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Methods 

Study population 

FHS conducted 12,272 NP assessments for participants of the Original (Gen I), Offspring (Gen II), Omni 1 and New Offspring 

Spouse Cohorts. The current FHS NP battery is compromised of 32 NP tests (eTable 6). Since some tests were only performed on 

selected participants and/or were introduced at a later date and lack sufficient longitudinal follow-up, this study focused on the 11 

NP tests that were conducted on more than 85% of the participants. The 11 tests were: Wechsler Memory Scale (WMS) Logical 

Memory – Immediate Recall (LMi), Delayed Recall (LMd), and Recognition (LMr); Visual Reproductions – Immediate Recall 

(VRi), Delayed Recall (VRd) and Recognition (VRr); Paired Associate Learning – Immediate Recall (PASi), hard scores from 

Paired Associate Learning – Immediate Recall (PASi_h) and Delayed Recall (PASd_h); Boston Naming Test (BNT30) and the 

Similarities Test (SIM). 3,029 (24.7%) NP assessments with missing information of any of these 11 tests were excluded from 

analyzes. In addition, given that sporadic AD is a disease that primarily affects individual of advanced age, NP assessments 

conducted on participants who were younger than 70 years of age, at the time of testing, were excluded (n=4,731). The final 

sample size for our study was 4,512 NP assessments. Refer to eFigure1 for sample selection flowchart. 

 

CHAID decision tree for clinical screen 

Decision tree is one of the most widely used methods for inductive inference and concept learning. Chi-square Automatic 

Interaction Detection (CHAID) decision tree was used to explore the relationship of NP tests with different cognitive conditions 

[1]. This method determines the optimal combination of NP tests to predict cognitive status in the form of “if-then” rules by 

portioning each NP test score into mutually exclusive subsets based on heterogeneity of the AD. Nodes that can be separated into 

sub-nodes are called parent nodes of these sub-nodes (child nodes). Nodes that could not be further branched out are called 

terminal nodes. CHAID recursively partitions samples into separate and distinct subgroups. First, CHAID chooses the NP test that 

has the strongest chi-squared automatic interaction with cognitive status. Values of each test are merged if they are not 

significantly different, which is measured by the Pearson chi-squared test (P value cutoff = 0.05). After the initial segmentation of 

the population into two or more nodes, the branching-out process is repeated at each of the child nodes until the rules of 

termination are met. We set the maximum tree depth as five that represent the maximum levels of growth beneath the root node 

and we set the minimum number of participants at the parent nodes as 50 and 10 for that of the child nodes similar to previous 

studies [2,3]. If either of the aforementioned rules of termination is satisfied at a sub-node, then there will be no further branching. 

A detailed stepwise explanation of the decision tree growth is illustrated in the following paragraph as a method to identify cut-off 

values. The ten-fold cross validation method was applied during the clinical decision tree construction process [4]. The 

performance of clinical decision trees was evaluated in terms of overall accuracy, AD sensitivity, NAD sensitivity and All-cause 

dementia sensitivity.  

 

ChiMerge for identifying cut-off values  

ChiMerge – a discretization method – was utilized to disperse the numeric score of NP tests and automatically identify cut-off 

values [5]. This algorithm comprises of two stages: initialization and bottom-up merging. In the initialization stage, all 

observations are sorted by NP scores and assigned to the respective score intervals, which are randomly selected. This is followed 

by the bottom-up merging stage, a two-step process: 1) X2 test statistics are computed for the difference of each pair of adjacent 

intervals and 2) ranked in order of statistical significance (i.e. p-value). The pair of intervals with the least significant difference 

merges, forms a combined interval and the bottom-up merging process restarts from step one, where X2 test statistics are 

calculated for the each remaining pair of adjacent intervals, including the newly-formed combined interval. The bottom-up 

merging stage is completed when the p-values of the differences of all remaining pairs of intervals are less than 0.05.   

