Supplementary information

Title: The type VI secretion system protein AsaA in *Acinetobacter baumannii* is a periplasmic protein physically interacting with TssM and required for T6SS assembly

Authors: Lei Li, Yi-Nuo Wang, Hong-Bing Jia, Ping Wang, Jun-Fang Dong, Juan Deng, Feng-Min Lu & Qing-Hua Zou

Supplementary Figure 1. A. baumannii strains growth curve in LB medium. The wild type 17978, AsaA mutant and complementation strains were used to inoculate LB medium at 10⁷ CFU per ml. Samples were taken in triplicate at intervals of 2 h, diluted and plated on LB plates. Bacterial CFU were counted after incubation for 2 days. The experiments were repeated twice with similar results, and one representative result is presented.

Supplementary Figure 2. The full-length gel of His6-tagged fusion proteins were over expressed and purified. Lanes: 1, crude BL21/pET30a extract; 2, crude BL21/pET30a-AsaA extract induced with IPTG; 3, crude BL21/pET30a-TssM₄₃₆₋₁₀₄₁ extract induced with IPTG; 4, affinity-purified His6-AsaA protein; 5, affinity-purified His6-TssM₄₃₆₋₁₀₄₁ protein; M, molecular mass marker. Inside the box is the figure 4B.

Supplementary Figure 3. The full-length gel of Pull-down assays. Lanes: 1, pull-down of His₆-TssM by immobilized His₆-AsaA; 2, His₆-TssM mixed with streptavidin sepharose beads(negative control); 3, pull-down of His₆-AsaA by immobilized His₆-TssM; 4, His₆-AsaA mixed with streptavidin sepharose beads(negative control); M, molecular mass marker. Inside the box is the figure 4C.

Strains or plasmids	Relevant characteristics	Reference or source
E. coli strains		
JM109	RecA1, endA1, gyrA96, thi, supE44, relA1 Δ (lac-proAB)/F' [traD36, lacF, lacZ Δ M15]	[1]
JM109/pk18mob	JM109 harboring recombinant plasmid pk18mob, Kan ^r	This work
BL21(DE3)	F^{-} omp T gal dcm lon hsdS _B ($r^{-}_{B}m^{-}_{B}$) λ (DE3)	Novagen,Germany
BL21/ pET30a	BL21(DE3) harboring plasmid pET30a, Kan ^r	This work
BL21/pET30a-AsaA	BL21(DE3) harboring plasmid pET30a-AsaA, Kan ^r	This work
BL21/pET30a-TssM ₃₄₋₃₇₀	BL21(DE3) harboring plasmid pET30a-TssM ₃₄₋₃₇₀ , Kan ^r	This work
XL1-Blue MRF'	Reporter strain, Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 hisB sup E44 thi1 recA1 gyrA96relA1 lac [F' lacl ^q HIS3 aadA Kan ^r]	Stratagene
X/pBA-pTB	XL1-Blue MRF' harboring plasmid pBA and pTB, Kan ^r Tc ^r Cm ^r	This work

Table S1. Strain	ns and p	lasmids	s used	in (this	stud	y
------------------	----------	---------	--------	------	------	------	---

