenitor cells (NPCs) which is appeared in both 

the singleton (i.e. NPC differentiation) and periodic (i.e. NSC/NPC, NSC/NPC/Apoptosis) 

attractor states, differentiation of astrocytes ASPCs are only found in the cyclic attractor states. 

Finally, appearances of these varieties types of cellular states in the steady states level (or attractor 

space) are able to improve the potential of the developed aNSC model to capture the coexistence 
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of heterogeneous cells in the microenvironment of aNSCs, which consists of quiescent, apoptotic, 

stem-like as well as differentiated neuronal and astrocytes cells.                       

 

Supplementary Fig. 1. Simulation results of the aNSC, GSC, and General glioma models. 

(A) Shannon entropy scores observed, and (B) Normalized frequencies of cellular states observed 

in aNSC, GSC, and General glioma model simulations. Batch numbers 21, 92 and 42 in aNSC, 

GSC, and General glioma models with highest Shannon entropy scores in each model 

simulations, respectively, are chosen for calculating the normalized frequencies of each attractor 

states of different models.                                

2.3 aNSCs are highly biased towards the development of quiescent, neural progenitor and 

apoptotic states 

It is experimentally proven that during the neurogenesis, around half of the neurons undergo 

apoptosis to keep the neuron cell population at optimum level 
27-30

. Previous experiment, 

performed on murine pluripotent PCC7-Mz1 neural stem cells, has shown that approximately 

25% of NSCs die by apoptosis within 24 hours from the onset of neurogenesis 
31

. During 

neurogenesis, aNSCs differentiate into more number of neurons and initially make maximum 

number of connections with each other to establish a dense neuronal connections in the brain 
31

. 

However, after reaching the maximum connectivity, these excessive connections start reducing as 

most of the neurons (> 50%) undergo apoptotic process and eliminated from the neurogenic niche 
31

. Hence, compiling these experimental observations, it can be stated that the higher rate of 

apoptosis exists during the course of neuronal development in the adult brain tissue. Further 

analyses of our simulation results have revealed that the normalized frequencies of singleton 

attractor or cellular states are comparably higher than the periodic attractor states (Supplementary 

Fig. 1B), and the singleton attractor state "Apoptosis" has highest normalized frequency (Mean 
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0.494   0.005 S.D.) compare to all others cellular states, thus supporting the experimental 

observations.    

The normalized frequency of the undifferentiated "Quiescent state" (Mean 0.378   0.005 

S.D.) is the next highest cellular state after Apoptosis (Supplementary Fig. 1B), justifying the 

previous experimental results, where a significant large quantity of quiescent neural stem cells 

(qNSCs) in the neurogenic niche 
20,32

 is observed. Complete differentiation of aNSCs into 

matured neurons (i.e. NPC Differentiation state) is also observed in this simulation within the 

singleton attractor state. The normalized frequency (Mean 0.125   0.003 S.D.) of this cellular 

state observed in the simulation outcomes indicates the natural bias of aNSCs to the 

differentiation of matured neuron. In contrasts, normalized frequency of normal ASPC 

differentiation state, obtained within periodic attractor space, is observed to be very less (Mean 

0.00023   0.00014 S.D.) and can be designated as a non-biased event during neurogenesis 

(Supplementary Fig. 1B). Hence, it can be concluded that the inertia in the internal circuitry of 

aNSCs drives the stem cells to opt neuronal cell fate decision over the normal ASPC 

differentiation process. Similarly, it is also observed that the normalized frequencies of other 

cyclic cellular states associated with the periodic attractors are also very less as compare to the 

singleton attractor states (Supplementary Fig. 1B). 

It is also observed that all the periodic cellular states mapped with the self-renewal process of 

aNSCs followed by apoptosis, NPC differentiation or both (viz. NSC Renewal/Apoptosis, NSC 

Renewal/NPC Differentiation, NSC Renewal/NPC Differentiation/Apoptosis) have similar 

normalized frequency values (Supplementary Fig. 1B). These comparative analyses of cyclic 

cellular states strongly establish the earlier observations of the general tendency of aNSCs to 

maintain either of its stemness property or neuronal cell fate specification over the differentiation 

of astrocytes 
33

. Specification of these cell lineages at the time of aNSCs development are found 

to be associated with the expression profiles of the marker proteins (Supplementary Table 3). In 

depth analyses are further performed to distinguish the cell lineages by assessing expression 

dynamics of these marker proteins. The state transition dynamics of these observed cellular states 

and the temporal expression patterns of their corresponding marker proteins  are shown in 

Supplementary Figs 2 and 3.          

2.4 Application of Activity Ratio scores for the extraction of driver proteins of different cellular 

states 

In order to identify the driver genes/proteins of a particular cellular state, the input molecules 

having optimum "Activity Ratio" score (-1.44 ≤ AR Score ≤ +1.44) are extracted in each cellular 

state through comparative analysis (Fig. 2A). It has correctly identified the important proteins, 

driving the dynamics of apoptosis, self-renewal and differentiation of adult NSCs 
34

. Also, the 

hierarchical clustering of the AR scores of all the cellular states shows separate clusters of fixed-

point and cyclic attractor states. It is observed that EP300, RBPJ, APH1A, NCSTN, PSENEN, 

SNW1, HAT1, and MAML1 are highly expressed (i.e. maximum AR scores) in all the cyclic 

attractor states. These proteins are the core components of Notch pathway, which maintain the 

balance between the self-renewal and differentiations of aNSCs by helping transcriptions of the 

target genes (HES 1-7/HEY 1, 2, L) 
6,19,35,36

. Higher AR scores of all of these proteins are found 

in the self-renewing or cell division cycles (i.e. aNSC renewal state), whereas lower scores of 

canonical (i.e. core components) and non-canonical (i.e., DTX1) components are observed in 
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neuronal (NPC) differentiation process 
19

. On the other hand, higher AR scores of all the active 

Notch pathway components with JAK2/STAT3 proteins are detected in astrocytes (ASPC) 

differentiation process 
19,37

. The novel scoring method, AR score is correctly predicted the 

proteins implicated in different sub-types of brain cells and thus justify its application for the 

identification of driver proteins behind the development of a particular phenotype or cellular state. 

Identification of the driver proteins in Notch signaling, also help to establish the role of Notch 

pathway as the guardian behind the maintenance of stem-like properties of adult NSCs and the 

suppressor of neuronal differentiation process thorough this in-silico approach. Follow up 

analyses reveal the active regulatory motifs within the pathway, which can shift the stem-like 

properties of aNSCs towards either differentiation (neuron or astrocyte) or apoptotic process 

(Supplementary Fig. 5).            

2.5 P53 mutation does not affect the differentiation potential of Glioblastoma stem cells  

Low AR score of P53 protein in GSC renewal state observed in aNSC model simulation (Fig. 

1A) justify the role of this protein in the development of GBM tumor initiating stem cells 
27,28,32

. 