 

Consider LMd from our study as an example. In the initialization stage, all observations were sorted based on their LMd scores 

and 24 score intervals for LMd were formed, which corresponded to its score range of 0 to 23. For the first cycle of the bottom-up 

merging stage, X2 test statistics were computed for 23 pairs of adjacent intervals. Among them, intervals of 13 < x ≤ 14 and 14 < x 

≤ 15, where x is the NP score, were found to be least different in terms of statistical significance (p= 0.9935). Therefore, both 

intervals were merged to form the interval of 13 < x ≤ 15. The bottom-up merging stage restarted from step one, with the 
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calculation of X2 test statistics for the remaining 22 pairs of adjacent intervals, including the newly-formed interval of 13 < x ≤ 15. 

In the second cycle, the adjacent intervals of 9 < x ≤ 10 and 10 < x ≤11 were found to be least different (p=0.8143), hence they 

were merged to form the interval of 9 < x ≤11. The difference between each pair of adjacent intervals was considered significant at 

X2> 5.99, determined by α-level of 0.05 with 2 degrees of freedom. In the case of LMd, the bottom-up merging stage concluded 

with six distinct intervals: [0,1], (1,4], (4,6], (6,9], (9,12] and (12,23], where brackets [ ] mean inclusive and parentheses ( ) mean 

exclusive; and the p-values of the differences between the adjacent intervals were p<1.0 X 10-15, p<1.0 X 10-11, p<1.0 X 10-4, 

p<1.0 X 10-5 and p<1.0 X 10-4 respectively.  

 

Feature selection for identifying optimal NP tests 

Considering the interaction between different NP tests, it is possible that information redundancy exists. Feature selection narrows 

down a subset of relevant features, which can efficiently describe the data and enhance generalizability by reducing model 

overfitting. In contrast to other dimensionality reduction techniques like those based on projection or compression, feature 

selection does not transform the values of variables, but instead selects a subset of variables of greater importance to the 

designated outcomes. Therefore, the original semantics of variables is preserved, which enables easier interpretability by the 

end-users.  

 

Classification and Regression Trees (CART) are iteratively built by splitting the data based on each feature [6]. The ‘splitting’ 

feature is chosen according to its importance for the classification task. It selects the most important NP test according to Gini 

improvement measure, which then results in binary groups that are most different with respect to the cognitive status. The 

importance score of a NP test are based on the sum of the improvements in all nodes in which the NP test appears as a splitter. It is 

weighted by the fraction of the training data in each node split. One important concern for evaluating NP test importance is how to 

rank them when some tests may obscure the significance of another with slightly higher splitting scores, but another could provide 

accurate results if used instead. CART can address variable masking and include surrogate variables in the importance calculation 

[7]. 

 

Apart from this embedded method, another representative method was used in our study. Information Theoretic based filters 

evaluate the importance of a NP test by mutual information maximization [8]. It is robust to overfitting because it introduces bias 

but has considerably less variance [9]. The relationship between individual NP tests and cognitive status were examined from the 

view of information theory. We evaluated how much information about cognitive status is involved in individual NP tests 

according to Shannon entropy [10]. Information gain, a term-goodness criterion in the field of machine learning [11], was 

employed to rank NP tests in decreasing order. 

 

Correlation-based feature selection adapts greedy search (CBFSGS) and assesses the usefulness of individual NP test in cognitive 

status prediction, while considering the correlation among them [12]. Based on the training data, it calculates the correlation 

matrix between the NP test and cognitive outcomes and between each possible pair of NP tests (i.e. 55 combinations) among the 

11 NP tests. Using information from the correlation matrix, the algorithm selects a NP test in accordance to its importance for the 

subset, one at a time, out of the pool of 11 tests. This greedy best first manner search process continues until a subset of five NP 

tests is chosen. Such selection method minimizes redundancy as correlations – both among features and between outcomes – are 

computed in a global way.  

