An ErbB2/c-Src axis drives mammary tumourigenesis through metabolically directed translational regulation of Polycomb Repressor Complex 2

Smith, H.W. et al.

Supplementary Information

Supplementary Information contains 11 Supplementary Figures

Supplementary Figure 1. c-Src ablation increases tumour cell death and impairs tumour cell proliferation (a) Schematic showing the MMTV-NIC transgene, which was crossed into the conditional c-Src knockout background. (b) Immunoblot showing c-Src levels in NIC/c-Src^{+/+} and NIC/c-Src^{L/L} tumors and primary cell cultures with depletion of contaminating stroma. (c) H&E staining of NIC/c-Src^{+/+} and NIC/c-Src^{L/L} tumors. Images are representative of eight independent tumors of each genotype. Scale bar represents 200 µm. (d) Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was performed on tumor samples from 5 independent mice of each genotype. TUNEL positive nuclei were quantified using an Aperio XT slide scanner and associated software and expressed as the percentage of total nuclei counted (mean +/- SEM, minimum 10 000 total nuclei analyzed, *p < 0.05). Scale bar represents 100 µm. (e) Proliferation of control and c-Src-deficient tumor cells was analyzed *in vitro*. *p < 0.05; two-tailed Student's t-test at 96h. (f) Control and c-Src-deficient tumours (n=5 per genotype) were stained for CD31 expression, as a marker of endothelial cells, by immunohistochemistry (IHC). Bar chart shows quantification of CD31 positive pixels (mean +/- SEM, no significant difference; unpaired, two-tailed Student's t-test).

а

Pathways Up-regulated in NIC/c-Src^{L/L} Tumours

KEGG Term	P-value		
ECM-receptor interaction	6.00824E-06		
PI3K-Akt signaling pathway	0.000288199	GO Biological Process	P-value
Protein digestion and absorption	0.000372628	cell-matrix adhesion	1.78922E-05
Focal adhesion	0.000423989	protein localization to membrane	2.96936E-05
Small cell lung cancer	0.001118713	extracellular matrix organization	7.28996E-05
Mucin type O-Glycan biosynthesis	0.00215834	negative chemotaxis	0.000125132
Amoebiasis	0.003197731	cortical cytoskeleton organization	0.000232467
TNF signaling pathway	0.006001644	GO Cellular Component	P-value
VEGF signaling pathway	0.009919752	focal adhesion	3.48575E-09
Metabolic pathways	0.01449648	specific granule membrane	0.000445184
REACTOME Term	P-value	Golgi membrane	0.000988779
Collagen biosynthesis and modifying enzymes	0.000106087	cytoskeleton	0.001183202
Assembly of collagen fibrils and other multimeric structures	0.000197356	specific granule	0.001197351
Collagen formation	0.000233067	GO Molecular Function	P-value
Extracellular matrix organization	0.000388798	cadherin binding	8.5959E-05
O-linked glycosylation of mucins	0.00079463	integrin binding	0.00013272
Pyruvate metabolism and Citric Acid (TCA) cycle	0.000544914	type II transforming growth factor beta receptor binding	0.001357047
Metabolism of lipids and lipoproteins	0.00169113	ubiquitin-like protein ligase binding	0.001814577
Regulation of pyruvate dehydrogenase (PDH) complex	0.000639444	type I transforming growth factor beta receptor binding	0.001990184
Pyruvate metabolism	0.001132249		
Sphingolipid de novo biosynthesis	0.002869525		

