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In this supplemental material, we give a detailed analytical field theory calculation on how to obtain the 1/7%** long-distance

tail in the ground-state spin-spin correlation C;; = (S7S%)o [where (- - - ),, denotes the expectation value in the state |m) defined
in Fig. (1a) of the main text] of H,, [defined in the Eq. (1) of the main text], as well as the 1/ r®*2 Jong-distance tail in the edge
excitation amplitude (S7); of H,. As we stated in the main text, these power-law tails come from the non-analytic O(|q|*~!)
term in the dispersion of the field I(g). Directly calculating the corrections due to these terms turns out to be complicated. Here
we adopt a different field theoretic approach that is simpler in obtaining the long-distance behavior of C;; and (S7).

This alternative field theory is based on decomposing each spin-1 into two spin-1/2’s and mapping them to two bosonic fields
11,2 [1]. This field theory was originally designed for a nearest-neighbor spin-1 XXZ chain with ferromagnetic XY interaction.
We work with a long-range interacting version of such a model:
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which is equivalent to H,, upon flipping every other spin in the z-y plane.
Following Ref. [1], we map each spin-1 to two fields ¢ 2(z) and their conjugate fields X; 2(z) as:
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In the « — oo limit, and keeping only the most relevant terms, the above Hamiltonian gets mapped to two commuting parts
H, + H, [1]:
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where p1y = pp = p3 = -1, K1 = /1 + £, and K, = (/1 + 2.

The renormalization group (RG) flow equations for j11 o 3 under the scaling change x — xe! are given by
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= (2-2/K1) (D), = (2 -2/K3) pa (1), = (2= K32/2) ps(1). (S6)

Therefore, the term cos(y/81); ) in Eq. (S4) is a relevant operator which gives rise to a gap, and one similarly finds the field v to

be gapped. This picture is consistent with the gapped excitations predicted by the nonlinear sigma model used in the main text.
For a finite a > 0, let us first consider the effect of the long-range 57" S} + Sy S’;’ interactions. Using Eq. (S2), we find that the

most relevant terms in the RG sense are given by
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The oscillatory character of these terms makes them irrelevant beyond the wavelength of the oscillation, i.e. |x —y| 2 1 [2]. We
can thus disregard their effects at long distances.




Next we consider the long-range S7S7 interactions. Using Eq. (S3), we obtain
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The oscillating terms have the phase e!™(*~%) and thus are similarly suppressed; the first term in Eq.(S8) will change how
ground-state correlations decay. This occurs because it contributes to the field 1 (q) a dispersion proportional to |¢|**!, which
is non-analytic and will generate a power-law decay of the correlations of ¢ () in the ground state. Formally, by expanding the
11 COS [\/51/}1 (z)] term in Eq. (S4) to second order in ¢/1 (z), we can write the full dispersion for 11 (q) as €1 (q) = p1+¢*+[q|* ™!
(ignoring constant coefficients). Consequently, the correlation function in the ground state |0) at large separation |« — y| is given
by
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Using Eq. (S3), we end up with (S*(2)S?(y)), o 1/|z — y|*** as stated in the main text.
Next, we calculate (S*(z)) in the edge excited state |1) by using the edge-bulk coupling Hamiltonian H. = Zf:_; S; -

[(11'7?)01 + (in’i)a} defined in the main text. Rewriting H, in the continuum limit, we have
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Under the mapping Eq. (S3), and ignoring oscillating terms, we have
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Applying first order perturbation theory to H,, we find that (11 (¢)); is given by:
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As aresult, we obtain (11 (q))1 o< (e~ — €?9%)|q|* + higher order terms. For spins far way from both ends, we obtain
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