Hence, to further verify the knock-out effect of this protein in the self-renewal of aNSC cells and 

the origin of evolution of Glioblastoma stem cells (GSCs), a new GSC developmental model is 

build by keeping P53 at down-regulated state (i.e. total mutations, μ = 1). This model is 

particularly developed to analyze the dynamic interplay of P53 and Notch pathway to trigger the 

development of GSCs. Simulation batch number 92 has highest Shannon entropy score (0.852 

Shannon), which is comparably much lesser than the observed entropy (1.456 Shannon) found in 

aNSC model (Supplementary Fig. 1A). In total five attractor states obtained in this simulation viz. 

i) Quiescent, ii) NPC Differentiation, iii) GSC Renewal iv) GSC Renewal/NPC Differentiation, 

and v) ASPC Differentiation (Supplementary Fig. 1B). As expected, the simulation outcomes 

show none of the GSC cells (i.e. GSC renewal state) are undergoing towards the apoptotic state 

and the normalized frequency (0.0014) is increased 2-folds as compare to the normalized 

frequency (0.0007) observed in aNSC model 

The simulation results clearly show that the P53 knocked-out GSCs are still capable of 

producing differentiated neurons and astrocytes cells (Supplementary Fig. 1B). Like aNSC model 

simulation, the normalized frequency of "NPC Differentiation" is found to be much higher 

(0.2516) than the "ASPC differentiation" state in this model. This result establishes the previous 

findings that wild-type (i.e. aNSC) and P53 knocked-out GSCs, both are capable differentiation, 

but the neuronal differentiation is mostly preferred over the astrocytes differentiation 
30,32,38

.  

2.6 The nexus of YY1 transcription network and core Notch signaling induces tumorigenesis in 

GSCs   

 Highest values of the core components of Notch signaling, JAK2, STAT3, and CSL/RBPJ 

and lowest value of P53 proteins in the AR score distribution of mutated ASPC differentiation 

state is observed in GSC model (Fig. 1A-1B). Hence, to further verify the influences of these 

proteins in the development of astrocytoma, JAK2, STAT3, RBPJ proteins are kept activated P53 

protein is kept down-regulated in a new simulation, and thus a new model of general 

Glioblastoma (GBM) development (total mutations, μ = 4) is developed. The Shannon entropy 

information (1.164 Shannon) is found higher than the GSC model (Supplementary Fig. 1A), 

which signifies the number of attractor states expected in General glioma model is comparatively 
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higher. There are maximum six different (two fixed-point and four cyclic) attractor states possible 

to be emerged from this mutated system in presence of random fluctuations of input proteins 

(Supplementary Fig. 1B). Attractor states, i) Quiescent, and ii) NPC differentiation are obtained in 

the fixed-point steady states with higher normalized frequencies, whereas the cyclic attractors 

states: i) ASPC Differentiation, ii) GSC Renewal/ASPC Differentiation, iii) GSC Renewal/ASPC 

Differentiation/GBM Development, and iv) GSC Renewal/ASPC Differentiation/NPC 

Differentiation are all found in comparatively lower normalized frequency ranges. Out of all these 

cellular states/attractors, the cyclic attractors, viz. ii), iii) and iv), are the newer states appeared in 

this mutated system. This indicates that cross-talks of over-activated JAK2/STAT3 pathway and 

deregulated P53 pathway with actively functioning Notch pathway have the potential to shift the 

developmental dynamics of GSCs towards the tumorigenic states, which correspond to different 

sub-types of GBM.         

The normalized frequency of ASPC differentiation state is comparably much higher than all 

other cellular states belonged to the cyclic attractor space (Supplementary Fig. 1B). This state 

denotes the uncontrolled cell division (without apoptosis) and differentiation of astrocytes in the 

neurogenic niche without the expressions of high-grade GBM markers (e.g. MYC, TENASCIN-

C) and thus it is defined as "Low grade glioma (LGG-I)" state (Supplementary Fig. 4). Similarly, 

another cellular state "GSC Renewal/ASPC Differentiation" is also categorized in the similar 

LGG group of tumor cells, but unlike the LGG-I grade, it constitutively expresses the oncoprotein 

TENASCIN-C and simultaneously expresses the markers of proliferating GSCs (Supplementary 

Fig. 4). Hence, due to the presence of high cell proliferation rate and GSCs, this state would have 

higher lethality, poor prognosis and higher aggressive in nature as compared to the cells belong to 

LGG-I grade, and therefore it is further classified as LGG-II grade tumor. Another cellular state, 

which has very lower normalized frequency as compare to the other two grades (LGG-I/II), is 

"GSC Renewal/ASPC Differentiation/GBM Development" (Supplementary Fig. 1B). The 

phenotypic characteristics associated with this cellular state are the self-renewal of GSCs, 

differentiation of mutated ASPCs, and the development of high-grade GBM (HGG) markers 

(Supplementary Fig. 4). The distinct molecular profiles of the marker proteins observed in this 

state are viz. constitutive over-expression of C-MYC and TENASCIN-C proteins, longer time 

period of GFAP expression dynamics including the expression of Cyclin-D1 and D3. These 

phenotypic and molecular characteristics associated with this cellular state are highly correlated 

with the development of high grade (i.e. Grade-IV) Glioblastoma tumor 
39-42

 state.  

Highest AR score of the transcription factor YY1 in high-grade GBM state points out the 

possible cross-talks of this protein with JAK2, STAT3, RBPJ, and P53 (Fig. 1C). Previous report 

suggests that YY1 interacts with the ankyrin domain of Notch intracellular domain (NICD) and 

modulates the expression of notch target genes 
43

.  Later, it is proven that non-canonical Notch 

pathway targets proto-oncogene C-MYC expression with the help of transcription factor YY1 
44

. It 

is also proven that C-MYC and its downstream target genes are significantly over-expressed in 

high-grade GBM cells 
45

. Positive correlation between the over-expression of YY1 and the 

progression of high-grade gliomas and meningliomas is also found in the later experiment 
46

. 

Therefore, compiling these experimental data, it can be stated that cross talks between the YY1 

transcription regulatory network and core Notch signaling network are positive inducers of high-

grade GBM tumor growth. 
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3 Data Analyses 

3.1 Temporal variations of marker proteins in aNSC, GSC and General Glioma Models 

 

Supplementary Fig. 2. Activity profiles of different markers proteins and the temporal 

dynamics of the corresponding fixed-point attractor states observed in aNSC simulation. (A) 

& (B) Quiescent state; (C) & (D) Apoptosis; (E) & (F) NPC Differentiation.  

In the activity profiles (Supplementary Fig. 2), only the important marker proteins 

corresponding to different cellular phenotypes considered in the aNSC model are depicted. It is 

identified that in the quiescent state, none of the cellular phenotypes are found in the active/ON 

state (Supplementary Fig. 2B). However, in the saturation time-points of quiescent state, the 

neuronal markers e.g. NESTIN and NEUROD are expressed, but another most important neuronal 

marker β-Tubulin-III is found in inactive/OFF state. Due to these characteristics, such attractor 

state or cellular phenotype can be considered as "quiescent" neural stem cells (or 'qNSCs'). These 

cells are kept in the neurogenic niche of SVZ with higher population (or normalized frequencies) 

and get reactivated when proper conditions arrive 
47

. qNSCs work as constant source for the 

production of pluripotent, adult neural stem cells (aNSCs), which finally committed to generate 

the differentiated, matured brain cells such as neurons, astrocyte, oligodendrocyte etc. after 

receiving proper signals 
20,47

. One of such differentiated state which is also observed in the 

simulation, is "NPC differentiation", in which all the neuronal markers including β-Tubulin-III are 

found to be expressed at a steady state active level (i.e. ON state) and the entire process reaches to 
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the homeostasis 
48

. Constitutive expressions of NESTIN and β-Tubulin-III proteins are commonly 

found in the neural progenitor cells committed to form matured neurons in neurogenic niche 
20

.  

