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In this supplemental material, we give a detailed analytical field theory calculation on how to obtain the 1/rα+4 long-distance
tail in the ground-state spin-spin correlation Cij = 〈Szi Szj 〉0 [where 〈· · · 〉m denotes the expectation value in the state |m〉 defined
in Fig. (1a) of the main text] of Hα [defined in the Eq. (1) of the main text], as well as the 1/rα+2 long-distance tail in the edge
excitation amplitude 〈Szi 〉1 of Hα. As we stated in the main text, these power-law tails come from the non-analytic O(|q|α−1)
term in the dispersion of the field l(q). Directly calculating the corrections due to these terms turns out to be complicated. Here
we adopt a different field theoretic approach that is simpler in obtaining the long-distance behavior of Cij and 〈Szi 〉1.

This alternative field theory is based on decomposing each spin-1 into two spin-1/2’s and mapping them to two bosonic fields
ψ1,2 [1]. This field theory was originally designed for a nearest-neighbor spin-1 XXZ chain with ferromagnetic XY interaction.
We work with a long-range interacting version of such a model:
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which is equivalent to Hα upon flipping every other spin in the x-y plane.
Following Ref. [1], we map each spin-1 to two fields ψ1,2(x) and their conjugate fields X1,2(x) as:
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In the α → ∞ limit, and keeping only the most relevant terms, the above Hamiltonian gets mapped to two commuting parts
H1 +H2 [1]:
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where µ1 = µ2 = µ3 = −1, K1 =
√

1 + 6
π , and K2 =

√
1 + 2

π .
The renormalization group (RG) flow equations for µ1,2,3 under the scaling change x→ xel are given by
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Therefore, the term cos(
√
8ψ1) in Eq. (S4) is a relevant operator which gives rise to a gap, and one similarly finds the field ψ2 to

be gapped. This picture is consistent with the gapped excitations predicted by the nonlinear sigma model used in the main text.
For a finite α > 0, let us first consider the effect of the long-range Sxi Sxj +Syi S

y
j interactions. Using Eq. (S2), we find that the
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The oscillatory character of these terms makes them irrelevant beyond the wavelength of the oscillation, i.e. |x− y| & 1 [2]. We
can thus disregard their effects at long distances.
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Next we consider the long-range Szi Szj interactions. Using Eq. (S3), we obtain
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The oscillating terms have the phase eiπ(x−y) and thus are similarly suppressed; the first term in Eq. (S8) will change how
ground-state correlations decay. This occurs because it contributes to the field ψ1(q) a dispersion proportional to |q|α+1, which
is non-analytic and will generate a power-law decay of the correlations of ψ1(x) in the ground state. Formally, by expanding the
µ1 cos
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]
term in Eq. (S4) to second order inψ1(x), we can write the full dispersion forψ1(q) as ε1(q) = µ1+q

2+|q|α+1

(ignoring constant coefficients). Consequently, the correlation function in the ground state |0〉 at large separation |x− y| is given
by
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Using Eq. (S3), we end up with 〈Sz(x)Sz(y)〉0 ∝ 1/|x− y|α+4 as stated in the main text.
Next, we calculate 〈Sz(x)〉 in the edge excited state |1〉 by using the edge-bulk coupling Hamiltonian Hc =

∑L−1
i=2 Si ·[

τL
(i−1)α + τR

(L−i)α

]
defined in the main text. Rewriting Hc in the continuum limit, we have
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Under the mapping Eq. (S3), and ignoring oscillating terms, we have
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Applying first order perturbation theory to Hc, we find that 〈ψ1(q)〉1 is given by:

(q2 + |q|α+1 + µ1)〈ψ1(q)〉1 ∝ (e−iq − eiqL)|q|α. (S12)

As a result, we obtain 〈ψ1(q)〉1 ∝ (e−iq − eiqL)|q|α + higher order terms. For spins far way from both ends, we obtain
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