 

The top five most optimal NP tests were decided through majority voting of the three feature selection methods (Table 2) and new 

clinical decision trees were constructed based on these reduced feature sets.  

 

  

https://en.wikipedia.org/wiki/Feature_(machine_learning)
https://en.wikipedia.org/wiki/Overfitting
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Validation method 

In order to validate our approach, we implemented unsupervised machine learning techniques to learn the inherent structure of our 

data without using explicitly-provided labels (i.e. cognitive outcomes) [13]. Both K-means [14] and Hierarchical Clustering [15], 

were utilized as validation methods for the importance changes of NP tests in different subpopulations and whether the selected 

optimal NP profiles could reduce feature redundancy.  

 

K-means method is one of the top ten algorithms used in data mining and can reveal the data structure [14]. We partitioned 

observations into two clusters (AD & HC) with the nearest mean of the specific NP test serving as a prototype for the cluster. First, 

2 observations are randomly selected as the initial 2 cluster centroids. Then each observation is assigned to its closet centroid 

according to the Euclidean distance of 11 NP tests. Subsequently, the centroids of two clusters are reselected to the center (mean) 

of the new cluster, which include the newly added observations. The algorithm iterates the aforementioned two steps until 

convergence. We compared the actual cognitive status – determined by the FHS adjudication panel – with our clustering results to 

create a confusion matrix [16] and we evaluated the AD sensitivity of specific NP test in different subpopulations.  

 

Hierarchical clustering is a bottom-up method to construct a hierarchy of clusters [15]. Dendrogram is used to demonstrate the 

degree of discrimination between clusters. Firstly, each observation is treated as an individual cluster. Secondly, the pairwise 

Euclidean distance matrix is calculated for all observations. Thirdly, according to the distance matrix, the two clusters, which are 

most similar, are combined to form a new merged cluster. Fourthly, the distances between the newly formed cluster and all other 

remaining clusters are re-tabulated to update the distance matrix. . Lastly, this clustering process is repeated until all observations 

are grouped into one cluster. Dissimilarities between clusters of observations are defined as the distance between their two 

farthest-apart members, which is also known as complete linkage. Feature redundancy will affect the separability of cluster. This 

approach is used to validate whether the clusters formed by the selected optimal NP profiles are more distinguishable than that 

formed by all NP tests. 

https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Hierarchy
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Results 

An illustration of decision tree construction 

Consider the leftmost pathway (LMd<1 ➔ BNT30<23 ➔ VRd =0 ➔ PASi_h=0) as an example. At the start of the decision tree, 

CHAID found LMd to have the strongest interaction with cognitive outcomes (P<1.0x10-15) among the entire sample, thus LMd 

was designated as the root node. ChiMerge method was performed to discover the optimal adjacent score intervals for LMd, 

which resulted in six branched-out sub-nodes. Moving down from the root node to the leftmost sub-node on the first level 

(LMd<1), CHAID again examined the chi-squared automatic interaction between all the NP tests and the cognitive outcomes, but 

this time among participants who scored less than 1 for LMd and found BNT30 to have the strongest interaction (P<1.0x10-11) at 

this sub-node. Three optimal adjacent score intervals of BNT30, which were [0,23], (23,28], (28,30], were determined by 

ChiMerge method. Moving down from the first level to the leftmost sub-node on the second level (BNT30<23), VRd was selected 

as the next deciding NP test (p=0.0036) with two optimal adjacent scores intervals of [0,0] and (0,14]. Similarly, from the second 

level to the leftmost sub-node on the third level (VRd=0), CHAID determined PASi_h as the next NP test of interest (p=0.0023), 

with two optimal adjacent score intervals of [0,0] and (0,12]. Finally at the leftmost sub-node on the fourth level (PASi_h=0), as 

there was no other significant NP test to examine along this pathway, the splitting terminates with AD diagnostic sensitivity of 

88.1%.   