On the other hand, one of the attractor states of aNSC model is detected to reach at apoptotic 

cell death process if the pro-apoptotic markers such as PUMA, NOX, BAX, and BAD are 

constitutively over-expressed in the qNSCs (Supplementary Fig. 2C, 2D). Steady state over-

expressions of these pro-apoptotic proteins trigger the apoptotic pathways by regulating their 

downstream effectors and thus direct the qNSCs/aNSCs or the matured cells towards the 

programmed cell death 
8
. Simulation result reveals that expressions of these pro-apoptotic marker 

proteins within NSCs in the absence of appropriate Notch pathway activation have the potential to 

kill the stem cells and eliminate them from the neurogenic niche of SVZ. However, the 

deficiencies in the population of stem cells induced by the natural cell death are replenished by 

reactivating the quiescent NSCs present in the niche by triggering and directing the intracellular 

reaction cascades such as Notch at the appropriate time 
49

.  

Apart from these above mentioned fixed-point attractor states, there are other five cyclic 

attractor states found in the aNSC model simulation. The expression profiles of the relevant 

markers and the activities of these attractor states are also analyzed to understand the involvement 

of Notch pathway in the regulation of their dynamics within NSCs (Supplementary Fig. 3). 

Periodic expression patterns of all the stem cell renewal/proliferation markers (i.e. HES1, HES5, 

CCND1, CCND3, and CDK2) throughout the state transition dynamics are observed within all of 

these cyclic attractor states. Periodic expressions of the cell proliferation markers CCND1, 

CCND3 and CDK (i.e. cyclic expressions of Cyclins and CDK complex) are the main regulator of 

cell cycle progression 
50

. The variations of the expressions of other marker proteins are also 

observed in different cellular states featuring different phenotypic characteristics. For example, it 

is observed that along with these stem cell marker proteins, the markers responsible for neuron 

progenitor cells (e.g. NESTIN, NEUROD, and β-Tubulin-III) and pro-apoptosis factors (e.g. 

PUMA, NOX, BAX etc.) are also expressed in few attractor states. In such cases, the individual 

phenotypes NSC renewal, NPC differentiation and apoptosis processes oscillate systematically 

throughout the transition time of Boolean update. Expressions of such multiple markers (e.g. stem 

cell markers with the marker proteins of neuronal cells) lead the phenotypic characters of the 

Notch activated cells towards a complex cellular state (e.g. "NSC Renewal/ NPC Differentiation/ 

Apoptosis") in which the different marker proteins are found to be co-expressed or sequentially 

expressed (Supplementary Fig. 3A). Interestingly, while analyzing the cyclic steady states of 

these phenotypes in this cellular state, it is observed that the oscillation (or phase) of the 

phenotype NSC Renewal is leading followed by the NPC Differentiation and Apoptosis 

(Supplementary Fig. 3B). This observation clearly demonstrates the transitions of the cycles of 

neural stem cell renewal to the differentiation of neuron and its apoptosis in the neurogenic niche. 

In another cellular state, the phenotypic markers for NPC differentiation are not found to be 

active, but the markers for NSC renewal and Apoptosis are found in active state. Hence, this 

complex state ("NSC Renewal/ Apoptosis") in the simulation demonstrates the cyclic expression 

of NSC self-renewal process of NSCs followed by its apoptosis (Supplementary Fig. 2C, 2D).  
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Supplementary Fig. 3. Activity profiles of different markers proteins and the temporal 

dynamics of the corresponding cyclic attractor states observed in aNSC simulation. (A) & 

(B) NSC Renewal/NPC Differentiation/Apoptosis; (C) & (D) NSC Renewal/Apoptosis; (E) & (F) 

NSC Renewal/NPC Differentiation; (G) & (H) GSC Renewal; (I) & (J) ASPC Differentiation.   

On the other hand, it is observed that cyclic expressions of cell proliferation and stem cell 

markers with the expressions of anti-apoptotic factors (e.g. BCL2, IAP, FLIP etc.) can lead the 

cellular phenotype towards uncontrolled proliferation without apoptotic break, which is denoted 

here as "GSC Renewal" state (Supplementary Fig. 3G, 3H). Experimental observations and the 

simulation outcomes of this study, both are confirming the phenomena of the developmental 

dynamics of GSCs from aNSCs within the neurogenic niche of SVZ. Also, it is identified that 

deregulation in Notch pathway and the over-expression of anti-apoptotic factors along with P53 

mutation are one of the major causes behind the generation of tumorigenic stem cells (GSCs) in 

the brain tissue. Similarly, the cyclic oscillations of astrocyte marker GFAP along with the stem 
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cell proliferation markers are found active in the "ASPC Differentiation" state (Supplementary 

Fig. 3I, 3J). 

 

Supplementary Fig. 4. Activity profiles of different marker proteins and the temporal 

dynamics of the corresponding cyclic attractor states observed in general glioma model 

simulation. (A) & (B) GSC Renewal/ASPC Differentiation; (C) & (D) GSC Renewal/ASPC 

Differentiation/ GBM Development; (E) & (F) GSC Renewal/ASPC Differentiation/NPC 

Differentiation. 

Similar to the aNSC model, the simulation results of "GSC model" (in which P53 is 

constitutively knocked-out) also predict the outcomes of different cellular states/phenotypes, 

which are closely same as the aNSC model simulation. The observed cellular sates (fixed-point 

and cyclic) of GSC model viz. Quiescent state, NPC Differentiation, GSC Renewal, ASPC 

Differentiation are all having similar expression patterns (data not shown) of their marker proteins 

as compare to the results observed in aNSC model simulation (Supplementary Figs 2 and 3).   

On the other hand, while simulating the general glioma model (in which P53 is inactive and 

JAK2, STAT3, and RBPJ are constitutively over-expressed), another three new cyclic attractors 
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(or cellular states viz. i) GSC Renewal/ASPC Differentiation, ii) GSC Renewal/ASPC 

Differentiation/GBM Development, and iii) GSC Renewal/ASPC Differentiation/NPC 

Differentiation) are found to be emerged in the attractor space with varying normalized frequency 

distributions (Supplementary Fig. 4). Fixed-point attractor states viz. Quiescent and NPC 

differentiation and the cyclic attractor states viz. ASPC differentiation are also observed in this 

model simulation as observed in aNSC and GSC models. The cellular state ASPC Differentiation 

(with P53
-/-

, JAK2
+/+

, STAT3
+/+

, RBPJ
+/+ 

mutations) observed in this model simulation is an 

oscillating attractor state with the expression of GFAP protein, uncontrolled proliferation or 

division of mutated astrocyte cells and no apoptotic break. Hence, the phenotypic characteristic of 

this cellular state is tumorigenic in nature and thus it is denoted as "Low grade glioma (LGG-I)" 

state (Supplementary Fig. 4A, 4B).       

