Α

D

В

1 Figure S1. Characterization of MEFs Used for Chemical Reprogramming

2	(A, B and C) Immunostaining analysis showing that the starting MEFs are negative for NSC
3	markers Sox2, Pax6, Olig2, Nestin (A), astroglial marker GFAP (B), and OPC markers A2B5
4	and NG2 (C). The insets show positive controls for the antibodies. All scale bar, 50 μm
5	(D) qRT-PCR analysis showing the expression of indicated neural genes in MEFs. Primary
6	NSCs (pri-NSC) and neural stem cell line SCR029 served as positive controls. Relative
7	expression was normalized to MEFs. Data are represented as mean \pm SEM. * p <0.001.
8	(E) Immunostaining analysis showing the differentiation potentials for MEFs towards
9	neurons (Tuj1) and oligodendrocytes (O4). Scale bar is 50 μ m in the upper panel, and 100
10	μm in bottom panel.
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

В

1 Figure S2. M9 Induces the Generation of METed Colonies

2	(A) A schematic diagram describing the generation, and the differentiation potential, of
3	reprogramming intermediate induced by M9 at the early stage of reprogramming.
4	(B) Morphology of the METed colonies induced in the presence of M9 at day 2, day 4, day 6,
5	day 8 and day 10 (D2, D4, D6, D8, and D10), or withdraw M9 from day 6 onwards (D8-M9
6	and D10-M9, M9 was withdraw from D6 and the morphology of the METed colony was
7	recorded by day 8 or day 10, respectively). All scale bar, 200 µm.
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

Α

D8+M9 D8-M9

D10-M9

010+M9

SCR029

F

Fsp-Npc

D6

0

MEF

D2 **D**4 2000 1800 1600 Pax6 1400 1200 1000 800 600 400 200 0 D8-M9 D10-M9 pri-Npc SCR029 MEF D2 D6 D8+M9 D10+M9 D4

В

1	Figure S3. Gene Expression Analysis of Neural Genes
2	(A-E) qRT-PCR analysis showing the relative expression of neural genes at indicated time
3	points. Relative expression was normalized to MEFs. Data are represented as mean±SEM,
4	n=3. * <i>p</i> <0.001.
5	(F) RNA-seq results (day 4 and day 0) showing the relative expression of 22 neural genes.
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

С

1	Figure S4. Differentiation Potentials of M9-Induced Intermediate Cells
2	Immunostaining analysis showing the M9-induced intermediate cells at day 6 are not able to
3	generate neurons, indicated by Tuj1 and NeuN staining (A), or OLs, indicated by MBP and
4	O4 staining (B). All scale bar, 100 µm.
5	(C) Immunostaining analysis showing the differentiation potentials for primary neural stem
6	cells towards neurons (Tuj1) astrocytes (GFAP), and oligodendrocytes (O4). All scale bar, 50
7	μm.
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

🗖 T

Mesp1

M9 D6-2

Sox17

M9 D8-1

M9 D8-2

M9 D6-2

M9 D6-1

M9 D8-1

M9 D6-1

M9 D8-2

1	Figure S5. Gene Expression Analysis of Lineage-Specific Genes
2	(A-D) qRT-PCR analysis showing the expression of genes for pluripotency (A), mesoderm
3	(B) and endoderm (C, D), respectively, at indicated time points. EB, embryoid body. Relative
4	expression was normalized to MEFs. Data are represented as mean \pm SEM. * p <0.01, **
5	<i>p</i> <0.001.
6	(E) Box plots showing the fold enrichment of the expression of genes for ectoderm,
7	endoderm, mesoderm and pluripotency (day 4 v.s. day 0).
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	Figure S6. Characterization of Reprogramming Conditions
2	(A) Dot plot showing the quantification of the numbers of bipolar cells by counting 18
3	randomly picked 10× visual fields from three independent experiments (6 fields for each
4	experiment).
5	(B and C) Immunostaining showing the Olig2-positive cells (B) and the quantification (C) by
6	day 14 under the conditions with M9 and OPC treatment (upper panel), without M9 for the
7	first 6 days (middle panel), or without OPC specification after day 6 (bottom panel). All scale
8	bar, 100 μm. * <i>p</i> <0.01.
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

Similar with previously described TFs-mediated Cell Activation and Signaling Directed reprogramming paradigm, chemical condition could activate fibroblasts into an epigenetically active state (the METed colony), which could be re-directed to alternative OPC fate in appropriate culture conditions.

Figure S7. Working Model of ciOPLC Reprogramming

1 SUPPLEMENTARY TABLES

2 Supplementary Table S1. Chemicals included in M9 cocktail

Chemical	Function	Structure	Working Con.	M.W.
CHIR99021	Highly potent and selective GSK-3 inhibitor		3 μΜ	465.34
LDN193189	Cell permeable BMP type I receptors ALK2/ALK3 inhibitor		100 nM	406.48
A83-01	Potent inhibitor of TGF-β type I receptor ALK5 kinase, type I Activin/Nodal receptor ALK4 and type I nodal receptor ALK7.	HN S CH3	0.5 μM	421.52
Parnate	Irreversible inhibitor of lysine-specific demethylase 1 and monoamine oxidase	NH ₂	2 μΜ	169.65
RG108	Non-nucleoside DNA methyltransferas e inhibitor		10 µM	334.3
Retinoic Acid	Endogenous agonist for retinoic acid receptors and retinoid X receptor	CH ₃ CH	1 μΜ	300.44

SMER28	Positive regulator of autophagy	HN N N N N	10 µM	264.12
Hg-Ag 1.5	Potent Hedgehog pathway Smo agonist	H ₃ C _{NH} F Cl	0.5 μM	526.04