 

Optimal NP profiles and the validation 

In order to verify the change of importance for specific NP tests in different populations, K-means method was used to generate 

clusters based on NP scores only, in an unsupervised manner. Confusion matrixes were constructed by comparing the actual labels 

(i.e. cognitive outcomes) of the clusters with the predicted labels. As demonstrated in eTable 3, AD sensitivity of BNT30 for men 

was higher than that for women. In contrast, AD sensitivities of PASi and VRd for women were higher than that of men. From an 

unsupervised learning perspective, the results indicated that PASi, BNT30 and VRd had sex-specific differences. Similar trend 

could be observed for APOE ε4 allele- and education-stratified analyzes (eTable 4 and eTable 5 respectively).  

 

eFigure 14 shows a hierarchical clustering for the total population using all tests and as well as the first five selected tests. Both 

dendrograms revealed three distinct clusters; however, the distinguishability among them was more pronounced for the selected 

features dendrogram. This indicated that by using the optimal set of NP tests to construct the decision tree would potentially 

minimize data redundancy and better represent the inherent patterns within the NP data. 
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eTable 1. Overall performance of clinical decision tree of all NP tests in different populations 

 AD Sensitivity NAD sensitivity All-cause dementia sensitivity Accuracy 

Total 73.2% 46.3% 85.0% 73.9% 

Men 65.9% 53.6% 81.5% 76.1% 

Women 71.0% 57.8% 90.8% 72.9% 

APOE ε4 (-) 61.3% 61.5% 86.3% 74.6% 

APOE ε4 (+) 81.5% 58.1% 92.2% 69.6% 

High school and below 70.9% 63.5% 92.8% 65.9% 

Beyond high school 59.2% 55.7% 81.6% 80.3% 

 

 

 

 

eTable 2. Overall performance of NP clinical decision tree of selected five NP tests in different populations 

 Selected 5 NP tests 
AD 

Sensitivity 

NAD 

sensitivity 

All-cause dementia 

sensitivity 
Accuracy 

Total LMd, VRd, LMi, VRi, BNT30 71.9% 46% 84.5% 73.3% 

Men LMd, VRd, LMi, BNT30, VRi 65.9% 49.1% 79.2% 74.6% 

Women LMd, VRd, PASi_h, LMi, PASi 68.6% 56.1% 88.3% 75.3% 

APOE ε4 (-) LMd, VRd, LMi, BNT30, VRi 56.4% 61.8% 85.7% 73.0% 

APOE ε4 (+) LMd, VRd, LMi, VRi, PASi 81.5% 58.1% 92.2% 69.6% 

High school and below LMd, VRd, BNT30, LMi, VRi 73.2% 50.6% 90.2% 66.1% 

Beyond high school LMd, VRd, LMi, VRi, PASi 56.0% 52.2% 78.8% 80.3% 
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eTable 3. Confusion Matrix of the BNT30, PASi and VRd in men and women 

 Men Women 

BNT30 

 Prediction  Prediction 

Normal AD Normal AD 

Observed 
Normal 1222 299 

Observed 
Normal 1659 334 

AD 43 136 AD 108 268 

Sensitivity =75.98% Sensitivity =71.28% 

PASi 

 Prediction  Prediction 

Normal AD Normal AD 

Observed 
Normal 761 760 

Observed 
Normal 1000 993 

AD 25 154 AD 17 359 

Sensitivity =86.03% Sensitivity =95.48% 

VRd 

 Prediction  Prediction 

Normal AD Normal AD 

Observed 
Normal 713 808 

Observed 
Normal 1275 718 

AD 12 167 AD 24 352 

Sensitivity =93.3% Sensitivity =93.62% 
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eTable 4. Confusion Matrix of the BNT30, PASi and VRd in APOE ε4 (-) and APOE ε4 (+) 

 APOE ε4 (-) APOE ε4 (+) 