Moreover, the protein activity profile observed in another cellular state: "GSC Renewal/ASPC 

Differentiation" reveals that the expression of the astrocyte differentiation marker GFAP is 

oscillating along with the stem cell markers (tumor) and the anti-apoptotic markers are 

constitutively expressed, which also make this cellular state tumorigenic in nature 

(Supplementary Fig. 4C). It is observed that both the phenotypes GSC renewal and ASPC 

differentiation processes are oscillating with fixed time periods throughout the transition time 

points around their respective steady state levels. Both the phenotypes have same periodicities 

(i.e. 4 units of transition states) and out of these two cellular states, GSC renewal process is 

moving ahead from the ASPC differentiation process. This observation clearly indicates the real 

biological scenario, in which self-renewal/proliferations of GSCs are initiated in the brain tissue 

followed by its differentiation and maturation into ASPCs (Supplementary Fig. 4D). It also proves 

the role of Notch pathway to maintain the inertia of GSCs at self-renewal state compare to 

differentiation and maturation into glial cells and also demonstrates the slow rate of 

differentiation of mutated and proliferating astrocytes/glial cells from GSCs in the tumor niche. It 

should be noted that the ASPCs generated though this process are purely tumorigenic in nature 

with multiple oncogenic mutations and uncontrolled rate of proliferation without apoptosis. 

However, the genotypic signature of ASPCs found in this cellular state have down-regulated C-

MYC (a marker for high-grade GBM), which in turn makes this cellular state less tumorigenic 

(i.e. low grade) in nature as compare to grade-IV glioblastoma tumor cells. As this cellular state 

contains both tumorigenic stem cells (GSCs) and mutated astrocytes (ASPCs), hence this state is 

defined here as the "LGG-II" state.   

Apart from these two major cellular states, the state transition dynamics of the model also 

leads towards the two other complex attractor states, which are phenotypically mapped with the 

"GSC Renewal/ASPC Differentiation/GBM Development" and "GSC Renewal/ASPC 

Differentiation/NPC Differentiation" cellular states. In the first one, it has shown the cyclic 

expression patterns of all the GSCs self-proliferation, ASPC maturation or differentiation and 

simultaneously the constitutive over expressions of important high-grade glioblastoma marker 

proteins C-MYC and TENASCIN-C (Supplementary Fig. 4E). Although both the processes, 

involved in GSC renewal and ASPC differentiation, are showing oscillatory dynamics around the 

steady state time points, but the observed periodicities of both the cellular states (i.e. 3 units of 

transition states) are lesser than the previously mentioned LGG/GSC cellular state. More 

importantly, in this cellular state both the phenotypes are oscillating synchronously and dividing 

rapidly in the tumor niche, which will eventually accelerate the entire population of the mutated 

astrocytes to grow exponentially without any apoptosis (Supplementary Fig. 4F). Interestingly, it 
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is observed that if the malignant GBM markers C-MYC and TENASCIN-C, both are expressed in 

the rapidly proliferating ASPCs, then the cumulative dynamics of the entire cellular state would 

transform more aggressively into the self-proliferating stage. Hence, based on these phenotypic 

and genotypic characteristics, this particular cellular state observed in this simulation is further 

denoted as "High-Grade GBM" state. The characteristic dynamics of GBM developmental 

process is also periodic in nature, but the periodicity and the amplitude are comparably higher 

than the GSC renewal and ASPC differentiation processes. 

3.2 Network motifs of Notch pathway in the regulation of different cellular states 

 

Supplementary Fig. 5. Active network modules in Notch pathway associated with various 

cellular states. (A) NSC Renewal/ Apoptosis; (B) NSC Renewal/NPC Differentiation/Apoptosis; 

(C) ASPC Differentiation; and (D) GSC Renewal. COA and COR represent co-activator and co-

repressor complex, which are the important gene regulatory components for regulating the 

expression of Notch target genes such as HES1/5, HEY, CYCLIN-D1 etc. 

It is observed that, in the normal situation, when the core Notch pathway is active and the P53 

protein is not mutated in the aNSCs, the target proteins (HES1, HES5 etc.) produced at the end of 

this pathway are normally expressed and follow cyclic temporal expression pattern (results not 
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shown) 
51

. It is experimentally proven and also shown in the identified network motif that the 

transcription complex (NICD:CSL:MAML) of Notch pathway produces the precursor of NOTCH 

receptor protein 
1
, which is then turns to post-processing (most often glycosylated) and transferred 

to the cell membrane, where it further binds to the Notch pathway activation ligands Delta/Jagged 

(Supplementary Fig. 5A). Thus, this reaction pathway makes a positive feedback loop in the 

reaction motif and triggers oscillatory dynamics of the Notch target genes HES1, HES5, CYCLIN-

D1, CYCLIN-D3 etc. The entire reaction motif works in such a way that it enforces the 

transcription regulatory network of notch pathway to produce the cell cycle regulatory proteins 

CYCLIN-D1, CYCLIN-D3 etc. in periodic pattern. In the previous experiments and current 

simulation studies, oscillations in the dynamic expressions of HES1, HES5 genes/proteins are 

also observed 
52

. However, the expressions of HES1/HES5 proteins negatively influence the 

transcriptions of their own expressions and thus create a negative feedback loop in the motif 
53

. 

The periodic expressions of CYCLINS and CDK proteins, a well known indicator of cell 

proliferation process, are also observed due to the presence of these feedback loops in the 

simulations 
42

. It is also observed from the simulations that the controlled regulation and fine -

tuning of this positive and negative feedback loops are the main regulators behind the 

maintenance of stem cell renewal and proliferation process. Further, perturbation studies 

performed by eliminating or targeting any of this feedback loops would shift the cellular 

dynamics towards different cellular states (neurogenesis or gliogenesis). 

In another reaction motif, it is observed that when the expressed HES1/HES5 proteins, which 

are also known as bHLH transcription repressor protein, interact with the transcription regulatory 

network of MASH1 gene, then the entire reaction motif is redirected to suppress the expressions 

of neuronal cell markers e.g. NGN1, β-TUBULIN-III (Supplementary Fig. 5B). In this case, 

HES1/5 proteins act as a transcription repressor of MASH1 gene, which is the activator of the 

production of NGN1 and β-TUBULIN-III proteins. It is also observed that during the periodic 

intervals, at which the HES1/HES5 protein expressions are at the lower level, the expressions of 

neuronal marker proteins are found at the higher level and differentiation of neuron progenitor 

cells are occurred (i.e. neurogenesis). On the other hand, it is observed that when the expression 

dynamics of HES1/5 protein are at the up-regulated state, and JAK2/STAT3 proteins are also 

simultaneously expressed, then the expression of the marker protein GFAP, responsible for 

astrocytes differentiation (ASPC) is at ON state. In this case, the entire reaction motif of Notch 

signaling network is redirected towards gliogenesis process (Supplementary Fig. 5C).  