X/pBA-pTL	XL1-Blue MRF' harboring plasmid pBA and pTL, Kan ^r Tc ^r Cm ^r	This work
X/pBA-pTM ₁₃₀₃	XL1-Blue MRF' harboring plasmid pBA and pTM_{1303} , Kan ^r Tc ^r Cm ^r	This work
X/pBA-pTM ₃₃₋₄₁₅	XL1-Blue MRF' harboring plasmid pBA and pTM_{33-415} , Kan ^r Tc ^r Cm ^r	This work
X/pBA-pTM ₄₃₆₋₁₀₄₁	XL1-Blue MRF' harboring plasmid pBA and $pTM_{436-1041}$, Kan ^r Tc ^r Cm ^r	This work
X/pBA-pT	XL1-Blue MRF' harboring plasmid pBA and pTRG, Kan ^r Te ^r Cm ^r	This work
X/pB-pTM ₄₃₆₋₁₀₄₁	XL1-Blue MRF' harboring plasmid pBT and $pTM_{436-1041}$, $Kan^r Tc^r Cm^r$	This work
X/pBhpaM-pThrcJ	XL1-Blue MRF' harboring plasmid pBhpaM and pThrcJ, $Kan^r Tc^r Cm^r$	[2]
X/pBA ₂₅₋₇₀ -pTM ₄₃₆₋₁₀₄₁	XL1-Blue MRF' harboring plasmid $pBA_{\rm 25-70}$ and $pTM_{\rm 436-1041},Kan^rTc^rCm^r$	This work
X/pBA ₂₅₋₁₁₀ -pTM ₄₃₆₋₁₀₄₁	XL1-Blue MRF' harboring plasmid $pBA_{25\text{-}110}$ and $pTM_{436\text{-}1041},Kan^rTe^rCm^r$	This work
X/pBA ₂₅₋₁₅₀ -pTM ₄₃₆₋₁₀₄₁	XL1-Blue MRF' harboring plasmid $pBA_{25\text{-}150}$ and $pTM_{436\text{-}1041},Kan^rTe^rCm^r$	This work
X/pBA ₂₅₋₁₉₀ -pTM ₄₃₆₋₁₀₄₁	XL1-Blue MRF' harboring plasmid $pBA_{25\text{-}190}$ and $pTM_{436\text{-}1041},Kan^rTe^rCm^r$	This work
X/pBA ₂₅₋₂₃₀ -pTM ₄₃₆₋₁₀₄₁	XL1-Blue MRF' harboring plasmid $pBA_{25\text{-}230}$ and $pTM_{436\text{-}1041},Kan^rTe^rCm^r$	This work
X/pBA ₁₁₀₋₂₃₀ -pTM ₄₃₆₋₁₀₄₁	XL1-Blue MRF' harboring plasmid $pBA_{\rm 110\text{-}230}$ and $pTM_{\rm 436\text{-}1041},Kan^rTe^rCm^r$	This work
X/pBA ₁₅₀₋₂₃₀ -pTM ₄₃₆₋₁₀₄₁	XL1-Blue MRF' harboring plasmid $pBA_{\rm 150\text{-}230}$ and $pTM_{\rm 436\text{-}1041},Kan^rTc^rCm^r$	This work
X/pBA ₁₉₀₋₂₃₀ -pTM ₄₃₆₋₁₀₄₁	XL1-Blue MRF' harboring plasmid $pBA_{190-230}$ and $pTM_{436-1041}$, Kan ^r Te ^r Cm ^r	This work
X/pBA ₇₀₋₁₅₀ -pTM ₄₃₆₋₁₀₄₁	XL1-Blue MRF' harboring plasmid pBA_{70-150} and $pTM_{436-1041}$, $Kan^r Tc^r Cm^r$	This work
X/pBA ₇₀₋₁₁₀ -pTM ₄₃₆₋₁₀₄₁	XL1-Blue MRF' harboring plasmid pBA_{70-110} and $pTM_{436-1041}$, $Kan^r Tc^r Cm^r$	This work
X/pBA ₁₁₀₋₁₅₀ -pTM ₄₃₆₋₁₀₄₁	XL1-Blue MRF' harboring plasmid $pBA_{\rm 110-150}$ and $pTM_{\rm 436-1041},Kan^rTc^rCm^r$	This work

A. Baumannii strains

	17978	wild type strain	[3]
	∆asaA	As 17978, but asaA gene (A1S_1292) deleted.	This work
	$\Delta tssM$	As 17978, but <i>tssM</i> gene (<i>A1S_1302</i>) deleted.	This work
	С∆asaA	$\Delta asaA$ harboring the recombinant plasmid pTrc99AasaA , Amp^r	This work
	17978/pThcpH6	17978 harboring recombinant plasmid pTHcpH6, Amp ^r	This work
	∆asaA /pThcpH6	AasaA harboring recombinant plasmid pTHcpH6, Amp ^r	This work
	∆tssM/pThcpH6	$\Delta tssM$ harboring recombinant plasmid pTHcpH6, Amp ^r	This work
	⊿asaA / pTasaAH6	AasaA harboring the recombinant plasmid pTrc99AasaAH6 , Amp ^r	This work
	17978/pTpglCH6	17978 harboring recombinant plasmid pTpglCH6, Amp ^r	This work
	17978/pTompAH6	17978 harboring recombinant plasmid pTompA H6, Amp ^r	This work
1	7978/pTdsbAH6	17978 harboring recombinant plasmid pTdsbAH6, Amp ^r	This work