Pathways Down-regulated in NIC/c-Src^{L/L} Tumours

KEGG Term P-value regulation of inteleukin-2 production 0.009797623 Glycosaminoglycan biosynthesis - keratan sulfate 0.019255109 positive regulation of T cell cytokine production 0.019262062 Synaptic vesicle cycle 0.036713509 clathrin coat assembly 0.019255109 REACTOME Term P-value response to gonadotropin 0.028334819 Catabolism of glucuronate to xylulose-5-phosphate 0.0142209062 GO Cellular Component P-value Recycling pathway of L1 0.017697906 clathrin vesicle coat 0.028334819 CDD in myogenesis 0.025642744 AIM2 inflammasome complex 0.028334819 Myogenesis 0.025642744 GO Molecular Function P-value Serotonin Neurotransmitter Release Cycle 0.0381012 cytochrome-b5 reductase activity, acting on NAD(P)H 0.028334819 peptide receptors bind formyl peptides and many other 0.0381012 cytochrome-b5 reductase activity, acting on NAD(P)H 0.028334819 Sialic acid metabolism 0.046116818 azole transmembrane transporter activity 0.028334819				GO Biological Process	P-value
Glycosaminoglycan biosynthesis - keratan sulfate 0.019255109 0.019255109 0.019255109 Synaptic vesicle cycle 0.036713509 0.019255109 0.019255109 REACTOME Term P-value response to gonadotropin 0.028334819 Retograde neurotrophin signalling 0.012829062 GO Cellular Component P-value Catabolism of glucuronate to xylulose-5-phosphate 0.014216836 0.028334819 Recycling pathway of L1 0.017697906 0.028334819 CDD in myogenesis 0.025642744 0.028334819 Myogenesis 0.025642744 GO Molecular Function P-value Serotonin Neurotransmitter Release Cycle 0.0316586811 U4 snRNA binding (G0:0030621) 0.001872554 peptide receptors bind formyl peptides and many other I 0.0381012 cytochrome-b5 reductase activity, acting on NAD(P)H 0.028334819 Sialic acid metabolism 0.039101155 5-3' exodeoxyribonuclease activity 0.028334819	D	KEGG Term	P-value	regulation of interleukin-2 production	0.009797623
CDO in myogenesis 0.025642744 Intermissione complex 0.03801012 Myogenesis 0.025642744 AIM2 inflammasome complex 0.03861012 Serotonin Neurotransmitter Release Cycle 0.03681012 GO Molecular Function P-value peptide receptors bind formyl peptides and many other I 0.03681012 Cytochrome-b5 reductase activity, acting on NAD(P)H 0.028334819 Sialic acid metabolism 0.039101155 5-3' exodeoxyribonuclease activity 0.028334819 Formation of annular gap junctions 0.046116818 azole transmembrane transporter activity 0.028334819		Glycosaminoglycan biosynthesis - keratan sulfate Synaptic vesicle cycle REACTOME Term Retrograde neurotrophin signalling Catabolism of glucuronate to xylulose-5-phosphate Recycling pathway of L1 EGFR downregulation	0.019255109 0.036713509 P-value 0.012829062 0.014216836 0.017697906 0.020146695	positive regulation of 1 cell cytokine production clathrin coat assembly regulation of protein K63-linked ubiquitination response to gonadotropin GO Cellular Component clathrin vesicle coat clathrin coat	0.012829062 0.019255109 0.028334819 0.028334819 P-value 0.028334819 0.028334819 0.028334819
Serotonin Neurotransmitter Release Cycle 0.031658681 Constraint of the cycle Constraint of the cycle peptide receptors bind formyl peptides and many other 0.03681012 Cyclochrome-b5 reductase activity, acting on NAD(P)H 0.028334819 Sialic acid metabolism 0.039101155 5'-3' exodeoxyribonuclease activity 0.028334819 Formation of annular gap junctions 0.046116818 azole transmembrane transporter activity 0.028334819		CDO in myogenesis Myogenesis	0.025642744 0.025642744	AIM2 inflammasome complex	0.03681012
avide a dustrial and the output of dealers. NAD as NA		Serotonin Neurotransmitter Release Cycle peptide receptors bind formyl peptides and many other Sialic acid metabolism Formation of annular gap junctions	0.031658681 0.03681012 0.039101155 0.046116818	U4 snRNA binding (G0:0030621) cytochrome-b5 reductase activity, acting on NAD(P)H 5'-3' exodeoxyribonuclease activity azole transmembrane transporter activity	0.001872554 0.028334819 0.028334819 0.028334819 0.028334819

d

Transcriptional Regulators of Genes С Up-regulated in NIC/c-Src^{L/L} Tumours and Cell Lines