BNT30 

 Prediction  Prediction 

Normal AD Normal AD 

Observed 
Normal 2307 487 

Observed 
Normal 517 58 

AD 88 258 AD 85 99 

Sensitivity =74.57% Sensitivity =53.80% 

PASi 

 Prediction  Prediction 

Normal AD Normal AD 

Observed 
Normal 1421 1373 

Observed 
Normal 399 176 

AD 30 316 AD 22 162 

Sensitivity =91.33% Sensitivity =88.04% 

VRd 

 Prediction  Prediction 

Normal AD Normal AD 

Observed 
Normal 1578 1216 

Observed 
Normal 372 203 

AD 19 327 AD 14 170 

 Sensitivity =94.51% Sensitivity =92.39% 
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eTable 5. Confusion Matrix of the BNT30, PASi and VRd for education-stratified analyzes 

 High school and below Beyond high school 

BNT30 

 Prediction  Prediction 

Normal AD Normal AD 

Observed 
Normal 1290 201 

Observed 
Normal 1443 576 

AD 118 240 AD 53 138 

Sensitivity =67.04% Sensitivity =72.25% 

PASi 

 Prediction  Prediction 

Normal AD Normal AD 

Observed 
Normal 797 694 

Observed 
Normal 968 1051 

AD 40 318 AD 13 178 

Sensitivity =88.83% Sensitivity =93.19% 

VRd 

 Prediction  Prediction 

Normal AD Normal AD 

Observed 
Normal 884 607 

Observed 
Normal 1036 983 

AD 28 330 AD 11 180 

Sensitivity =92.18% Sensitivity =94.24% 
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eTable 6. Summary statistics of all available 32 NP tests at FHS 

NP Tests* Acronyms Range Mean (sd) Missing (%)  

Logical Memory – IR LMi 0 – 23 10.55(4.53) 244(2%) 

Logical Memory – DR LMd 0 – 23 9.52(4.74) 335(2%) 

Logical Memory – Recognition LMr 0 –11 9.29(1.59) 2241(15%) 

Visual Reproductions – IR VRi 0 – 14 7.57(3.70) 586(4%) 

Visual Reproductions – DR VRd 0 – 14 6.74(3.88) 685(4%) 

Visual Reproductions – Recognition VRr 0 –4 2.72(1.23) 752(5%) 

Paired Associate Learning – IR PASi 0 –21 13.15(4.06) 743(5%) 

Paired Associate Learning – IR (Ease Score) PASi_e 0 – 18 16.29(2.43) 741(5%) 

Paired Associate Learning – IR (Hard Score) PASi_h 0 – 12 4.91(3.37) 743(5%) 

Paired Associate Learning – DR PASd 0 – 10 8.14(1.76) 2452(16%) 

Paired Associate Learning – DR (Ease Score) PASd_e 0 – 6 5.80(0.65) 2452(16%) 

Paired Associate Learning – DR (Hard Score) PASd_h 0 – 4 2.34(1.40) 2451(16%) 

Paired Associate Learning - Recognition PASr 0 – 10 9.65(1.19) 7360(48%) 

Digits Forward Span DSF 0 – 9 6.42(1.39) 3314(22%) 

Digits Backward Span DSB 0 – 8 4.58(1.40) 3480(23%) 

Trail A+ trailsA 0 – 7 0.66(0.64) 2642(17%) 

Trail B+ trailsB 0 – 10 1.98(2.07) 2995(19%) 

Similarities Test SIM 0 – 26 15.20(5.14) 500(3%) 

Hooper Visual Organization Test HVOT 0 – 30 24.18(4.47) 2768(18%) 

Boston Naming test – 10 items BNT10 0 – 10 9.25(1.46) 661(4%) 

Boston Naming test – 10 items (semantic cue) BNT10_semantic 0 – 4 0.08(0.29) 2446(16%) 

Boston Naming test – 10 items (phonemic cue) BNT10_phonemic 0 – 4 0.21(0.50) 2446(16%) 

Boston Naming test – 30 items BNT30 0 – 30 26.06(4.80) 2447(16%) 