Plasmids

pET30a	Expression vector, allow the production of fusion proteins containing amino terminal $6{\times}{\rm His}$ -tagged sequences. ${\rm Kan}^{\rm r}$	Novagen
pET30a-AsaA	pET30a containing a 618-bp fragment of partial <i>asaA</i> gene sequence encoding the 25^{th} – 230^{th} amino acids. Kan ^r	This work
pET30a- TssM ₄₃₆₋₁₀₄₁	pET-30a containing a 1818-bp fragment of partial $tssM$ gene sequence encoding the 436 th -1041 th amino acids. Kan ^r	This work
pTrc99A	Ptrc, pBR322ori, rrnB T1, rrnB T2, lac ^{1q} , bla, template for Ptrc Promoter, Amp ^r	[4]
pThcpH6	pTrc99A containing the encoding sequence of Hcp with 6×His tag in its C-terminus, Amp ^r	This work

pTasaAH6	pTrc99A containing the encoding sequence of AsaA with $6 \times$ His tag in its C-terminus, Amp ^r	This work
pTpglCH6	pTrc99A containing the encoding sequence of PglC with 6×His tag in its C-terminus, Amp ^r	This work
pTompAH6	pTrc99A containing the encoding sequence of OmpA with $6 \times$ His tag in its C-terminus, Amp ^r	This work
pTdsbAH6	pTrc99A containing the encoding sequence of DsbA with 6×His tag in its C-terminus, Amp ^r	This work
pBT	Two-hybrid system bait plasmid containing the <i>cm</i> gene, p15A origin of replication and λ cI ORF, Cm ^r	Stratagene
pBA	pBT derivative carrying a 621-bp fragment encoding the $25^{\rm th}\!-\!230^{\rm th}$ amino acids of AsaA, $\rm Cm^r$	This work
pBA ₂₅₋₇₀	pBT derivative carrying a 138-bp fragment encoding the $25^{\rm th} - 70^{\rm th}$ amino acids of AsaA, $\rm Cm^r$	This work
pBA ₂₅₋₁₁₀	pBT derivative carrying a 258-bp fragment encoding the $25^{th}\!-\!110^{th}$ amino acids of AsaA, Cm^r	This work
pBA ₂₅₋₁₅₀	pBT derivative carrying a 378-bp fragment encoding the $25^{\text{th}}\!-\!150^{\text{th}}$ amino acids of AsaA, Cm^{r}	This work
pBA ₂₅₋₁₉₀	pBT derivative carrying a 498-bp fragment encoding the 25^{th} – 190^{th} amino acids of AsaA, Cm ^r	This work
pBA ₇₀₋₂₃₀	pBT derivative carrying a 483-bp fragment encoding the $70^{\text{th}}230^{\text{th}}$ amino acids of AsaA, Cm^{r}	This work
pBA ₁₁₀₋₂₃₀	pBT derivative carrying a 363-bp fragment encoding the 110^{th} –230 th amino acids of AsaA, Cm ^r	This work
pBA ₁₅₀₋₂₃₀	pBT derivative carrying a 243-bp fragment encoding the 150^{th} – 230^{th} amino acids of AsaA, Cm ^r	This work
pBA ₁₉₀₋₂₃₀	pBT derivative carrying a 123-bp fragment encoding the 190^{th} – 230^{th} amino acids of AsaA, Cm ^r	This work
pBA ₇₀₋₁₅₀	pBT derivative carrying a 243-bp fragment encoding the 70^{th} – 150^{th} amino acids of AsaA, Cm ^r	This work
pBA ₇₀₋₁₁₀	pBT derivative carrying a 123-bp fragment encoding the 70^{th} – 110^{th} amino acids of AsaA, Cm ^r	This work
pBA ₁₁₀₋₁₅₀	pBT derivative carrying a 123-bp fragment encoding the 110 th –150 th amino acids of AsaA, Cm ^r	This work
pTRG	Two-hybrid system target plasmid containing the <i>tet</i> gene, ColE1 origin of replication, and RNA polymerase α subunit ORF, Tc ^r	Stratagene
рТВ	pTRG derivative carrying the 150-bp of <i>tssB</i> gene, Tc ^r	This work
pTL	pTRG derivative carrying the 648-bp of <i>tssL</i> gene, Tc ^r	This work
pTM ₁₃₀₃	pTRG derivative carrying the 567-bp of A1S_1303 gene, Tc ^r	This work
pTM ₃₃₋₄₁₅	pTRG derivative carrying a 1149-bp fragment encoding the 33^{th} -415 th amino acids of <i>tssM</i> gene, Tc ^r	This work
pTM ₄₃₆₋₁₀₄₁	pTRG derivative carrying a 1818-bp fragment encoding the 436^{ih} -1041 th amino acids of <i>tssM</i> gene, Tc ^r	This work