Factor

CEBPE

TP53

STAT3

SMARCA4

CTNNB1

EBF1

NFE2L2

PPARG

SUZ12

Pathway Analysis: Genes with H3K27me3 +/- 20kb of the TSS in NIC/c-Src*/* Tumours GO Biological Process

-regulated in N				GO Biological Process	P-value
Tumours and C	ell Lines	KEGG Term	P-value	neurotransmitter receptor transport	0.000848695
Mammary Tumours	Breast Cancer Cell Lines	Butirosin and neomycin biosynthesis	0.016634753	action potential	0.002164555
ChEA, ENCODE	IPA, ChEA, ENCODE	Phenylalanine, tyrosine and tryptophan biosynthesis	0.016634753	neurotransmitter receptor transport, postsynaptic endosome to lysosome	0.003672752
ChEA, ENCODE	IPA, ChEA, ENCODE	Galactose metabolism	0.037178818	forebrain neuron differentiation	0.003672752
IPA, ChEA	IPA, ChEA, ENCODE	Oxytocin signaling pathway	0.0379684	postsynaptic neurotransmitter receptor diffusion trapping	0.005335622
IPA ChEA	IPA ChEA	REACTOME Term	P-value	GO Cellular Component	P-value
IPA ChEA	IPA	Phase 2 - plateau phase	0.000649852	juxtaparanode region of axon	0.000558875
		NCAM1 interactions	0.004407629	main axon	0.013832878
IPA	IPA, CNEA	Phase 1 - inactivation of fast Na+ channels	0.005125029	cation channel complex	0.021879673
ChEA	IPA, ChEA	Na+/CI- dependent neurotransmitter transporters	0.007596186	ionotropic glutamate receptor complex	0.026573056
ChEA	IPA, ChEA	Phase 0 - rapid depolarisation	0.010411874	L-type voltage-gated calcium channel complex	0.042783451
ChEA	IPA, ChEA	LGI-ADAM interactions	0.019724272	GO Molecular Function	P-value
ChEA, ENCODE	ChEA .	Cardiac conduction	0.029551743	voltage-gated cation channel activity	2.37628E-05
		SLC transporter disorders	0.033005777	voltage-gated calcium channel activity	0.000986368
		Neurofascin interactions	0.033005777	sodium:amino acid symporter activity	0.001717503
		Amine compound SLC transporters	0.037178818	calcium channel activity	0.002160893
		· · · · · · · · · · · · · · · · · · ·			0.00040075