Boston Naming test – 30 items (semantic cue) BNT30_semantic 0 – 6 0.35(0.66) 2447(16%) 

Boston Naming test – 30 items (phonemic cue) BNT30_phonemic 0 – 15 1.23(1.43) 2447(16%) 

Finger Tapping – Right hand FingTapR 0 – 77.6 45.63(10.30) 5835(38%) 

Finger Tapping – Left hand FingTapL 0 – 74 41.49(9.12) 5835(38%) 

Wide Range Achievement Test –Reading WRAT 15 – 57 48.80(5.35) 3424(22%) 

Verbal Fluency Test  FAS 0 – 95 35.00(14.44) 3667(24%) 

Verbal Fluency Test – Animal  FAS_animal 0 – 50 18.61(6.05) 7415(48%) 

Block Design BD 0 – 26 19.87(6.34) 10716(70%) 

WAIS test WAIS 0 – 29 17.89(6.17) 10616(69%) 

* IR: Immediate Recall; DR: Delayed Recall 

+ Measured in minutes 
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eTable 7. Cut-off values of NP test decision tree for different subpopulations 

 Total Men Women APOE ε4 (-) APOE ε4 (+) 
High school 

and below 

Beyond high 

school 

LMd 

[0,1], (1,4], 

(4,6], (6,9], 

(9,12], 

(12,23], (0,11], 

(11,23] 

[0,1], (1,4], 

(4,7], (7,12], 

(12,23] 

[0,1], (1,4], 

(4,8], (8,12], 

(12,23], 

[0,9], (9,23] 

[0,2], (2,5], 

(5,7], (7,9], 

(9,13], 

(13,23] 

[0,0], (0,2], 

(2,4], (4,9], 

(9,23] 

[0,0], (0,3], 

(3,6], (6,9], 

(9,23] 

[0,3], (3,23], 

[0,6], (6,23], 

[0,3], (3,12], 

(12,23] 

VRd 

[0,1], (1,4], 

(4,6], (6,14], 

[0,2], (2,5], 

(5,8], (8,14] 

[0,3], (3,14] 

[0,1], (1,4], 

(4,6], (6,14], 

[0,2], (2,6], 

(6,14] 

[0,3], (3,4], 

(4,6], (6,14], 

[0,2], (2,3], 

(3,14] 

[0,4], (4,14], 

[0,1], (1,5], 

(5,14] 

[0,0], (0,3], 

(3,14], [0,1], 

(1,3], (3,14] 

[0,1], (1,3], 

(3,4], 

(4,5],(5,10], 

(10,14], 

BNT30 

[0,23], 

(23,30], 

[0,21], 

(21,30], 

[0,24], (24,30] 

[0,23], (23,30], 

[0,24], (24,30] 
N.A. 

[0,22], 

(22,25], 

(22,30], 

(25,30], 

[0,19], 

(19,28], 

(28,30] 

[0,22], 

(22,30] 

[0,24], (24,30], 

[0,25], (25,30], 

[0,22], (22,30] 

[0,24], (24,30] 

VRi 
[0,4], (4,14], 

[0,5], (5,14] 

[0,3], (3,6], 

(6,14] 
[0,4], (4,14] [0,3], (3,14] N.A. 

[0,4], (4,6], 

(6,7], (7,14] 
[0,9], (9,14] 

SIM [0,12], (12,26] 

[0,11], (11,15], 

(15,26], (11,26], 

(15,16], (16,26], 

[0,17], (17,18], 

(18,26] 

[0,10], 

(10,26], 

[0,14], 

(14,15], 

(15,26] 

[0,8], (8,26], 

[0,11], 

(11,26], 

[0,13], 

(13,26] 

N.A. 