References

 Yanisch-Perron, C., Vieira, J. & Messing, J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. *Gene* 33, 103–119(1985).
 Li, Li, R. F., Ming, Z. H., Lu, G. T. & Tang, J. L. Identification of a novel type III secretion-associated outer membrane-bound protein from Xanthomonas campestris pv. campestris. Sci

Rep 7, 42724 (2017).
3. Smith, M. G. *et al.* New insights into *Acinetobacter baumannii* pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev 21, 601-614 (2007).

4. Amann, E., Ochs, B. & Abel, K.J. Tightly regulated Tac promoter vectors useful for the expression of unfused and fused proteins in *Escherichia coli*. *Gene* **69**, 301–315(1988).

Table S2. Primers used in this study

Primer	Nucleotide sequence $(5' \rightarrow 3')$	The amplified fragment or the utilization
asaA-F asaA-R	TATTCTAAAAATATTAACTTTTCGGTAAGGCCTTGAATAAATA	DNA fragment of 1581-bp of the kanamycin resistance ORF sequence and coding sequence fusing with <i>asaA</i> upstream and downstream encoded sequence. Used for construction of <i>asaA</i> deletion mutant.
tssM-F tssM-R	GGCAGTACATCACGAATCCTAAAGCAATTATCGCCTTGTCATTGTTCG7 GGCATTGGTGTAGGCTGGAGCTGCTTC TGCCATTCCATT	DNA fragment of 1581-bp of the kanamycin resistance ORF sequence and coding sequence fusing with <i>tssM</i> upstream and downstream encoded sequence. Used for construction of <i>tssM</i> deletion mutant.
asaA-CF asaA-CR	AA <u>GAATTC</u> AAATATTAACTTTTCGGTAAGG AA <u>GGATCC</u> TTAGTGGTGGTGGTGGTGGTGTTTAATTAAAGGGTCAAA AGG	DNA fragment of 759-bp DNA fragment spans 48 upstream to the stop codon of the <i>asaA</i> ORF sequence, which fusing with $6 \times$ His tag encoding sequences. Used for construction of $\Delta asaA$ complement and Western blot analysis.
<i>hcp-</i> qF <i>hcp-</i> qR	ATATATACGTTGAGTTTCG AACCGAATGCTTCTGTAG	381-bp internal fragment of <i>hcp</i> , used for qRT-PCR.
16s-F 16s-R	GTGCCAGCAGCCGCGGT GACGGGCGGTGTGTACA	846-bp internal fragment of the 16S rDNA sequence, used for qRT-PCR.
<i>hcp-</i> HF <i>hcp-</i> HR	AT <u>GGATCC</u> GACCACATTTCCAGCTGG AG <u>TCTAGA</u> TTAGTGGTGGTGGTGGTGGTGCGCTGCGTAAGAAGC	DNA fragment of 627-bp hcp coding sequence fusing with 6×His tag encoding sequences. Used for Western blot analysis.
<i>pglC-</i> HF <i>pglC</i> -HR	CC <u>GAATTC</u> GTGAATGAAAATATGAA AA <u>GGATCC</u> TTAGTGGTGGTGGTGGTGGTGCTTAACAGAAGAAT	DNA fragment of 633-bp $pglC$ coding sequence fusing with 6×His tag encoding sequences. Used for Western blot analysis.
dsbA-HF	CC <u>GAATTC</u> ATGAAAAAATTGGTTTTGG	DNA fragment of 618-bp <i>dsbA</i> coding sequence
dsbA-HR	AA <u>GGATCC</u> TTAGTGGTGGTGGTGGTGGTGTTTTGCCTTACGTT	fusing with 6×His tag encoding sequences. Used
ompA-HF ompA -HR	CC <u>GAATTC</u> ATGAAATTGAGTCGTATT AA <u>GGATCC</u> TTAGTGGTGGTGGTGGTGGTGGTGAGCTGCTGCAG	for Western blot analysis. DNA fragment of 1071-bp <i>ompA</i> coding sequence fusing with 6×His tag encoding sequences. Used for Western blot analysis.
<i>tssM</i> ₍₃₃₋₄₁₅₎ -F <i>tssM</i> ₍₃₃₋₄₁₅₎ -R	CC <u>GGATCC</u> CAGCGTAAAAAGCATGCT AA <u>GGATCC</u> ACGCTGACGCTTTTTGCT	1149-bp DNA fragment spans nucleotides 97 to 1245 bp of the $tssM$ coding sequence, encoding the $33^{\text{th}} - 415^{\text{th}}$ amino acids. Used for bacterial two-hybrid assay.
<i>tssM</i> ₍₄₃₆₋₁₀₄₁₎ -F <i>tssM</i> ₍₄₃₆₋₁₀₄₁₎ -R	CC <u>GGATCC</u> TCATATCGTAACAATCAA AA <u>GAATTC</u> AACTAATCCCCAAATCTT	1818-bp DNA fragment spans nucleotides 1306 to 3123 bp of the <i>tssM</i> coding sequence, encoding the 436^{th} - 1041^{th} amino acids. Used for bacterial two-hybrid assay.