These entire feedback reaction mechanisms governing neurogenesis and gliogenesis processes 

can sometimes go awry, if the tumor suppressor protein P53 is absent in the neural stem cells. In 

that case, anti-apoptotic proteins such as BCL2, IAP, and FLIP will be expressed at higher 

quantities and the stem cells become immortal. However, due to the active regulations of both the 

positive and negative feedback loops, Notch signaling network will produce HES1/5, CYCLINS 

at regular interval of time (Supplementary Fig. 5D). This will eventually lead the rapid 

proliferations of the stem cells without any apoptosis and the cells will be converted into 

Glioblastoma stem cells (GSCs).        
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3.3 State transition graph of General Glioma model simulation 

 

Supplementary Fig. 6. State transition graph (STG) generated from general glioma model 

simulation data. NPC Differentiation and Quiescent cells are the fixed-point attractors and the 

others represent the cyclic attractor states corresponding to different sub-types of GBM tumor 

cells. 
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3.4 Protein activity pattern observed in different attractor states corresponding to Grade-IV 

cells 

 

Supplementary Fig. 7. Activity patterns of the pathway molecules observed in all the 

periodic attractor states corresponding to Grade-IV tumor cells in the general glioma model 

simulation. The temporal expression/activity profiles (ON/Up-regulation OR OFF/Down-

regulation states) of the pathway molecules in each of the distinct attractor states (total 14) clearly 

depict the intra-tumor heterogeneities, which exist within the heterogeneous groups of Grade-IV 

tumor cells found in GBM tumor ecosystem. Such heterogeneities arise within the heterogeneous 

population of tumor cells within a same grade due to the proteomic/genomic variations present in 

the Notch pathway components and its interactions with the microenvironment of the tumor 

niche. For example, the temporal dynamics of the activities of important proteins (e.g. HES1, 

HES5, HIF1A, MASH1, NESTIN, NEUROD, NGN1, Precursors of NOTC2/3/4, PI3K, PTEN, 

Phosphorylated form of STAT3 etc.) are found significantly varying (not synchronized or absent) 

within these periodic attractor states. The time-points of the activations of these proteins within 

the attractor states greatly influence other downstream proteins/molecules and finally the temporal 

dynamics of the expression of Grade-IV tumor cells. 

3.5 Distributions of the phenotype predictor scores observed for all type of cellular states 

 The shapes of the distributions of the phenotype predictor scores observed for all the distinct 

cellular states found in aNSC, GSC, General Glioma, and Grade-IV GBM models have fat tailed, 

Cauchy-like distribution (Supplementary Fig. 8). This type of distribution is observed for the ratio 

distribution of two multivariate normally distributed variables. Here, by definition (Eq. 10), the 
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phenotype predictor score is the ratio of the distributions of the total number of occurrences of the 

cellular state to the associated total cost. 

 

Supplementary Fig. 8. Distributions of the Phenotype Predictor Scores observed for 

different cellular states in aNSC, GSC, General Glioma and Grade-IV GBM models. 
Distributions are plotted for all distinctly observed cellular states (total 12) viz. (A) Quiescent 

state; (B) Apoptosis; (C) NPC Differentiation; (D) GSC Renewal; (E) NSC Renewal/NPC 

Differentiation; (F) GSC Renewal/NPC Differentiation; (G) NSC Renewal/Apoptosis; (H) NSC 

Renewal/ NPC Differentiation/Apoptosis; (I) GSC Renewal/ASPC Differentiation/ NPC 

Differentiation; (J) ASPC Differentiation (LGG-I); (K) GSC Renewal/ASPC Differentiation 

(LGG-II); (L) GSC Renewal/ASPC Differentiation/GBM Development (Grade-IV) state.  

A detailed description about the properties and the expected shape of such distribution is 

deduced and elaborately discussed in the literatures 
25,54

. Although the theoretical mean or the 

expected value and the variance are zero for such distribution, but numerically the mean values of 

the phenotype predictor scores can be calculated from the original data by calculating the ratio of 

the mean normalized frequency to mean value of the total costs of the cellular states 

(Supplementary Table 4). The confidence interval (CI) of the mean value of the ratio of two 

variables (frequency and cost) can be calculated by using Fieller's theorem at desired confidence 

level 
55,56

.   



35 

Supplementary Table 4. Mean values with 95% CI of the phenotype predictor scores of all 

cellular states. 

Observed Cellular States or 

Phenotypes 

Models 

aNSC  

Mean  

[95 % CI]  

GSC 

Mean  

[95 % CI] 

General Glioma 

Mean  

[95 % CI] 

Grade-IV GBM 

Mean  

[95 % CI] 

Quiescent 
172.813 

[171.596   174.032] 

334.160  

[333.246   335.074] 

301.827  

[300.945 302.709] 

147.688 

[146.630  148.747] 

Apoptosis 
286.581 

[284.957   288.206] 
NA NA NA 

NPC Differentiation 
55.326  

[54.496   56.156] 

107.264 

[106.388   108.140] 

96.677 

[95.862    97.492] 

40.372 

[39.804    40.940] 

GSC Renewal 
0.100 

[0.078    0.124] 

0.193 

[0.163   0.224] 
NA NA 

NSC Renewal/NPC 

Differentiation 

0.123 

[0.095    0.150] 
NA NA NA 

GSC Renewal/NPC 

Differentiation 
NA 

0.226 

[0.194   0.259] 
NA NA 

NSC Renewal/Apoptosis 
0.118 

[0.090   0.147] 
NA NA NA 

NSC Renewal/NPC 

Differentiation/Apoptosis 

0.124  

[0.098   0.151] 
NA NA NA 

GSC Renewal/ASPC 

Differentiation/ NPC 

Differentiation 

NA NA 
0.072 

[0.053    0.0917] 

1.063 

[0.984  1.141] 

ASPC Differentiation (LGG-

I) 

0.054 

[0.040  0.069] 

0.098 

[0.073   0.123] 

23.655 

[23.150   24.160] 

159.059 

[158.118  160.000] 

GSC Renewal/ASPC 

Differentiation (LGG-II) 
NA NA 

1.265 

[1.161   1.370] 

4.282 

[4.096   4.470] 

GSC Renewal/ASPC 

Differentiation/GBM 

Development (Grade-IV) 

NA NA 
0.970 

[0.873   1.066] 

29.414 

[28.875  29.955] 

4 Case Studies 

4.1 Case study using TCGA-LGG & TCGA-GBM RNASeq samples data 

4.1.1.Selection of patient cohorts and preparation of RNASeq sample data sets  

Two patient cohorts consist of low-grade (TCGA-LGG) and high-grade Glioblastoma 

(TCGA-GBM) from "The Cancer Genome Atlas (TCGA)" research networks 
57,58

 are chosen for 
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the case studies in this present work. HTSeq raw counts files (RNASeq experiment) of the 

Glioblastoma patients with TP53 mutation are selected to determine the mRNA expression 

profiles of these two patient cohorts. The following is the statistics of these two cohorts from 

which the RNASeq raw count data are downloaded on 27th April, 2017 (Supplementary Table 5).  

Supplementary Table 5. Statistics of the TCGA Glioblastoma patient cohorts.   

Cohorts # of Cases (Patients) # of Samples (RNA-Seq Raw Counts Data) 

M F U Total # Normal 

Tumor 

Samples 

# Primary 

Tumor 

Samples 

# Recurrent 

Tumor 

Samples 

Total 

TCGA-LGG 

(General) 

282 228 1 511 0 513 16 529 

TCGA-LGG (TP53 

Mutated) 

141 100 1 242 0 240 15 255 

TCGA-GBM 

(General) 

366 230 21 617 5 13 156 174 

TCGA-GBM 

(TP53 Mutated)  

32 21 0 53 0 57 0 57 

M = Male, F = Female, U = Undefined/Not mentioned 

The TCGA-Low grade glioma (TCGA-LGG) cohort contains tumor samples from Grade-II 

and Grade-III glioblastoma patients, whereas the TCGA-GBM cohort contains samples from 

Grade-IV tumor patients. The RNASeq raw counts data (available as TXT files) for each patient 

is available in the open source GDC Data portal of National Cancer Institute 

(https://portal.gdc.cancer.gov/). Further information about the workflows related to sample 

collection; mRNA sequencing and data processing, read alignments, and mRNA quantification 

etc. are available in GDC Data User’s Guide (https://docs.gdc.cancer.gov/Data/PDF/ 

Data_UG.pdf).          