Intergenic/Non-coding regions/genomic repeats

Supplementary Figure 2. Transcriptomic and epigenomic alterations in c-Src-deficient ErbB2+ mammary tumours. (a-b) Genes up-regulated (a) and down-regulated (b) in NIC/c-Src^{L/L} vs. NIC/c-Src^{+/+} tumors were analyzed for enrichment in specific molecular pathways using the Kyoto Encyclopedia of Genes and Genomes (KEGG), the REACTOME database and the Gene Ontology (GO) database. For KEGG and REACTOME, the top ten significantly enriched pathways (p < 0.05), ranked by p-value, are shown. Less than 10 entries in the table indicates that fewer than ten pathways were identified as statistically significant. For GO, the top five significantly enriched terms (p < 0.05), ranked by p-value, are shown. (c) Differentially expressed genes (up-regulated and down-regulated) in NIC/c-Src^{L/L} vs, NIC/c-Src+/+ tumors (microarray) and cell lines (RNA-Seq) were analyzed for signatures of transcriptional regulators by crossreferencing with the ChEA and ENCODE databases and by using Ingenuity Pathway Analysis (IPA). The table shows potential transcriptional regulators of these differentially expressed genes that were identified in both sample types, where at least two independent methods identified the same regulator in at least one sample type (tumours and/or cell lines). No candidate regulators of genes down-regulated in NIC/c-SrcL/L tumours met these criteria, hence the table shows only candidate regulators of genes up-regulated in NIC/c-Src^{L/L} tumours. Red boxes highlight components of PRC2. (d) Pathway analysis as in (a-b) was applied to genes where H3K27me³ ChIP-Seg identified peaks within 20kb of the transcriptional start site (TSS) in NIC/c-Src+/+ cells. (e) Pie chart indicates the distribution of H3K27me³ peaks among various genomic features. Blue segments indicate genes and gene regulatory regions, red segments indicate non-coding regions including transposable elements and repeat regions. (f) Venn diagram indicates overlap between H3K27me3 peaks in NIC/c-Src^{+/+} cells and genes transcriptionally up-regulated in NIC/c-Src^{L/L} cell lines. (g) The transcript level of a 40-gene signature comprised of genes targeted by PRC2 (based on ChIP-Seq in two independent NIC/c-Src+/+ cell lines) that were transcriptionally activated in NIC/c-Src^{L/L} cells was correlated with EZH2 protein as in Figure 4g (R² and p values, Pearson's correlation analysis).

Supplementary Figure 3. c-Src ablation affects translation of PRC2 components independently of effects on mRNA expression and protein stability. (a) NIC/c-Src^{+/+} and NIC/c-Src^{L/L} tumors were stained for Ezh2 using immunohistochemistry. Nuclear staining intensity was scored on a scale of 0-3 using Aperio image analysis software (mean +/- SEM, minimum 10000 nuclei counted per tumor, *p < 0.05, **p < 0.01; unpaired, two-tailed Student's t-test). Images are representative of tumors from three independent mice of each genotype. Scale bar represents 50 µm. (b) qRT-PCR analysis of *Ezh2* and *Suz12* mRNA levels normalized to *Actb* (β -actin) in tumor samples from seven NIC/c-Src+/+ and seven NIC/c-Src^{L/L} mice. Data are mean +/- SEM. An unpaired two-tailed t-test indicated no significant differences. (c) Immunoblot analysis of Ezh2 levels in control NIC tumor cells (+/+) and c-Src-deficient cells (L/L) treated for 6h with the proteasome inhibitors lactacystin A (Lac - 1 µM) and MG132 (10 µM). (d) Immunoblot analysis of Ezh2 protein levels in NIC tumor cells from Figure 2 (B-C). Bar chart shows Ezh2 fluorescent signal (Li-COR Odyssey) normalized to the total protein loaded in each lane (Figure 2B) (*p < 0.05, unpaired, two-tailed Student's t-test). (e) qRT-PCR analysis of *Ezh2, Suz12, Eed*, and *Actb* mRNA levels normalized to β 2-microglobulin (*B2m*) in NIC/c-Src^{+/+} and NIC/c-Src^{L/L} cell lines (Mean +/- SEM, 3 biological replicates per genotype). The only statistically significant difference identified was an increase in *Eed* mRNA expression in c-Src-deficient cells (unpaired two-tailed Student's t-test).