[0,5], (5,10], 

(10,14], 

(14,26], [0,5], 

(5,13], (13,26] 

[0,11], (11,26], 

(11,15], (15,26] 

PASi 

[0,8.5], 

(8.5,21], 

[0,9.5], 

(9.5,21], 

[0,10.5], 

(10.5,21] 

[0,8.5], (8.5,21], 

[0,10], (10,21] 

[0,9], (9,21], 

[0,13], 

(13,21] 

N.A. 
[0,11.5], 

(11.5,21] 

[0,8], (8,21], 

[0,9], (9,21] 

[0,11.5], 

(11.5,21] 

VRr [0,1], (1,4] N.A. [0,1], (1,4] [0,0], (0,4] [0,1], (1,4] [0,2], (2,4] [0,0], (0,4] 

LMi [0,10], (10,23] N.A. N.A. 
[0,10], 

(10,23] 
N.A. [0,9], (9,23] [0,7], (7,23] 

LMr N.A. N.A. N.A. 

[0,7], (7,11], 

[0,7], (7,10], 

(10,11] 

N.A. [0,8], (8,11] N.A. 

PASi_h [0,0], (0,12] N.A. 
[0,2], (2,12], 

[0,0], (0,12] 

[0,4], (4,12], 

[0,0], (0,12], 

[0,1], (1,12] 

N.A. N.A. 
[0,1], (1,4], 

(4,12], (1,12] 

PASd_h N.A. N.A. [0,0], (0,4] 
[0,0], (0,4], 

[0,1], (1,4] 
N.A. 

[0,0], (0,2], 

(2,4] 
[0,0], (0,4] 

N.A.: Not represented in the decision tree 

 

eTable 8. Cut-off scores of reduced-feature decision tree for different subpopulations 
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 Total Men Women APOE ε4 (-) APOE ε4 (+) 
High school 

and below 

Beyond high 

school 

LMd 

[0,1], (1,4], 

(4,6], (6,9], 

(9,12], (12,23], 

[0,11], (11,23] 

[0,1], (1,4], 

(4,7], (7,12], 

(12,23] 

[0,1], (1,4], 

(4,8], (8,12], 

(12,23], [0,9], 

(9,23] 

[0,2], (2,5], 

(5,7], (7,9], 

(9,13], 

(13,23], 

[0,11], 

(11,23] 

[0,0], (0,2], 

(2,4], (4,9], 

(9,23] 

[0,0], (0,3], 

(3,6], (6,9], 

(9,23], [0,5], 

(5,23], 

[0,3], (3,6], 

(6,23], (3,23], 

(3,12], (12,23], 

VRd 

[0,1], (1,4], 

(4,6], (6,14], 

[0,0], (0,2], 

(2,4], (4,6], 

(6,14], [0,2], 

(2,5], (5,8], 

(8,14] 

[0,3], (3,14], 

[0,4], (4,7], 

(7,8], (8,14], 

[0,0], (0,2], 

(2,5], (5,14], 

[0,1], (1,4], 

(4,6], (6,14], 

[0,3], (3,6], 

(6,14], [0,2], 

(2,6], (6,14] 

[0,0], (0,3], 

(3,14], [0,3], 

(3,6], (6,14], 

(3,4], (4,6], 

[0,2], (2,3] 

[0,1], (1,5], 

(5,14], [0,4], 

(4,14], 

[0,0], (0,3], 

(3,14], [0,2], 

(2,3], [0,1], 

(1,3], (1,6], 

(6,14] 

[0,1], (1,3], 

(3,4], (4,5], 

(5,10], (10,14], 

BNT30 

[0,23], (23,28], 

(28,30], (23,30], 

[0,18], 

(18,30],[0,27], 

(27,30] 

[0,24], 

(24,27], 

(27,30], 

[0,23], 

(23,30], 

[0,24], 

(24,30], 

[0,20], 

(20,30], 

N.A. 

[0,22], 

(22,30], 

[0,23], 

(23,30], 

[0,25], 

(25,30], 

[0,19], 

(19,22], 

(22,30], 

(19,28], 

(28,30] 

N.A. 