4.1.2.Differential expression analyses of mRNA molecules  

The RNASeq raw counts data files corresponding to the patient cohort, which have TP53 

mutation, are extracted from the TCGA-LGG (General) and TCGA-GBM (General) patient 

cohorts.  

Differential expression analyses are performed by forming the contrasts between primary 

(TP53 mutated) (i) LGG (total samples = 240) and (ii) GBM (total samples = 57) tumor samples 

versus solid normal tumor (total samples = 5) samples using "edgeR" statistical package 
59

. The 

mRNA molecules of the following proteins from the set of input proteins (mentioned in 

Supplementary Table 1) are found to be significantly expressing (up or down) in the differential 

expression analyses (Supplementary Table 6). The mRNA expression patterns observed in this 

analysis are considered as the transcriptomics profiles of the two different patient cohorts.  
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Supplementary Table 6: Differentiation expression of the mRNA molecules in two different 

patient cohorts. 

TCGA-GBM (TP53 Mutation) Vs. Normal solid 

tumor 

TCGA-LGG (TP53 Mutation) Vs. Normal solid 

tumor 

Up Regulation Down Regulation Up Regulation Down Regulation 

APH1,DLL3, 

FRINGE,GASE, 

HAT,HDAC,JAG1, 

MAGP1,MAGP2, 

NEDD4,POFUT1, 

SAP30 

CNTN1,DVL,DTX1, 

FBW7, JAG2, JIP1 

DLL1, DLL3, FRINGE, 

NEDD4, POFUT1 

 

FBW7, JAG2, NOV 

 

4.2 Logical simulations using TCGA-LGG and TCGA-GBM transcriptomics data: 

The transcriptomics profiles of the input protein molecules observed in both the TCGA-LGG 

and TCGA-GBM patient cohorts are taken as inputs for the further simulations of aNSC and 

general glioma model simulations.  

4.2.1 Analyses of TCGA-LGG patient cohort  

In the TCGA-LGG patient cohort there are total 5 and 3 protein molecules found to be over 

and under expressed, respectively (Supplementary Table 4). Mutation or down regulation of P53 

protein is also considered. Hence, out of total 53 input molecules of the master aNSC model, there 

are total 9 protein molecules kept frozen (i.e. constitutively expressed at ON or OFF state) and 

eliminated from the input list for further randomization in the new simulation. Hence, the total 

mutations μ introduced in the newly developed, TCGA-LGG transcriptomics data on master 

aNSC model is 9 and the rest 44 input proteins are randomized 10000 times in 10 separate 

batches. The mean normalized frequency values of each cellular state are calculated from these 10 

independent simulation batches, which will be further used for checking the goodness-of-fit with 

the normalized frequency values observed for the cellular states in the master aNSC model. The 

objective of this study is to assess the effects of these 9 differentially expressed transcripts of the 

input proteins in the development of adult NSCs within the neurogenic niche of human brain and 

how much the normalized frequency distributions of different cellular states are varied with 

respect to the distributions of the cellular states observed in the master aNSC model (Fig. 1B). 

Chi-square goodness of fit test is used to compare the normalized frequency distributions of this 

new model (i.e. observed normalized frequencies) with the distributions (i.e. expected normalized 

frequencies) observed in the master aNSC model. The statistics is performed under the following 

null (H0) and alternate (H1) hypotheses: 

H0 = The normalized frequency values observed in the two model simulations (i.e. expected and 

observed) are consistent with each other. 

H1 = The normalized frequency values observed in the two model simulations (i.e. expected and 

observed) are not consistent with each other.     
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The comparative statistics of the normalized frequency distributions of each cellular state 

observed in these two simulations is represented in Fig. 5A, and elaborately discussed in the main 

manuscript. 

Following this simulation, the TCGA-LGG transcriptomics data is considered as inputs in the 

previously developed, master model of general glioma development. In the general glioma model, 

there are already 4 mutations added (including P53) and 8 mutations are further added as per the 

TCGA-LGG transcriptomics expression profile (Supplementary Table 4). Hence, altogether there 

are total 12 mutations (μ) introduced in the master general glioma model and a new derivative 

model is developed by keeping these 12 input proteins at constitutively up or down regulated 

states. These 12 input proteins are kept aside for further randomization and the rest 41 input 

proteins are randomized 10000 times in 10 separate batches. The mean normalized frequency 

values of each cellular state (observed normalized frequencies) are calculated from these 10 

simulation batches and Chi-square goodness-of-fit test considering the null (H0) and alternate (H1) 

hypotheses is performed again to assess the effects of the newly introduced mutations on the 

normalized frequency values of each cellular state (i.e. expected normalized frequencies) found in 

the master, general glioma model simulation. The comparative statistics of the normalized 

frequency distributions of each cellular state observed in these two simulations is represented in 

Fig. 5B, and elaborately discussed in the main manuscript. 

4.2.2 Analyses of TCGA-GBM patient cohort 

Similar to the analyses of TCGA-LGG tumor samples cohort, the transcriptomics profile 

(Supplementary Table 4) observed for the TCGA-GBM sample cohort is also considered at first 

as inputs in the master aNSC and general glioma models. Total 12 and 6 proteins are found to be 

up and down regulated, respectively, in the differential expression analyses in the tumor sample 

cohort with identified TP53 mutation. Therefore, in total 19 mutations (μ = 12 + 6 +1) of the input 

proteins are considered in the input in the master aNSC model and a new model using the TCGA-

GBM transcriptomics data on master aNSC model is developed. Here, the extra 1 mutation is 

added for the P53 mutation. Similar to the previous analyses, these 19 input proteins are kept 

constitutively at ON or OFF state as per the differentiation expression results (Supplementary 

Table 4) and the rest 34 input proteins out of 53 are further randomized 10000 times in 10 

separate simulation batches. Similar Chi-square goodness-of-fit test is performed here to assess 

the similarities of the normalized frequency values of each cellular state observed in master aNSC 

and new model simulations. Simulation results and the comparative statistics of the normalized 

frequency distributions between these two models are depicted in Fig. 5C as well as elaborately 

discussed in the main manuscript.  

On the other hand, another set of simulation is performed to examine the effects of the 

differentially expressed transcripts of the TCGA-GBM tumor samples cohort (Supplementary 

Table 4) on the master general glioma model. Here, the master general glioma model contains 4 

mutations (TP53, JAK2, STAT3, and RBPJ) and in the TCGA-GBM cohort another 18 proteins 

are found to be differentially expressed. Therefore, in total there are 22 mutations (μ = 18 + 4) 

will be added in the new simulation. These 22 proteins are kept constitutively expressed (either up 

or down) based on the transcriptomics profile generated from differential expression analyses 

(Supplementary Table 4) and the rest 31 out of 53 input proteins are randomized 10000 times in 

10 separate batches. Similar Chi-square goodness-of-fit test is also performed to study the 
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similarities of the normalized frequency values of each cellular state observed in master general 

glioma model and new model simulations. A comparative statistics of the cellular states observed 

in this new model as compare to the master general glioma model is represented in Fig. 5D and 

also discussed in the main manuscript.                           