Antigen	Antibody Type	Company	Cat No
Tuj1	mouse mAb	Covance	MMS-435P
Nestin	mouse lgG2a	R&D	MAB2736
Pax6	Rabbit	Covance	PRB-278P
GFAP	rabbit	Dako	z0334
Olig2	rabbit	Millipore	AB9610
04	mouse mAb	R&D	MAB1326
MBP	mouse	Convance	SMI99P
MAG	mouse	Millipore	MAB1567
MOG	mouse	Millipore	MAB5680
NG2	rabbit	Millipore	AB5320
A2B5	mouse	R&D	MAB1416
PDGFRa	mouse	eBioscience	17-1401-81
Nkx2.2	mouse	DSHB	74.5A5
Isotype control Ab	mouse	eBioscience	17-4321-81

1 Supplemental Table S2. Primary Antibodies Used in This Study

1 Supplemental Table S3. Quantitative PCR Primers Used in this Study

Candh	forward primer	catggccttccgtgttccta
Gupun	reverse primer	gcctgcttcaccaccttctt
Soy2	forward primer	gaacgccttcatggtatggt
5072	reverse primer	ttgctgatctccgagttgtg
Cfan	forward primer	cggagacgcatcacctctg
Gjup	reverse primer	agggagtggaggagtcattcg
Olial	forward primer	ggcggtggcttcaagtcatc
Oligz	reverse primer	tagtttcgcgccagcagcag
Accl1	forward primer	agggatcctacgaccctctta
ASCII	reverse primer	accagttggtaaagtccagcag
Dave	forward primer	agggggagagaacaccaact
Ράχο	reverse primer	catttggcccttcgattaga
NUW2 2	forward primer	gcagcgacaacccctaca
INKXZ.Z	reverse primer	acttggagctcgagtcttgg
Mba	forward primer	taccctggctaaagcagagc
Νυρ	reverse primer	gggagccgtagtgggtagtt
Din 1	forward primer	ctgccagtctattgccttcc
РІрі	reverse primer	agcattccatgggagaacac
Save	forward primer	caaaggacgaaaggaggaaa
50x0	reverse primer	ggatttccagcgagatccta
DouEf1	forward primer	ctgagggccaggcaggagcacgag
POUSJI	reverse primer	ctgtagggagggcttcgggcactt
Nanaa	forward primer	aag cag aag atg cgg act gt
Nullog	reverse primer	atc tgc tgg agg ctg agg ta
EafE	forward primer	ccttgcgacccaggagctta
rgj5	reverse primer	ccgtctgtggtttctgttgagg
Eava2	forward primer	aagggaaatgagaggctgagtgga
FOXUZ	reverse primer	atgacagatcactgtggcccatct
<i>τ</i>	forward primer	ttgaactttcctccatgtgctga
1	reverse primer	tcccaagagcctgccacttt
Maca1	forward primer	acccatcgttccagtacgc
iviesp1	reverse primer	agcatgtcgctgctgaaga
Sov17	forward primer	tgccctttgtgtataagcccgaga
JUXI7	reverse primer	gggtagttgcaatagtagaccgct

1 SUPPLEMENTAL INFORMATION

2 Materials and Methods

3 Mouse Embryonic Fibroblasts Preparations

Procedures involving mice were approved by the Animal Care and Use Committee at the 4 Shanghai Jiao Tong University School of Medicine. Mouse embryonic fibroblasts (MEFs) 5 were prepared as reported (Zhang et al., 2016). In brief, E13.5 mouse embryos with the 6 7 desired genotype were collected and their neural tissues (including head, spinal cord, and 8 tail) and internal organs (including reproductive organs) were carefully removed. The remaining tissues were sliced into small pieces, trypsinized, plated in MEF medium, and 9 cultured in 5% CO₂ and 20% O₂ at 37°C. All fibroblasts were expanded for two passages 10 11 before being used for experiments. To prepare tdMEFs, the resulting fibroblasts were 12 sorted for tdTomato⁺/p75⁻ cells by fluorescence-activated cell sorting (FACS).

13

14 **RNA Preparation and RT-PCR**

Total RNA was extracted using the RNeasy Plus mini kit (Qiagen). Reverse transcription 15 16 and PCR were performed as described. In brief, 1 µg total RNA was used for reverse transcription reactions with the iScript cDNA synthesis kit (Bio-Rad), and the resulting 17 cDNA was diluted five times in H2O for PCR. For semi-quantitative PCR, 1 µl of 18 19 1/5-diluted cDNA was used as a template for the PCR program: 95°C for 5 min, 35 cycles of 95°C for 30 s, 60°C for 30 s, and 72°C for 30 s, and then 72°C for 10 min. 20 Quantitative PCR was performed following the protocol of FAST SYBR Green Master 21 Mix (Applied Biosystems). All PCR was performed in triplicate, and the expression of 22

individual genes was normalized to that of *Gapdh*. The primer sequences are listed in
 Supplemental Table S3.

3

4 FACS Cytometry

- 5 Cells were washed twice with 1×DPBS and detached with accutase treatment at 37°C for
- 5 min. After harvesting, cells were passed through a 70- μ m filter and washed twice with
- 7 and resuspended into pre-cooled FACS buffer (1×DPBS, 1.5% FBS, 0.5% BSA). Cells
- 8 were incubated with specific antibodies or isotype control with the suggested
- 9 concentrations on ice for 45 min, followed by six washes with FACS buffer for sorting.
- 10 Cells were then resuspended into FACS buffer and sorted with a BD FACSAris II.
- 11 Antibodies used in this study are listed in Supplemental Table S2.
- 12