Supplementary Figure 4. Suppression of mTORC1 activity and mTORC1-dependent translation in c-Src-Deficient ErbB2+ mammary tumours. (a-b) NIC/c-Src^{+/+} and NIC/c-Src^{L/L} cell lysates (a) or tumour lysates (b) were immunoblotted to detect the total and phosphorylated forms of Eif2 α as well as c-Src. α -Tubulin was used as a loading control. (c) The expression and phosphorylation (for mTOR and PRAS40) of mTORC1 components was NIC/c-Src+/+ and NIC/c-SrcL/L tumours by immunoblotting (n=7 per genotype). (d-f) NIC/c-Src^{+/+} and NIC/c-Src^{L/L} cell lines were starved of amino acids for 1h (d), starved of serum and growth factors overnight (e) or starved of glucose overnight (f) to inactivate mTORC1 and then stimulated for 30 min with increasing levels of these nutrients or factors, representing 10%, 50% and 100% of the levels in their complete growth media (DMEM with supplements - see Methods). Reactivation of mTORC1 was monitored by immunoblotting. Data are representative of three biological replicates per genotype and the experiment was performed twice. (g) gRT-PCR analysis of known mTORC1-dependent mRNAs (Bc/2/1, Ccnd3) isolated from polysome profiling of NIC/c-Src^{+/+} and NIC/c-Src^{L/L} tumor cell lines (mean +/- SEM, 5 biological replicates per genotype, *p < 0.05; unpaired, two-tailed Student's t-test). (h) qRT-PCR analysis of Bcl2l1 and Ccnd3 mRNA levels normalized to β2-microglobulin (B2m) in NIC/c-Src+/+ and NIC/c-SrcL/L cell lines (Mean +/- SEM, 5 biological replicates per genotype). No statistically significant differences were identified (unpaired two-tailed Student's t-test). (i) NIC/c-Src^{+/+} and NIC/c-Src^{L/L} cell lines were transduced with retroviruses expressing c-Src or empty vector control and immunoblotted to detect the expression levels of the indicated proteins. (j) Immunoblot showing Ezh2, Eif4ebp1 and c-Src levels in NIC/c-Src+/+ and NIC/c-SrcL/L cell lines transduced with lentiviruses bearing shRNA against Eif4ebp1 (sh4E-BP1) or LacZ (shCon).

Supplementary Figure 5. Regulation of PRC2 component protein expression by ErbB2/c-Src/mTORC1 signaling in GEMMS, PDX models and human breast cancer cell lines. (a) ErbB2 and SFK activity as well as Ezh2 protein levels were determined by immunoblotting in murine (MMTV-NIC) and human (SkBr3) ErbB2+ breast cancer cell lines following 24h of treatment with the ErbB2 tyrosine kinase inhibitor lapatinib (Lap.) or vehicle control (DMSO). UT denotes untreated cells. (b) IF analysis of ErbB2 and Ezh2 protein levels in mammary tissue from 20 week-old NIC/c-Src+/+ and NIC/c-SrcL/L mice. Representative images from five mice per genotype. Scale bars represent 50 µm. (c-d) ERBB2+ breast cancer patient-derived xenografts GCRC1991 (c) and GCRC2080 (d) were orthotopically implanted into NOD/SCID/gamma (NSG) mice which were treated with the SFK inhibitor Dasatinib (n=7), the ATP-competitive mTOR kinase inhibitor AZD2014 (n=7) or vehicle (n=6). Tumor growth was determined by caliper measurements at the indicated times following initiation of treatment (*p < 0.05, **p < 0.01; one-way ANOVA with Tukey's post-test). (e) PDX tumour samples from (d) were immunoblotted to examine the expression and phosphorylation (for mTOR and PRAS40) of mTORC1 component proteins. (f) H3K27me³ levels were analyzed in tumours from PDX GCRC1991 treated as in (c) using IHC (as in Figure 1e). Scale bar represents 50 µm. Bar chart shows nuclear staining intensity scored on a scale of 0-3 using Aperio image analysis software (mean +/- SEM, minimum 10000 nuclei counted per tumour, *p < 0.05, **p < 0.01; unpaired, two-tailed Student's t-test vs. vehicle control). (g) Human ERBB2+ (SkBr3 and MDA-MB-361) and triple-negative (MDA-MB-231) breast cancer cell lines were treated with the indicated inhibitors for 24h (Ev: everolimus, 10nM; Torin 1, 250 nM; Silv: silvestrol, 25 nM, Das: Dasatinib, 100nM; eCF: eCF506, 100nM). Immunoblots (representative of 3 independent experiments) show PRC2 subunit expression and markers of mTORC1 signaling.