<i>tssB</i> -F <i>tssB</i> -R	CC <u>GGATCC</u> GTGTTCAGACTTACATAT AA <u>GAATTC</u> CTAAATCGACATTAATGA	150-bp DNA fragment of the <i>tssB</i> ORF sequence. Used for bacterial two-hybrid assay.
tssL-F tssL-R	CC <u>GGATCC</u> ATGTCACAATCTACAGGT AA <u>GAATTC</u> AGGTAGCTCACGATGGAT	648-bp DNA fragment spans nucleotides 1 to 648 bp of the <i>tssM</i> coding sequence, encoding the 1^{th} - 216 th amino acids. Used for bacterial two-hybrid assay.
<i>Tss1303-</i> F <i>Tss1303-</i> R	CC <u>GGATCC</u> ATGGCAACAGGTGAGTTA AA <u>GAATTC</u> TCATGGCTTAACTCCCGC	567-bp DNA fragment of the <i>A1S_1303</i> ORF sequence. Used for bacterial two-hybrid assay.
asaA-OF	AA <u>GGATCC</u> CAAGCAGCAGAACTAGAG	621-bp DNA fragment spans nucleotides 73 to
asaA-OR	CG <u>AAGCTT</u> TTATTTAATTAAAGGGTC	693 bp of the <i>asaA</i> coding sequence, encoding the 25^{th} - 230^{th} amino acids. Used for pull-down assay.
tssM-OF	AA <u>GGATCC</u> TCATATCGTAACAATCAA	1821-bp DNA fragment spans nucleotides
<i>tssM</i> -OR	CC <u>GTCGAC</u> TTAAACTAATCCCCAAATCTT	encoding the 436 th - 1041 th amino acids. Used for pull-down assay.
asaA-1F	CC <u>GAATTC</u> ACAAGCAGCAGAACTAGAG	621-bp DNA fragment spans nucleotides 73 to
usuA-1K	AA <u>GGATCC</u> TTATTTAATTAAAGGGTC	the 25 th - 230 th amino acids. Used for bacterial two-hybrid assay.
asaA-2F	CC <u>GAATTC</u> ACAAGCAGCAGAACTAGAG	138-bp DNA fragment spans nucleotides 73 to 210 bp of the gad coding sequence encoding
asaA-2R	AA <u>GGATCC</u> ATTTTTTTGAGTTGTATT	the 25^{th} - 70^{th} amino acids. Used for bacterial two-hybrid assay.
asaA-3F	CC <u>GAATTC</u> ACAAGCAGCAGCAGCAGCAGGAG	258-bp DNA fragment spans nucleotides 73 to 330 bp of the $asaA$ ORE sequence encoding the
asaA-3R	AA <u>GGAICC</u> IAAGACAICIGIGAIIAA	25^{th} - 110^{th} amino acids. Used for bacterial two-hybrid assay.
asaA-4F	CC <u>GAATTC</u> ACAAGCAGCAGAACTAGAG	378-bp DNA fragment spans nucleotides 73 to