5 Methodologies used for drug target screening 

The simulation outcomes of "Grade-IV GBM model" simulation show significant increase in 

the number of Grade-IV tumor cells (i.e. the cellular state: "GSC Renewal/ASPC 

Differentiation/GBM Development") in the attractor space (Fig. 2C). The periodic state transition 

dynamic in the steady state level observed in this cellular state is mainly occurred due to the 

presence of cyclic expression patterns of its corresponding marker proteins (Supplementary Table 

3). The expressions of these marker proteins are dependent on the intermediated molecules 

through which the flow of signaling cascades are transduced from the input to the target 

molecules during tumorigenesis. Hence the molecules, which show higher correlations in their 

expression pattern with the marker proteins, are the key regulators of the flow of tumorigenic 

signal inside the developing Grade-IV tumor cells. Therefore, it can be hypothesized that a subset 

of intracellular intermediate molecules, strongly tuned and correlated with the activity pattern of 

Grade-IV cellular state via the marker proteins are the most significant molecules for the 

sustainment of this cellular state. Indeed, it is expected that perturbing the expressions (i.e. logical 

states) of such molecules (individually or in combination) will alter the activity pattern of the 

Grade-IV cellular state and those proteins will be considered as potential drug targets. However, 

identification such small subset of molecules out of the large set of modeled pathway molecules is 

a challenging task, which could be only possible to resolve through an efficient computational 

algorithm capable of analyzing multiple time series data simultaneously.      

The intermediate molecules which are mutually interconnected and highly correlated with the 

temporal activity pattern observed for Grade-IV cellular state in the "Grade-IV GBM" model 

simulation study are required to be extracted 
60

. The correlation and delay between a pair of time 

course data could be calculated by using Fast Fourier Transform (FFT) analysis. Hence, the delay 

and pair-wise correlation between the activity patterns of Grade-IV tumorigenic cellular state (i.e. 

Target signal) and the time-course logical expressions data of all the intermediated molecules (i.e. 

Query signal) are measured by the following method.  

Let us consider that 1 2 3{ , , ,....., }Grade IV

TC c c c c  is the time series activity (ON or 1 and OFF or 

0) profile of the Grade-IV cellular state observed in the STG of "Grade-IV GBM model" 

simulation at the discrete time points 1,2,3,.....,t T . This time-course data of Grade-IV cellular 

state is considered as the "Target" signal. Similarly, let us consider that the time-course logical 

expression (ON/1, OFF/0) profile of any arbitrary molecule
1 2 3{ , , ,....., }i TX x x x x , which is 

considered as "Query" signal. Both the temporal signals (S) are decomposed into cyclic patterns 

(i.e. frequency domain) with each frequency 1,2,3,......, 1n T   by following FFT analyses as 

shown in Eq. 13 & Eq. 14 
60

. 
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Amplitude of the cycle with frequency n = 0 is neglected. The amplitudes and phase angles of 

the cycles with higher frequencies (n > 0) are calculated for both the signals. The frequency of the 

cycle (n) for which the amplitude is found at maximum magnitude is at first identified. After that 

phase angles of the cycles from both the target and query signals ( , )n n

C X  are calculated at that 

frequency (n) and the difference or delay n n n

CX C X     between the two signals is measured. 

The delay between two signals 
CX  is further calculated in the range of 

T
0 to 

n
 by using the 

following Eq. 15 
60

. 
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Lagged Pearson correlation coefficient is also calculated for measuring the strength and 

association between the two signals or trajectories 
60

. In this work the delay and correlation 

between Grade-IV cellular state and for each pathway molecules are measured pair-wise. There 

are total six probable outcomes, which are found while comparing all such pairs of trajectories 

(i.e. Target vs. Query) using this approach. These entire mathematical calculations are done in 

"DynOmics" package developed in the statistical package "R" 
60

.    

i) The signals are positively correlated (correlation > 0) with no delay (Delay = 0). In this 

case both target and query signals are superimposed on each other and the phase (or direction) of 

the signals is same (i.e. positively correlated). Hence, it is considered that the molecular 

expression pattern (i.e. query signal) is positively influencing the activity pattern or dynamics of 

Grade-IV tumor state and there is no delay between the time-course profiles. Therefore, the 

molecule is a strong positive inducer or activator of Grade-IV tumor cells, which means when the 

molecule is at ON (i.e. up -regulated/ active) state, the activity of Grade-IV cellular state is also 

High (or ON).      

ii) The signals are positively correlated (correlation > 0) with negative delay (Delay < 0). In 

this case the phase (or direction) of both the signals is same (i.e. positively correlated), but the 

initiation of the target signal at initial time point is delayed with respect to the query signal. 

Hence, it is considered that the molecular expression pattern (i.e. query signal) is positively 

influencing the activity pattern or dynamics of Grade-IV tumor state, but there is a lag of the 

Grade-IV time-course activity profile with the respect to that positively influencing molecule. 

Therefore, the molecule is a positive inducer or activator of Grade-IV tumor cells, which means 

activation of these molecules will lead to the higher expression of Grade-IV tumor state.    

iii) The signals are negatively correlated (correlation < 0) with positive delay (Delay > 0). In 

this case the phases of the signals are opposite (i.e. negatively correlated) and the initiation of the 

target signal is ahead of the query signal at initial time point. Hence, it is considered that the 
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molecular expression pattern (i.e. query signal) is negatively influencing the activity pattern or 

dynamics of Grade-IV tumor state, but the Grade-IV time-course activity profile is running ahead 

with the respect to that negatively influencing molecule. Therefore, the molecule is a negative 

inducer or activator of Grade-IV tumor cells, which means which means when the molecule is at 

ON (i.e. up -regulated/ active) state, the activity of Grade-IV cellular state is Low (or OFF).  

Supplementary Table 7: Delay difference and significant correlation observed between 

Grade-IV trajectory and pathway molecules. 

Original Signal Query Signal Delay  3 Correlation >= 0.6  P-Value 

Grade-IV  GFAP 1 1 0 

Grade-IV  HIF1A* 1 1 0 

Grade-IV  NUC_STAT3* 2 1 0 

Grade-IV  MASH1* 3 -1 0 

Grade-IV  NESTIN 3 -1 0 

Grade-IV  NEUROD 3 -1 0 

Grade-IV  PTEN* 3 -1 0 

Grade-IV  STAT3_P* 3 1 0 

Grade-IV  BAD 0 -0.7698004 0.005588 

Grade-IV  AKT* 1 0.7637626 0.010131 

Grade-IV  NGN1* 2 -0.7559289 0.018452 

Grade-IV  PI3K* 2 0.7559289 0.018452 

Grade-IV  HES1 0 0.6236096 0.040347 

Grade-IV  HES5 0 0.6236096 0.040347 

*Proteins selected for drug target screening as they do not belong to the class of marker proteins responsible 

for defining different cellular states.  

iv) The signals are negatively correlated (correlation < 0) with no delay (Delay = 0). In this 

case the phases of the signals are opposite (i.e. negatively correlated), but there is no delay at the 

initiation of the signals at initial time point. Hence, it is considered that the molecular expression 

pattern (i.e. query signal) is negatively influencing the activity pattern or dynamics of Grade-IV 

tumor state, but there is no lag between the trajectories of these two signals. Therefore, the 

molecule is a strong negative inducer or inhibitor of Grade-IV tumor cells which means 

activations of these molecules, will inhibit the expression or activation of Grade-IV tumorigenic 

state.  

v) The signals are negatively correlated (correlation < 0) with negatively delay (Delay < 0). 