Normalized Metabolite Level

Supplementary Figure 6. mTORC1 inactivation in c-Src-deficient tumours coincides with energy stress and reduced amino acid levels but not changes in canonical RTK signalling. (a) Immunoblots showing the phosphorylation status of ErbB-family RTKs and downstream signaling effectors in NIC/c-Src^{+/+} and NIC/c-Src^{L/L} mammary tumors (seven biological replicates per genotype). (b) LC/MS analysis of adenine nucleotide levels in NIC/c-Src^{+/+} and NIC/c-Src^{L/L} cell lines. Data are mean +/- SEM of three cell lines per genotype (*p <0.05, unpaired, two-tailed Student's t-test). (c) Steady-state amino acid levels in NIC/c-Src^{+/+} and NIC/c-Src^{L/L} cells were determined using GC/MS (4 cell lines per genotype, mean +/- SEM, *p < 0.05, **p < 0.01; unpaired, two-tailed Student's t-test).

Supplementary Figure 7. AMPK-dependent suppression of mTORC1 in c-Src-deficient cells induces changes in mitochondrial protein expression and loss of EZH2 translation in human breast cancer cells. (a) NIC/c-Src+/+ and NIC/c-Src^{L/L} mammary tumors were analyzed by immunoblotting to detect AMPK-dependent phosphorylation of TSC2 (Ser1387) and Raptor (Ser792). α-Tubulin was used as a loading control. (b-c) NIC/c-Src^{+/+} and NIC/c-Src^{L/L} cells were lysed and immunoblotted to detect the indicated mitochondrial proteins and α -Tubulin as a loading control. The OXPHOS antibody cocktail contains five primary antibodies against components of each of the electron transport chain complexes. (d) Total cellular DNA was isolated from NIC/c-Src^{+/+} and NIC/c-Src^{L/L} cells and the ratio of mitochondrial (mtDNA) to nuclear (nDNA) DNA was determined using QRT-PCR (n=5 per genotype, experiment performed in triplicate). No significant difference was observed (unpaired, two-tailed Student's t-test). (e) A published dataset²⁷ was interrogated to determine polysome-associated and cytoplasmic steady state EZH2 mRNA levels in MCF7 cells treated with metformin (MET – 10 mM), PP242 (1 µM) or rapamycin (RAP – 100 nM) for 12h. The anota method⁷⁵ was used to calculate the effect of each drug on the translational activity of EZH2 (4 biological replicates). Effects refer to log2 fold-changes in translational activity. Effects and associated p-values were calculated using analysis of partial variance (APV) under a random variance model as implemented in the anota R-package⁷⁵. (f) NIC/c-Src^{+/+} cells treated with inhibitors of OXPHOS or AMPK agonists in Figure 5h were analyzed by immunoblotting to detect expression and phosphorylation (for mTOR and PRAS40) of mTORC1 component proteins.