asaA-4R	AA <u>GGATCC</u> ATGAATATTTTCAACTAA	25 th - 150 th amino acids. Used for bacterial two-hybrid assay.
asaA-5F	CC <u>GAATTC</u> ACAAGCAGCAGAACTAGAG	498-bp DNA fragment spans nucleotides 73 to 570 bp of the area 4 OPE accuracy among the
asaA-5R	AA <u>GGATCC</u> AGCACTCACTTTATTACG	25^{th} - 190^{th} amino acids. Used for bacterial two-hybrid assay.
asaA-6F	CC <u>GAATTC</u> ATCTAGAACATCAAATAAA	123-bp DNA fragment spans nucleotides 571
asaA-6R	AA <u>GGATCC</u> TTATTTAATTAAAGGGTC	sequence, encoding the 190 th - 230 th amino acids. Used for bacterial two-hybrid assay.
asaA-7F	CC <u>GAATTC</u> AACTGCAATGCCGGCTCCT	243-bp DNA fragment spans nucleotides 451
asaA-7R	AA <u>GGATCC</u> TTATTTAATTAAAGGGTC	the $150^{\text{th}} - 230^{\text{th}}$ amino acids. Used for bacterial two-hybrid assay.
asaA-8F	CC <u>GAATTC</u> ATTTTTATCTGGTGTGAGC	363-bp DNA fragment spans nucleotides 331 to 693 bp of the <i>asa4</i> ORE sequence encoding
asaA-8R	AA <u>GGATCC</u> TTATTTAATTAAAGGGTC	the $110^{\text{th}} - 230^{\text{th}}$ amino acids. Used for bacterial two-hybrid assay.
asaA-9F	CC <u>GAATTC</u> AGATTTATTAGCTAAAGCT	483-bp DNA fragment spans nucleotides 211 to 693 bp of the <i>asa4</i> ORE sequence encoding
asaA-9R	AA <u>GGATCC</u> TTATTTAATTAAAGGGTC	the 70^{th} - 230^{th} amino acids. Used for bacterial two-hybrid assay.
asaA-10F	CC <u>GAATTC</u> AGATTTATTAGCTAAAGCT	240-bp DNA fragment spans nucleotides 211
asaA-10R	AA <u>GGATCC</u> ATGAATATTTTCAACTAA	to 450 bp of the <i>asaA</i> ORF sequence, encoding the 70^{th} - 150^{th} amino acids. Used for bacterial two-hybrid assay.
asaA-11F	CC <u>GAATTC</u> AGATTTATTAGCTAAAGCT	120-bp DNA fragment spans nucleotides 211
asaA-11R	AA <u>GGATCC</u> TAAGACATCTGTGATTAA	to 350 bp of the <i>asaA</i> ORF sequence, encoding the 70^{th} - 110^{th} amino acids. Used for bacterial two-hybrid assay.