In this case the phases of the signals are opposite (i.e. negatively correlated), but the initiation of 

the target signal at initial time point is delayed with respect to the query signal. Hence, it is 

considered that the molecular expression pattern (i.e. query signal) is negatively influencing the 

activity pattern or dynamics of Grade-IV tumor state, but there is a lag of the Grade-IV time-

course activity profile with the respect to that negatively influencing molecule. Therefore, the 
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molecule is a negative inducer or inhibitor of Grade-IV tumor cells which means activations of 

these molecules, will inhibit the expression or activation of Grade-IV tumorigenic state.     

vi) The signals are positively correlated (correlation > 0) with positive delay (Delay > 0). In 

this case the phase (or direction) of both the signals is same (i.e. positively correlated), and the 

initiation of the target signal is ahead of the query signal at initial time point. Hence, it is 

considered that the molecular expression pattern (i.e. query signal) is positively influencing the 

activity pattern or dynamics of Grade-IV tumor state, but the Grade-IV time-course activity 

profile is running ahead with respect to that negatively influencing molecule. Therefore, the 

molecule is a positive inducer or activator of Grade-IV tumor cells which means activations of 

these molecules, will lead to the higher expression of Grade-IV tumor state.  

The pathway molecules, which show significant positive correlation (correlation value ≥ 0.6) 

and Delay ≤ 3 with the activity trajectory of Grade-IV cellular state, are enlisted in Supplementary 

Table 7. 

 

Supplementary Fig. 9. Simulation outcomes of drug targets screening analyses. Normalized 

frequencies observed for (A) LGG-I (B) LGG-II and (C) Grade-IV tumor cells in High-grade 

GBM model and different target screening scenarios are shown here. TC1: HIF1A Inhibition; 

TC2: PI3K & AKT Inhibition; TC3: STAT3 Inhibition; TC4: MASH1 & NGN1 Activation; TC5: 

PI3K Inhibition & MASH1 & NGN1 Activation; TC6: PI3K & AKT & HIF1A Inhibition. (* P-

Value 0.05). 



43 

Perturbation study: The molecules enlisted in Supplementary Table 7 showing positive 

correlation with the activity profile of Grade-IV cellular state are suppressed (i.e. targeted) by 

freezing the expression states as down-regulated (or OFF) state in the "Grade-IV GBM" model. 

On the other hand, the molecules, which are negatively correlated, are kept up-regulated (i.e. ON) 

in the perturbation study. The outcomes of targeting these identified proteins (individually or 

combinations) in terms of normalized frequency distributions are shown in Supplementary Fig. 9. 

In Supplementary Table 8, the molecules which have absolute correlation value ≥ 0.75 with P-

value < 0.05, Delay ≤ 3 and shown profound effect of reducing the activity of LGG-I, LGG-II, 

and Grade-IV cellular states while perturbing their expressions in the "Grade-IV GBM" model are 

shown rank wise. Here, the activity profiles of LGG-I and LGG-II cellular states are also assessed 

to analyze the suppressing effects of targeting the selected protein on all sub-types of GBM 

tumor.  

Supplementary Table 8. Calculated ranks of the effective drug targets for suppressing 

Grade-IV tumor cells. 

Target Cellular State  Query Proteins Delay  3 |Correlation| ≥ 0.75 P-Value Rank 

GSC/ASPC/GBM  NUC_STAT3* 2 1 ~ 0 1st 

GSC/ASPC/GBM  NGN1* 2 -0.7559289 0.018452 2nd 

GSC/ASPC/GBM  STAT3_P* 3 1 ~ 0 1st 

GSC/ASPC/GBM  MASH1* 3 -1 ~ 0 2nd 

There are four groups of drug targets, which are mentioned in Supplementary Table 7 viz. i) 

PI3K/AKT, ii) STAT3/Nuc_STAT3, iii) MASH1, and iv) HIF1A, are considered for further drug 

target screening and ranking simulation analyses. The simulation results show that the 

perturbations of STAT3/Nuc_STAT3 or MASH1 proteins individually are highly effective than 

perturbing the other molecules from the remaining two groups viz. (i) PI3K/AKT and (iv) HIF1A. 

It can be also concluded that the protein molecules showing maximum delay ≤ 3 and correlation ≥ 

0.6 with the target signal (i.e. expression dynamics of Grade-IV) can be allowed to screen the 

suitable proteins as drug targets (Supplementary Table 7). 
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5.1 Flow-chart of the decision making protocols used in cancer risk prediction, tumor grade 

detection and drug target screening   

 

Supplementary Fig. 10. Stepwise proposed protocol for the decision making steps used in 

the personalized GBM therapeutics studies.   

This proposed flow-chart describes the step-wise protocols which can be followed to predict 

the risk of future occurrence of GBM tumor of an individual (Supplementary Fig. 10). Two 

models viz. master aNSC and general glioma model would be used for this purpose, in which the 

omics (e.g. transcriptomics, proteomics, epigenomics etc.) profile of the individual will be used as 

inputs. At first, the transcriptomics profile will be taken as inputs in the master aNSC model to 

run a new simulation. The normalized frequencies of each of the cellular state (i.e. observed 

values) generated from the new simulation will be compared (Chi-square goodness-of-fit test) 

with the normalized frequencies of the cellular states (i.e. expected values) observed in the master 

aNSC model.. If the observed normalized frequencies are found consistent with respect to the 

expected normalized frequencies at the desired significance level, then the inspected individual 

will be categorized as healthy who have no risk of developing GBM tumor in the near future. On 

the other hand, if there is an inconsistency found in the observed and expected normalized 

frequencies, then the individual's transcriptomics profile would be further tested to detect the risk 

of developing Low or High grade GBM tumor in the future. In this case, the transcriptomics 

profile will be considered as inputs in the master general glioma model and a new simulation will 

be run again. If the observed and expected normalized frequencies are well fitted with each other, 
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then it can be concluded that the individual has a risk of developing Low-grade glioblastoma 

(LGG) in future. To quantify the chances of occurrences of the tumor cells of that individual, the 

phenotype predictor scores will be calculated for each tumorigenic state (i.e. LGG-I, LGG-II and 

Grade-IV), which will be further helpful to assess the severity of the tumor progression.  

Otherwise, if it is observed that the expected and observed normalized frequencies are not 

consistent with each other and the phenotype predictor score of all the tumorigenic states 

(especially Grade-IV) are increased many folds as compared to the master general glioma model, 

then it can be concluded that the individual has the risk of developing high grade GBM tumor. 

Quantification and further assessments of the chances of developing high-grade GBM tumor can 

be calculated by measuring the corresponding values of the phenotype predictor scores. Followed 

by these analyses, for high-grade GBM tumor patients, another simulation will be performed by 

using the omics profile as input in the master Grade-IV GBM model to screen and rank suitable 

drug targets for personalized, target based GBM tumor therapy. Hence, it can be seen that this 

entire novel computational pipe-line can be easily deployed for the personalized, glioblastoma 

related pathological studies (such as risk prediction, tumor grade detection, biomarker 

identification and ranking of most potential drug targets etc.) by using the omics data of GBM (or 

suspected) patients.            
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