Supplementary Figure 8. Acute ablation or pharmacological inhibition of c-Src reprograms metabolism in ErbB2+ breast cancer cells. (a) ErbB2+ murine breast cancer cells with (ErbB2/c-SrcL/L - 3 independent cell lines) or without (ErbB2/c-Src+/+ - two independent cell lines) homozygous conditional Src alleles were infected in culture with adenoviruses bearing Cre recombinase or LacZ as a negative control. c-Src expression levels were monitored at the indicated times post-infection by immunoblotting. α -Tubulin was used as a loading control. (b) LC/MS analysis of AMP and ATP levels in ErbB2/c-Src+/+ and ErbB2/c-SrcL/L cell lines infected with LacZ- or Cre-expressing adenoviruses. Data are mean +/- SEM for two biological replicates analyzed in quadruplicate (*p <0.05, unpaired, two-tailed Student's t-test). (c) Basal, maximal (FCCP), ATP-synthesis-coupled (Oligomycin A), and non-mitochondrial (rotenone/antimycin A) oxygen consumption rates (OCRs) of NIC/c-Src+/+ cell lines treated with the Src family kinase inhibitors dasatinib or eCF506 or vehicle control (DMSO) for 24h, Representative of 3 cell lines per genotype, analyzed in guadruplicate. Right panel shows immunoblots indicating expression of activated Src family kinases and total c-Src (D - DMSO, Das - Dasatinib, 100nM, eCF - eCF506, 100nM). (d) Quantification of basal oxygen consumption rates of NIC/c-Src+/+ and NIC/c-SrcL/L cells treated with DMSO, Dasatinib or eCF506 (both 100nM) for 24h. NIC/c-Src^{L/L} cells were additionally transduced with a retrovirus expressing c-Src or a control retrovirus as in Supplementary Fig. 4i. Mean +/- SEM, brackets represent comparisons of conditions to the indicated DMSO control (blue bar). OCR in NIC/c-Src^{L/L} cells reconstituted with c-Src and treated with DMSO was not significantly different from that of NIC/c-Src+/+ cells treated with DMSO. All other comparisons not indicated were not significant (*p < 0.05, **p < 0.01, n.s. not significant; One-way ANOVA with Dunnett's post-hoc test).

Supplementary Figure 9. Lkb1 and CAMKK β contribute to basal AMPK activation in ErbB2+ breast cancer cells and to the increase in AMPK activity in c-Src-deficient ErbB2+ breast cancer cells. (a) NIC/c-Src^{+/+} and NIC/c-Src^{L/L} cells were treated with the CAMKK β inhibitor STO-609 (10µM) for 24h and immunoblotted to detect the indicated proteins. (c) NIC/c-Src^{+/+} and NIC/c-Src^{L/L} cells were transfected with siRNAs targeting Lkb1 or a control siRNA (Con) as indicated and lysed 72h after transfection. Immunoblotting was used to detect the indicated proteins.

kDa

·20

15

-20

15

Supplementary Figure 10. Ezh2 ablation causes a transient delay in mammary ductal outgrowth and blocks the formation of neoplastic lesions in the mammary epithelium. (a) Left - L4 mammary glands from 8- and 12-week old MMTV-Cre/Ezh2^{+/+} and MMTV-Cre/Ezh2^{L/L} mice (n=6 per genotype) were whole-mounted and stained with hematoxylin. Right – scatter plot indicates ductal outgrowth as determined by measuring the distance from the lymph node to the terminal end buds. *p < 0.05, unpaired Student's t-test; n.s., not significant. Scale bar represents 5 mm. (b) Whole-mounted mammary glands from 16 week-old NIC/Ezh2^{+/+} and NIC/Ezh2^{L/L} mice. Arrows indicate neoplastic mammary epithelial lesions in NIC/Ezh2^{+/+} mice. Images are representative of whole-mounts from four independent mice of each genotype. Scale bars represent 5000 µm (left images) or 1000 µm (right images). (c) Immunofluorescence (IF) was used to detect H3K27me³ in ErbB2-positive mammary epithelial cells of MMTV-NIC mice treated with GSK126 or vehicle control. Images representative of six mice per genotype, scale bar indicates 100 µm. (d) NIC/c-Src^{+/+} and NIC/c-Src^{L/L} cells (n=4 cell lines per genotype) were treated with the EZH2 inhibitor GSK126 at the indicated concentrations and proliferation was assessed. (*p<0.05, one-way ANOVA with Tukey's post-test). Lower right panel is a representative immunoblot showing inhibition of H3K27 tri-methylation.

Uncropped Immunoblots Red boxes indicate approximate areas cropped in the figures

Fig. 3C

P-ACC S79	250 kDa -
ACC	250 kDa
β-actin	50kDa — 37kDa —

Fig. 5H

Fig. 7A