The underlined sequences indicate the restriction sites for EcoRI, HindIII, SalI,

XbaI and BamHI, respectively.

Species	Gene	Signal peptide	Length (aa)	Identity(%) /similarity(%)	Function predicted	Sequence Types (ST)	Reference
Acinetobacter baumannii AC29	BL01_13280	1 th -24 th aa	230	100/100	signal peptide protein	195	[1]
Acinetobacter baumannii BJAB0868	BJAB0868_01 408	1 th -24 th aa	230	100/100	hypothetical protein	218	[2]
Acinetobacter baumannii 1656-2	ABK1_1741	1 th -24 th aa	230	100/100	putative exported protein	423	[3]
Acinetobacter baumannii AB307-0294	ABBFA_00224 0	1 th -24 th aa	230	99.6/99.6	hypothetical protein	231	[4]
Acinetobacter baumannii AB0057	AB57_1478	1 th -24 th aa	230	99.1/99.6	hypothetical protein	207	[4]
Acinetobacter baumannii BJAB0715	BJAB0715_01 479	1 th -24 th aa	230	99.1/99.6	hypothetical protein	642	[5]
Acinetobacter baumannii AbH12O-A2	LX00_06400	1 th -24 th aa	230	99.1/99.1	signal peptide protein	924	[6]
Acinetobacter pittii	BDGL_00063 8	1 th -26 th aa	229	90.9/92.6	hypothetical protein	1527	[7]
Acinetobacter calcoaceticus	BUM88_0673 5	1 th -26 th aa	229	87.8/92.2	hypothetical protein	1043	accession CP020000.1
Acinetobacter nosocomialis	RR32_11560	1 th -24 th aa	229	80.9/87.8	signal peptide protein	1162	accession CP010368.1
Acinetobacter baylyi	ACIAD2693	1 th -22 th aa	218	43.5/57.8	hypothetical protein		[8]

Table S3. AsaA homologues in the family Moraxellaceae

Acinetobacter indicus	CTZ23_07445	1^{th} -22 th	222	33.3/46.8	hypothetical	[9]
		aa			protein	

Searching the AsaA homologues were carried out by blast the genome sequences in NCBI database with the AsaA sequence. No, no significant similarity protein (similarity>20%) was found within the genome sequence. Signal peptide predictions was carried with the SignalP program. Identity(%)/similarity(%) analysis was performed using the Align X program in Vector NTI software.

Reference

- 1. Zhu, L. *et al.* Complete genome analysis of three *Acinetobacter baumannii* clinical isolates in China for insight into the diversification of drug resistance elements. *PLoS One* **8**, e66584(2013).
- Lean, S. S., Yeo, C. C., Suhaili, Z. & Thong, K. L. Comparative genomics of two ST 195 carbapenem-resistant *Acinetobacter baumannii* with different susceptibility to polymyxin revealed underlying resistance mechanism. *Front Microbiol* 6, 1445 (2015).
- Vallenet, D. *et al.* Comparative analysis of *Acinetobacters*: three genomes for three lifestyles. *PLoS One* 3, e1805 (2008).
- 4. Merino, M. *et al.* Complete genome sequence of the multiresistant *Acinetobacter baumannii* strain AbH12O-A2, isolated during a large outbreak in spain. *Genome Announc* **2**,e01182-14 (2014).
- 5. Rogel-Hernandez, M. A. *et al.* Genome sequence of *Acinetobacter lactucae* OTEC-02, isolated from hydrocarbon-contaminated soil. *Genome Announc* **5**, e00400-00417 (2017).
- 6. Zhan, Y. et al. Genome sequence of Acinetobacter calcoaceticus PHEA-2, isolated from industry wastewater. J Bacteriol 193, 2672-2673 (2011).
- Jung, J., Baek, J. H. & Park, W. Complete genome sequence of the diesel-degrading *Acinetobacter* sp. strain DR1. *J Bacteriol* 192, 4794-4795 (2010).
- Barbe, V. *et al.* Unique features revealed by the genome sequence of *Acinetobacter* sp. ADP1, a versatile and naturally transformation competent bacterium. *Nucleic Acids Res* 32, 5766-5779 (2004).
- 9. Vettath, V. K. *et al.* Complete genome sequence of *Acinetobacter indicus* type strain SGAir0564 isolated from tropical air collected in singapore. *Genome Announc* **6**, e00230-18 (2018).
- 10. Daligault, H. E. *et al.* Complete genome assembly of a quality control reference isolate, *Moraxella catarrhalis* strain ATCC 25240. *Genome Announc* **2**, e00938-14 (2014).
- 11. Moghadam, M. S. *et al.* Isolation and genome sequencing of four arctic marine *Psychrobacter* strains exhibiting multicopper oxidase activity. *BMC Genomics* **17**, 117 (2016).
- Che, S. *et al.* Complete genome sequence of antarctic bacterium *Psychrobacter* sp. strain G. *Genome Announc* 1, e00725-13 (2013).