[0,24], (24,30], 

[0,22], (22,25], 

(25,30], 

(22,30] 

N.A. 

VRi [0,4], (4,14] 
[0,3], (3,6], 

(6,14] 
N.A. 

[0,4], (4,14], 

[0,3], (3,14] 
[0,4], (4,14] [0,4], (4,14] [0,9], (9,14] 

PASi N.A. N.A. 

[0,13], (13,21], 

[0,11], (11,21], 

[0,10], (10,21] 

N.A. 
[0,11.5], 

(11.5,21] 
N.A. 

[0,8], (8,21], 

(8,13.5], 

(13.5,21], 

[0,11.5], 

(11.5,21], 

LMi 
[0,10], (10,23], 

[0,11], (11,23] 
[0,8], (8,23] N.A. 

[0,10], 

(10,23] 
N.A. 

[0,10], (10,23], 

[0,9], (9,23], 

[0,7], (7,12], 

(12,23] 

[0,5], (5,23] 

PASi_h N.A. N.A. 
[0,0], (0,12], 

[0,2], (2,12] 
N.A. N.A. N.A. N.A. 

N.A.: Not represented in the decision tree 
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eFigure 1. The process of sample selection 

 

 

 

 

 

 

 

  

 12272 Gen I, Gen II, 
Omni 1 & NOS 
observations

 9243 Gen I, Gen II, 
Omni 1 & NOS 
observations

Exclude 3029 
observations with 
missing test score

 4512 Gen I, Gen II, 
Omni 1 & NOS 
observations

Exclude 4731 
observations with 

age below 70

 3514 HC 
observations

 555 AD observations
 443 NAD 

observations
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eFigure 2. Clinical cognitive screen decision tree based on all NP tests in men 
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eFigure 3. Clinical cognitive screen decision tree based on all NP tests in women 
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eFigure 4. Clinical cognitive screen decision tree based on all NP tests in APOE ε4 (-) subpopulation 
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eFigure 5. Clinical cognitive screen decision tree based on all NP tests in APOE ε4 (+) subpopulation 
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eFigure 6. Clinical cognitive screen decision tree based on all NP tests in subpopulation with high school and below education 
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eFigure 7. Clinical cognitive screen decision tree based on all NP tests in subpopulation with beyond high school education 
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eFigure 8. Clinical cognitive screen decision tree based on optimal NP profiles (five tests) in men 
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eFigure 9. Clinical cognitive screen decision tree based on optimal NP profiles (five tests) in women 
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eFigure 10. Clinical cognitive screen decision tree based on optimal NP profiles (five tests) in APOE ε4 (-) subpopulation  
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eFigure 11. Clinical cognitive screen decision tree based on optimal NP profiles (five tests) in APOE ε4 (+) subpopulation  
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eFigure 12. Clinical cognitive screen decision tree based on optimal NP profiles (five tests) in subpopulation with high school and below education 
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eFigure 13. Clinical cognitive screen decision tree based on optimal NP profiles (five tests) in subpopulation with beyond high school education 
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eFigure 14. Hierarchical clustering of the total population using (1) full NP-test-set versus (2) five selected NP tests. The 

vertical axis of the dendrogram represents the dissimilarity between clusters. The horizontal axis represents the observations and 

clusters. The merging of two clusters is represented by the splitting of a vertical line into two vertical lines. Red rectangles 

indicate observations that are divided into three categories. 
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eFigure 15. Clinical cognitive screen decision tree based on optimal NP profiles (five tests) in total population with re-introduction of 310 observations with valid NP scores for the selected 

NP tests (LMd, VRd, LMi, VRi and BNT30). The augmented sample comprised of 4,822 sets of NP test scores from 2191 participants. Among them, 652 were AD patients, 485 were NAD 

and the remaining 1054 were healthy controls. This increased the sample size and enhanced the generalizability of the algorithm.  

  

 


